Display:

Results

Viewing 1 to 30 of 3430
2017-08-29
Journal Article
2017-01-9000
Teresa Donateo, Antonio Ficarella
Abstract The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
2017-03-28
Technical Paper
2017-01-0113
Vaclav Jirovsky
Abstract Today's vehicles are being more often equipped with systems, which are autonomously influencing the vehicle behavior. More systems of the kind and even fully autonomous vehicles in regular traffic are expected by OEMs in Europe around year 2025. Driving is highly multitasking activity and human errors emerge in situations, when he is unable to process and understand the essential amount of information. Future autonomous systems very often rely on some type of inter-vehicular communication. This shall provide the vehicle with higher amount of information, than driver uses in his decision making process. Therefore, currently used 1-D quantity TTC (time-to-collision) will become inadequate. Regardless the vehicle is driven by human or robot, it’s always necessary to know, whether and which reaction is necessary to perform. Adaptable autonomous vehicle systems will need to analyze the driver’s situation awareness level.
2017-03-28
Technical Paper
2017-01-0025
Takayuki Kitamura, Naotsugu Shimizu, Yasuyuki Miyake
Abstract In the last decade, radar-based Advanced Driver Assistance Systems (ADAS) have improved safety of transportation. Today, the standardization of ADAS established by New Car Assessment Program (NCAP) is expected to expand its market globally. One of the key technologies of ADAS is the rear-side monitoring system such as Blind Spot Warning (BSW) and Closing Vehicle Warning (CVW). It is required to expand its detection range so that it can monitor not only nearside targets for BSW, but farther targets for CVW. These applications can be achieved using two radar sensors installed at rear-side corner of the vehicle. However, the expanded detection range causes undesirable target detections and decreases target recognition performance. In this paper, a novel solution to improve the performance using DCMP(Directional-Constrained Minimization of Power)-based Beamspace technology using Two-frequency continuous wave (2FCW also known as FSK) is introduced.
2016-10-25
Technical Paper
2016-36-0377
Alain Giacobini Souza, Luiz Carlos Gadelha Souza
Abstract In designing of the Attitude Control System (ACS) is important take into account the influence of the structure’s flexibility, since they can interact with the satellite rigid motion, mainly, during translational and/or rotational maneuver, damaging the ACS pointing accuracy. In the linearization and reduction of the rigid-flexible satellite mathematic model, usually one loses some important information associated with the satellite true dynamical behavior. One way to recovery this information is include to the ACS design parametric and not parametric uncertainties of the system. The H infinity control method is able to take into account the parametric uncertainty in the control law design, so the controller becomes more robust. This paper presents the design of a robust controller using the H infinity control technique to control the attitude of a rigid-flexible satellite.
2016-10-25
Technical Paper
2016-36-0282
Suely M. C. Romeiro, Marcelo L. de Oliveira e Souza
Abstract Modeling and Simulation - M&S is recently gaining more importance and emphasis as an essential method for developing engineering systems especially for aerospace and automotive systems, due to their complexity, integration and even human involvement. The main reasons for M&S having that important role nowadays are: 1) M&S can predict system behavior and possible problems. Therefore, it can reduce time and cost for developing systems, it can avoid future corrections into systems, as well. 2) M&S can be used for conception, training, maintenance, etc., requiring less expensive tools and previously preparing people to the real scenario. 3) When it comes to situations that involve aerospace or other products, where high costs are involved, mistakes can be avoided or at least minimized. Summarizing, M&S can reduce project cost and schedule, and improve quality.
2016-10-25
Technical Paper
2016-36-0293
Eloy Martins de Oliveira Junior, Marcelo Lopes de Oliveira e Souza
Abstract Cyber-physical systems are joint instances of growing complexity and high integration of elements in the information and physical domains reaching high levels of difficulty to engineer an operate them. This happens with satellites, aircraft, automobiles, smart grids and others. Current technologies as computation, communication and control integrate those domains to communicate, synchronize and operate together. However, the integration of different domains brings new challenges and adds new issues, mainly in real time distributed control systems, beginning with time synchronization. In this paper, we present a discussion on time synchronization and their effects in distributed cyber-physical control systems. To do that, we review the literature, discuss some time synchronization techniques used in cyber-physical systems, and illustrate them via model and simulation of a system representative of the aerospace area.
