Display:

Results

Viewing 211 to 240 of 16432
2017-03-28
Journal Article
2017-01-1182
Xin Guo, Xu Peng, Sichuan Xu
Abstract Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
2017-03-28
Journal Article
2017-01-1183
Kenneth Johnson, Michael J. Veenstra, David Gotthold, Kevin Simmons, Kyle Alvine, Bert Hobein, Daniel Houston, Norman Newhouse, Brian Yeggy, Alex Vaipan, Thomas Steinhausler, Anand Rau
Abstract Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
2017-03-28
Journal Article
2017-01-1179
Tatsuya Arai, Ozaki Takashi, Kazuki Amemiya, Tsuyoshi Takahashi
Abstract Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
2017-03-28
Technical Paper
2017-01-1198
Po Hong, Hongliang Jiang, Jian qiu Li, Liangfei Xu, Minggao Ouyang
Abstract The lithium-ion battery plays an important role in saving energy and lowering emissions. Many parameters like temperature have an influence on the characteristic of the battery and this phenomenon becomes more serious in an electric vehicle. In this paper, the application of a boost DC/DC converter to the battery system of high power for online AC impedance identification is proposed. The function of the converter is to inject a current excitation signal into the battery at work and the normal output current is drawn by a load. Through analyzing the average state space equations and deriving the small signal model of the converter, the gain function is deduced of the fluctuated current signal against the fluctuated duty cycle which controls the converter. The control algorithm is designed and the system model is verified using Matlab/Simulink with respect to the disturbance current signal generation, the gain function and its variation with frequency range.
2017-03-28
Journal Article
2017-01-1193
Yongcai Wang, Rajaram Subramanian, Sarav Paramasivam, George Garfinkel
Abstract Mechanical shock tests for lithium metal and lithium-ion batteries often require that each cell or battery pack be subjected to multiple shocks in the positive and negative directions, of three mutually perpendicular orientations. This paper focuses on the no-disassembly requirement of those testing conditions and on the CAE methodology specifically developed to perform this assessment. Ford Motor Company developed a CAE analysis method to simulate this type of test and assess the possibility of cell dislodging. This CAE method helps identify and diagnose potential failure modes, thus guiding the Design Team in developing a strategy to meet the required performance under shock test loads. The final CAE-driven design focuses on the structural requirement and optimization, and leads to cost savings without compromising cell or pack mechanical performance.
2017-03-28
Technical Paper
2017-01-1190
Patrick Maguire, Hyung Baek, Stephen Liptak, Olivia Lomax, Rodolfo Palma, Yi Zhang
Abstract As electrified powertrains proliferate through original equipment manufacturer vehicle offerings, the focus on system cost and weight reduction intensifies. This paper describes the development and evaluation of a High Voltage (HV) battery system enclosure molded from High Density Polyethylene (HDPE) to deliver substantial cost and weight opportunities. While previous HV battery system enclosure alternatives to steel and aluminum focus on thermoset composites and glass filled polypropylene, this solution leverages select HDPE design techniques established for fuel tanks and applies them to an HV battery system. The result is a tough, energy absorbing structure, capable of hermetic sealing, which simplifies manufacturing by eliminating nearly all fasteners.
2017-03-28
Journal Article
2017-01-1184
Kiyoshi Handa, Shigehiro Yamaguchi, Kazuya Minowa, Steven Mathison
Abstract A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
2017-03-28
Journal Article
2017-01-1216
Edward C. Fontana, Rick Barnett, Robert Catalano, James Harvey, Jiacheng He, George Ottinger, John Steel
Abstract Electric cars can help cities solve air quality problems, but drivers who live in apartments have no convenient way to charge daily, absent the well-controlled private garages where most electric vehicles (EVs) are currently charged each night. Environmentally robust, hands-free, inductive chargers would be ideal, but energy efficiency suffers. We asked whether the precise parking alignment provided by self-driving cars could be used to provide convenient inductive charging with improved charging efficiencies. To answer this question, we split an inductor-inductor-capacitor (LLC) battery charger at the middle of the isolation transformer. The power factor correction, tank elements, and transformer primary windings are stationary, while the transformer secondary, rectifiers, and battery control logic are on the vehicle. The transformer is assembled each time the EV parks.
2017-03-28
Journal Article
2017-01-1215
Peter Haussmann, Joachim Melbert
Abstract Battery safety is the most critical requirement for the energy storage systems in hybrid and electric vehicles. The allowable battery temperature is limited with respect to the battery chemistry in order to avoid the risk of thermal runaway. Battery temperature monitoring is already implemented in electric vehicles, however only cell surface temperature can be measured at reasonable cost using conventional sensors. The internal cell temperature may exceed the surface temperature significantly at high current due to the finite internal electrical and thermal cell resistance. In this work, a novel approach for internal cell temperature measurement is proposed applying on board impedance spectroscopy. The method considers the temperature coefficient of the complex internal cell impedance. It can be observed by current and voltage measurements as usually performed by standard battery management systems.