2016-10-25
Technical Paper
2016-36-0402
Jairo Cavalcanti Amaral, Marcelo Lopes de Oliveira e Souza
Abstract Switching controls are those that can switch between control or plant modes to perform their functions. They have the advantage of being simpler to design than an equivalent control system with a single mode. However, the transients between those modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the control or the plant. So, the smoothing of such transients is vital for their reliability and mantainability. This is can be of extreme importance in the aerospace and automotive fields, plenty of switchings between manual and autopilot modes via relays, or among gears via clutches, for example. In this work, we present a first strategy for smoothing transients in switching controls of aerospace and automotive systems.
2016-09-27
Technical Paper
2016-01-2107
Rainer Mueller, Matthias Vette, Matthias Scholer, Jan Ball
Abstract The global competition challenges aircraft manufactures in high wage countries. The assembly of large components is very difficult and distinguished by fixed position assembly. Many complex assembly processes such as aircraft assembly are manually done by highly skilled workers. The aircraft manufactures deal with a varying number of items, increasing number of product variants and strict product requirements. During the assembly process hundreds of clips, ties and stringers as well as thousands of rivets must be assembled. To remain competitive in global competition, companies in high wage countries like Germany must insure a continuously high productivity and quality level. To achieve a reduction of cycle times with a simultaneous increase in quality, supportive assistance systems for visual support, documentation and organization within the assembly are required. One example for visual assistance systems are laser projection systems.
2016-09-27
Technical Paper
2016-01-2117
Rustam M. Baytimerov, Pavel Lykov, Sergei Sapozhnikov, Dmitry Zherebtsov, Konstantin Bromer
Abstract The development of Additive Technologies (SLS/SLM, EBM, DMD) suggests the increase of range expansion of materials used. One of the most promising directions is products manufacturing from composite materials. The technology of composite micro-powders production on the basis of heat-resistant nickel alloy EP648 and Al2O3 is proposed. The aim of this research is to develop a method of producing composite micropowders for additive technology application. This method is based on modification of the metal micropowders surface by the second phase in a planetary mixer (mechanochemical synthesis).The obtained composite micropowders are compared with powders which are recommended for selective laser melting usage (produced by MTT Technology). The equipment used in the research: planetary mixer, scanning electron microscopy (SEM), optical granulomorphometer Occio 500nano.
2016-09-27
Technical Paper
2016-01-2121
Pavel Lykov, Rustam M. Baytimerov, Artem Leyvi, Dmitry Zherebtsov, Alexey Shultc
Abstract The copper-nickel alloys are widely used in various industries. The adding of nickel significantly enhances mechanical properties, corrosion resistance and thermoelectric properties of copper. The technology was proposed of production of copper-nickel composite micro-powders by the gaseous deposition of nickel on the surface of copper powder. The vaporization of nickel was implemented by using magnetron. The relationship between mode of processing and the ratio of phases in the powder was investigated. The proposed method allows to modify the powder surface without deformation of the particles. The possibility of using of obtained composite powder in selective laser melting (SLM) was evaluated. It is assumed that the structure of the obtained composite material (SLM) will have inclusions of nickel and continuous chain of copper. This structure will have high mechanical properties and high electrical conductivity.
2016-09-27
Technical Paper
2016-01-2125
Henry Hameister
This paper presents an approach to how existing production systems can benefit from Industry 4.0 driven concepts. This attempt is based on a communication gateway and a cloud-based system, that hosts all algorithms and models to calculate a prediction of the tool wear. As an example we will show the Refill Friction Stir Spot Welding (RFSSW), a solid state joining technique, which is examined at the Institute of Production Engineering (LaFT) of the Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, for years. RFSSW is a sub-section of friction welding, where a rotating tool that consists out of three parts is used to heat up material to a dough-like state. Since Refill Friction Stir Spot Welding produces a selective dot-shaped connection of overlapping materials, the production requirements are similar to riveting or resistance spot welding.
2016-09-27
Technical Paper
2016-01-2142
Pavel Lykov PhD, Artem Leyvi, Rustam M. Baytimerov, Aleksei Doikin, Evgeny Safonov
Abstract The treatment of solid surface by powerful streams of charged particles accelerated with power density ≥106 W/cm2 widely used for modification of different materials properties. The fast enter of electron beam power in the material of target causes the flow intense thermal and deformation processes. The changing of the structure, the phase composition, the microrelief of treated surface consequently happens. It is often accompanied by the hardening and increase of the wearing properties. The work proposed of using low-energy high-current electron beam as finish treatment of product obtained by selective laser melting of heat-resistant nickel alloy EP648. The subject of research was the surface properties of the product.