2017-03-28
Journal Article
2017-01-1213
Yilin Yin, Zhong Zheng, Song-Yul Choe
Abstract Analysis of thermal behavior of Lithium ion battery is one of crucial issues to ensure a safe and durable operation. Temperature is the physical quantity that is widely used for analysis, but limited for accurate investigations of behavior of heat generation of battery because of sensitivities affected by heat transfer in experiments. Calorimeter available commercially is widely used to measure the heat generation of battery, but does not follow required dynamics because of a relatively large thermal time constant given by cavity and a limited heat transfer capability. In this paper, we proposed a highly dynamic calorimeter that was constructed using two thermoelectric devices (TEMs). For the design of the calorimeter and its calibration, a printed circuit board (PCB) with the same size as the battery was used as a dummy load to generate controlled heat.
2017-03-28
Journal Article
2017-01-1201
Zhenli Zhang, Zhihong Jin, Perry Wyatt
Abstract Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications.
2017-03-28
Journal Article
2017-01-1154
Jimmy Kapadia, Daniel Kok, Mark Jennings, Ming Kuang, Brandon Masterson, Richard Isaacs, Alan Dona, Chuck Wagner, Thomas Gee
Abstract The automotive industry is rapidly expanding its Hybrid, Plug-in Hybrid and Battery Electric Vehicle product offerings in response to meet customer wants and regulatory requirements. One way for electrified vehicles to have an increasing impact on fleet-level CO2 emissions is for their sales volumes to go up. This means that electrified vehicles need to deliver a complete set of vehicle level attributes like performance, Fuel Economy and range that is attractive to a wide customer base at an affordable cost of ownership. As part of “democratizing” the Hybrid and plug-In Hybrid technology, automotive manufacturers aim to deliver these vehicle level attributes with a powertrain architecture at lowest cost and complexity, recognizing that customer wants may vary considerably between different classes of vehicles. For example, a medium duty truck application may have to support good trailer tow whereas a C-sized sedan customer may prefer superior city Fuel Economy.
2017-03-28
Technical Paper
2017-01-1572
Wesley Kerstens
Abstract The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
2017-03-28
Journal Article
2017-01-1605
Paul Chambon, Dean Deter, David Smith, Grant Bauman
Abstract Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
2017-03-28
Journal Article
2017-01-1218
XINCHEN ZHAO, Yalan Bi, Song-Yul Choe
Abstract We propose a reduced order model (ROM) for LFP/graphite cells derived from the electrochemical thermal principles that considers degradation effects and validated against experimental data obtained from a large format pouch type LFP/graphite cell whose nominal capacity is 20Ah. The characteristics of the two-phase transition and path dependence were taken into account in the ROM using a shrinking-core model with a moving interface that presents lithium rich and deficient phase. Different currents (0.1/1/3/4C) were applied to fresh cells at different ambient temperatures (25/35/45°C). Comparison between simulated results of the ROM and the collected experimental data shows a good match. The path dependence was also analyzed experimentally. For degradation model, side reaction is treated as the predominant cause of degradation of cells, which are affected by the operating conditions, such as temperature and SOC cycling range.
2017-03-28
Journal Article
2017-01-1243
Yan Zhou, Lihua Chen, Shuitao Yang, Fan Xu, Mohammed Khorshed Alam
Abstract The IGBTs are dominantly used in traction inverters for automotive applications. Because the Si-based device technology is being pushed to its theoretical performance limit in such applications during recent years, the gate driver design is playing a more prominent role to further improve the traction inverter loss performance. The conventional gate driver design in traction inverter application needs to consider worst case scenarios which adversely limit the semiconductor devices' switching speed in its most frequent operation regions. Specifically, when selecting the gate resistors, the IGBT peak surge voltage induced by fast di/dt and stray inductance must be limited below the device rated voltage rating under any conditions. The worst cases considered include both highest dc bus voltage and maximum load current. However, the traction inverter operates mainly in low current regions and at bus voltage much lower than the worst case voltage.
2017-03-28
Journal Article
2017-01-1244
Keisuke Kimura, Tasbir Rahman, Tadashi Misumi, Takeshi Fukami, Masafumi Hara, Sachiko Kawaji, Satoru Machida
Abstract One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
2017-03-28
Technical Paper
2017-01-1679
Felix Martin, Michael Deubzer
Abstract In the automotive industry a steady increase in the number of functions driven by innovative features leads to more complex embedded systems. In the future even more functions will be implemented in the software, especially in the areas of automatic driving assistance functions, connected cars, autonomous driving, and mobility services. To satisfy the increasing performance requirements, multi- and many-core controllers are used, even in the classic automotive domains. This case study has been conducted in the steering system domain, but the results can be applied to other areas as well. Safety critical functions of classic automotive domains must fulfill strict real-time requirements to avoid malfunctions, which can potentially endanger people and the environment. For this reason, ISO 26262 requires verification of the performance and timing behavior of system critical functions.
2017-03-28
Technical Paper
2017-01-1481
Kyung-bok Lee, Sanghyuk Lee, Namyoung Kim, Bong Soo Kim, Tae soo Chi, Do young Kim
Abstract Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
2017-03-28
Journal Article
2017-01-1662
Tom R. Markham, Alex Chernoguzov
Abstract The On-Board Diagnostics II (OBD-II) port began as a means of extracting diagnostic information and supporting the right to repair. Self-driving vehicles and cellular dongles plugged into the OBD-II port were not anticipated. Researchers have shown that the cellular modem on an OBD-II dongle may be hacked, allowing the attacker to tamper with the vehicle brakes. ADAS, self-driving features and other vehicle functions may be vulnerable as well. The industry must balance the interests of multiple stakeholders including Original Equipment Manufacturers (OEMs) who are required to provide OBD function, repair shops which have a legitimate need to access the OBD functions, dongle providers and drivers. OEMs need the ability to protect drivers and manage liability by limiting how a device or software application may modify the operation of a vehicle.
2017-03-28
Technical Paper
2017-01-1657
Jesse Edwards, Ameer Kashani
Abstract In the past few years, automotive electronic control units (ECUs) have been the focus of many studies regarding the ability to affect the deterministic operation of safety critical cyber-physical systems. Researchers have been able to successfully demonstrate flaws in security design that have considerable, dramatic impacts on the functional safety of a target vehicle. With the rapid increase in data connectivity within a modern automobile, the attack surface has been greatly broadened to allow adversaries remote access to vehicle control system software and networks. This has serious implications, as a vast number of vulnerability disclosures released by security researchers point directly to common programming bugs and software quality issues as the root cause of successful exploits which can compromise the vehicle as a whole. In this paper, we aim to bring to light the most prominent categories of bugs found during the software development life cycle of an automotive ECU.
2017-03-28
Technical Paper
2017-01-1651
Douglas Thornburg, John Schmotzer, MJ Throop
Abstract Onboard, embedded cellular modems are enabling a range of new connectivity features in vehicles and rich, real-time data set transmissions from a vehicle’s internal network up to a cloud database are of particular interest. However, there is far too much information in a vehicle’s electrical state for every vehicle to upload all of its data in real-time. We are thus concerned with which data is uploaded and how that data is processed, structured, stored, and reported. Existing onboard data processing algorithms (e.g. for DTC detection) are hardcoded into critical vehicle firmware, limited in scope and cannot be reconfigured on the fly. Since many use cases for vehicle data analytics are still unknown, we require a system which is capable of efficiently processing and reporting vehicle deep data in real-time, such that data reporting can be switched on/off during normal vehicle operation, and that processing/reporting can be reconfigured remotely.
2017-03-28
Journal Article
2017-01-1650
Jian Yang, Christian Poellabauer, Pramita Mitra
Abstract Bluetooth Low Energy (BLE) is an energy-efficient radio communication technology that is rapidly gaining popularity for various Internet of Things (IoT) applications. While BLE was not designed specifically with vehicular communications in mind, its simple and quick connection establishment mechanisms make BLE a potential inter-vehicle communication technology, either replacing or complementing other vehicle-to-vehicle (V2V) technologies (such as the yet to be deployed DSRC). In this paper we propose a framework for V2V communication using BLE and evaluate its performance under various configurations. BLE uses two major methods for data transmission: (1) undirected advertisements and scanning (unconnected mode) and (2) using the central and peripheral modes of the Generic Attribute Profile (GATT) connection (connected mode).
2017-03-28
Technical Paper
2017-01-1408
Satoshi Kozai, Yoshihiko Takahashi, Akihiro Kida, Takayuki Hiromitsu, Shinji Kitaura, Sadamasa Sawada, Gladys Acervo, Marius Ichim
Abstract A Rear Cross Traffic Auto Brake (RCTAB) system has been developed that uses radar sensors to detect vehicles approaching from the right or left at the rear of the driver’s vehicle, and then performs braking control if the system judges that a collision may occur. This system predicts the intersecting course of approaching vehicles and uses the calculated time-to-collision (TTC) to control the timing of automatic braking with the aim of helping prevent unnecessary operation while ensuring system performance.