2016-09-20
Journal Article
2016-01-2042
Chad N. Miller, Michael Boyd
Abstract This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
2016-09-20
Technical Paper
2016-01-2039
Prashant S. Vadgaonkar, Ullas Janardhan
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
2016-09-20
Technical Paper
2016-01-2034
Tobias Kreitz, Frank Thielecke
Abstract The aviation industry is facing major challenges due to increased environmental requirements that are driven by economic constraints. For this reason, guidelines like "Flightpath 2050", the official guide of European aviation, call for significant reductions in pollutant emissions. The concept of the More Electric Aircraft offers promising perspectives to meet these demands. A key-enabler for this concept is the integration of new technologies on board of the next generation of civil transportation aircraft. Examples are electro-mechanical actuators for primary and secondary flight controls or the fuel cell technology as innovative electrical energy supply system. Due to the high complexity and interdisciplinarity, the development of such systems is an equally challenging and time-consuming process.
2016-09-20
Technical Paper
2016-01-2031
Michal Sztykiel, Steven Fletcher, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract There is a well-recognised need for robust simulation tools to support the design and evaluation of future More-Electric Engine and Aircraft (MEE/MEA) design concepts. Design options for these systems are increasingly complex, and normally include multiple power electronics converter topologies and machine drive units. In order to identify the most promising set of system configurations, a large number of technology variants need to be rapidly evaluated. This paper will describe a method of MEE/MEA system design with the use of a newly developed transient modeling, simulation and testing tool aimed at accelerating the identification process of optimal components, testing novel technologies and finding key solutions at an early development stage. The developed tool is a Matlab/Simulink library consisting of functional sub-system units, which can be rapidly integrated to build complex system architecture models.
2016-09-20
Technical Paper
2016-01-2029
Rolf Loewenherz, Francisco Gonzalez-Espin, Laura Albiol-Tendillo, Virgilio Valdivia-Guerrero, Ray Foley
Abstract This paper will present a multi-domain (electrical and thermal) model of a three phase voltage source converter and its implementation in Modelica language. An averaged model is utilised for the electrical domain, and a power balance method is used for linking the DC and AC sides. The thermal domain focuses in deriving the converter losses by deriving the analytical equations of the space vector modulation to derive a function for the duty cycle of each converter leg. With this, the conduction and switching losses are calculated for the individual switches and diodes, without having to model their actual switching behaviour. The model is very fast to simulate, as no switching events are needed, and allows obtaining the simulation of the electrical and thermal behaviour in the same simulation package..
2016-09-20
Journal Article
2016-01-2030
Jon Zumberge, Michael Boyd, Raul Ordonez
Cost and performance requirements are driving military and commercial systems to become highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits of those complex controls and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop plant models and determine the uncertainty of those models to predict performance and stability of the control algorithms. A process of model and control algorithm validation for a dc-dc boost converter circuit based on acceptance sampling is presented here. The validation process described in this paper is based on MIL-STD 3022 with emphasis on requirements settings and the testing process. The key contribution of this paper is the process for model and control algorithm validation, specifically a method for decomposing the problem into model and control algorithm validation stages.
2016-09-20
Technical Paper
2016-01-2027
Brett Robbins, Kevin J. Yost, Jon Zumberge
Abstract Detailed machine models are, and will continue to be, a critical component of both the design and validation processes for engineering future aircraft, which will undoubtedly continue to push the boundaries for the demand of electric power. This paper presents a survey of experimental testing procedures for typical synchronous machines that are applied to brushless synchronous machines with rotating rectifiers to characterize their operational impedances. The relevance and limitations of these procedures are discussed, which include steady-state drive stand tests, sudden short-circuit transient (SSC) tests, and standstill frequency response (SSFR) tests. Then, results captured in laboratory of the aforementioned tests are presented.