2017-03-28
Journal Article
2017-01-1693
John Huber, Ranjani Rangarajan, An Ji, Francois Charette, Scott Amman, Joshua Wheeler, Brigitte Richardson
Abstract This paper describes a method to validate in-vehicle speech recognition by combining synthetically mixed speech and noise samples with batch speech recognition. Vehicle cabin noises are prerecorded along with the impulse response from the driver's mouth location to the cabin microphone location. These signals are combined with a catalog of speech utterances to generate a noisy speech corpus. Several factors were examined to measure their relative importance on speech recognition robustness. These include road surface and vehicle speed, climate control blower noise, and driver's seat position. A summary of the main effects from these experiments are provided with the most significant factors coming from climate control noise. Additionally, a Signal to Noise Ratio (SNR) experiment was conducted highlighting the inverse relationship with speech recognition performance.
2017-03-28
Journal Article
2017-01-1692
Scott Amman, John Huber, Francois Charette, Brigitte richardson, Joshua Wheeler
Abstract This paper describes two case studies in which multiple microphone processing (beamforming) and microphone location were evaluated to determine their impact on improving embedded automatic speech recognition (ASR) in a vehicle hands-free environment. While each of these case studies was performed using slightly different evaluation set-ups, some specific and general conclusions can be drawn to help guide engineers in selecting the proper microphone location and configuration in a vehicle for the improvement of ASR. There were some outcomes that were common to both dual microphone solutions. When considering both solutions, neither was equally effective across all background noise sources. Both systems appear to be far more effective for noise conditions in which higher frequency energy is present, such as that due to high levels of wind noise and/or HVAC (heating, ventilation and air conditioning) blower noise.
2017-03-28
Journal Article
2017-01-1691
Aseim Elfrgani, C. J. Reddy
Abstract A low profile high directivity antenna is designed to operate at 5.9 GHz for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications to ensure connectivity in different propagation channels. Patch antennas are still an ongoing topic of interest due to their advantages: low profile, low cost, and ease of fabrication. One disadvantage of the patch antenna is low directivity which results in low range performance. In this paper, we introduce an efficient and novel way to improve the directivity of patch antenna using topology optimization and design of experiments (DoE). Numerical simulations are done using Method of Moments (MoM) technique in the commercially available tool, FEKO. We use global response surface method (GRSM) for double objectives topology optimization. Numerical results show a promising use of topology optimization and DoE techniques for the systematic design of high directivity of low profile single element patch antennas.
2017-03-28
Journal Article
2017-01-1688
Hassene Jammoussi, Imad Makki
The usage of the universal exhaust gas oxygen (UEGO) sensor to control the air-fuel ratio (AFR) in gasoline engines allowed to significantly improve the efficiency of the combustion process and reduce tailpipe emissions. The diagnostics of this sensor is very important to ensure proper operation and indicate the need for service when the sensor fails to accurately determine the AFR upstream of the catalyst. California air resources board (CARB) has imposed several legislations around the operation of the UEGO sensor and particularly when specific faults would cause tailpipe emissions to exceed certain limits. In this paper, the possible sensor faults are reviewed, and a non-intrusive diagnostics monitor is proposed to detect, identify and estimate the magnitude of the fault present. This paper extends the approach in [4] where technical details are emphasized and algorithm improvements are discussed.
2017-03-28
Technical Paper
2017-01-1625
Rajeev Kalamdani, Chandra Jalluri, Stephen Hermiller, Robert Clifton
Abstract Use of sensors to monitor dynamic performance of machine tools at Ford’s powertrain machining plants has proven to be effective. The traditional approach to convert sensor data to actionable intelligence consists of identifying single features from cycle based signatures and setting thresholds above acceptable performance limits based on trials. The thresholds are used to discriminate between acceptable and unacceptable performance during each cycle and raise alarms if necessary. This approach requires a significant amount of resource & time intensive set up work up-front and considerable trial and error adjustments. The current state does not leverage patterns that might be discernible using multiple features simultaneously. This paper describes enhanced methods for processing the data using supervised and unsupervised machine learning methods. The objective of using these methods is to improve the prediction accuracy and reduce up-front set up.
2017-03-28
Journal Article
2017-01-1621
Andre Kohn, Karsten Schmidt, Jochen Decker, Maurice Sebastian, Alexander Züpke, Andreas Herkersdorf
Abstract The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
Viewing 211 to 240 of 16432