2016-09-20
Journal Article
2016-01-2028
Maher A. Hasan, Eric Walters, Michael Boyd, Jason Wells, Jon Zumberge, Chad Miller
Abstract Experimental Hardware-in-the-loop (xHIL) testing utilizing signal and/or power emulation imposes a hard real-time requirement on models of emulated subsystems, directly limiting their fidelity to what can be achieved in real-time on the available computational resources. Most real-time simulators are CPU-based, for which the overhead of an instruction-set architecture imposes a lower limit on the simulation step size, resulting in limited model bandwidth. For power-electronic systems with high-frequency switching, this limit often necessitates using average-value models, significantly reducing fidelity, in order to meet the real-time requirement. An alternative approach emerging recently is to use FPGAs as the computational platform, which, although offering orders-of-magnitudes faster execution due to their parallel architecture, they are more difficult to program and their limited fabric space bounds the size of models that can be simulated.
2016-09-20
Journal Article
2016-01-2023
Timothy Deppen, Brian Raczkowski, Marco Amrhein, Jason Wells, Eric Walters, Mark Bodie, Soumya Patnaik
Abstract Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
2016-09-20
Technical Paper
2016-01-2059
Rolf Loewenherz, Virgilio Valdivia-Guerrero, Daniel Diaz Lopez, Joshua Parkin
Abstract Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
2016-09-20
Technical Paper
2016-01-2058
Thibaut Billard, Cedric Abadie, Bouazza Taghia
Abstract The present paper reports non-electrically intrusive partial discharge investigations on an aeronautic motor. Relevancy, robustness and repeatability of partial discharge testing procedures, both on insulating materials characterization and on operating aeronautic equipment are essential to ensure reliability of the aircraft systems. The aim of this paper is to be the very first step of defining such procedures and the associated test equipment. To do so, the paper will start by providing an understanding of partial discharge phenomena and will review typical more electrical aircraft architecture. Key characteristics causing partial discharge risk to increase will be highlighted. The impact of harness length, high performance power electronics and voltage level increase on insulation system is demonstrated.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
Abstract This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-20
Technical Paper
2016-01-2050
Martin Espinosa Sanchez, Mario Pérez Millás
Abstract The effect of air pockets in capillaries in terms of pressure variations is investigated experimentally. Pressure sensors in aircraft are often installed separate to the pipes and connected with capillaries to minimise ignition sources within fuel tanks. Trapped air within these capillaries might distort the measurement. These effects are characterised in this paper. Extensive tests with different capillary configurations, trapped air volumes and pressure transients are studied. The data obtained shows that the main effect of trapped air during pressure transients is a delay in the pressure response against its excitation, causing local pressure oscillations around its source value until the pressure is equal in both places again. These oscillations can turn into high pressure peaks under critical conditions. Greater amounts of air can cause greater delays and viceversa.
2016-09-20
Journal Article
2016-01-2051
Andreas Himmler, Lars Stockmann, Dominik Holler
Abstract The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
2016-09-20
Technical Paper
2016-01-2044
Jeffrey J. Joyce, Scott Beecher, Laurent Fabre, Ramesh Rajagopalan
Abstract Over the past few decades, advanced methods have been developed for the analysis of digital systems using mathematical reasoning, i.e., formal logic. These methods are supported by sophisticated software tools that can be used to perform analysis far beyond what is practically achievable using “paper and pencil” analysis. In December 2011, RTCA published RTCA DO-178C [1] along with a set of technical supplements including RTCA DO-333 [2] which provides guidance on the use of formal methods towards the certification of airborne software. Such methods have the potential to reduce the cost of verification by using formal analysis instead of conventional test-based methods to produce a portion of the verification evidence required for certification.
2016-09-20
Technical Paper
2016-01-1978
Philippe Coni, Sylvain Hourlier, Xavier Servantie, Laurent Laluque, Aude Gueguen
Abstract A 3D Stereoscopic Head-Up Display (HUD) using direct projection on a transparent screen is presented. Symbol incrustation in conformity with the landscape is performed through the use of simulated collimation offering a large eye-box, in excess of conventional HUD. The use of spectral glasses for our transparent screen was decided as most commonly used polarizing or active glasses were not adapted. Furthermore it gave ususeful green laser attack protection.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Journal Article
2016-01-1990
Nisha Kondrath, Nathaniel Smith
Abstract In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and need for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A performance comparison of state-of-the art power devices in a 10 kW full-bridge dc-dc buck converter operating in continuous conduction mode (CCM) and at switching frequencies above 100 kHz will be presented in this manuscript. Power devices under consideration are silicon (Si) IGBT with Si antiparallel diodes, Si IGBT with SiC antiparallel diodes, Si MOSFETs, SiC MOSFETs, and enhancement-mode GaN transistors.
Viewing 1 to 30 of 3430