Display:

Results

Viewing 151 to 180 of 16558
2017-03-28
Technical Paper
2017-01-0070
Longxiang Guo, Sagar Manglani, Xuehao Li, Yunyi Jia
Abstract Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.
2017-03-28
Technical Paper
2017-01-0069
Venkatesh Raman, Mayur Narsude, Damodharan Padmanaban
Abstract This manuscript compares window-based data imputation approaches for data coming from connected vehicles during actual driving scenarios and obtained using on-board data acquisition devices. Three distinct window-based approaches were used for cleansing and imputing the missing values in different CAN-bus (Controller Area Network) signals. Lengths of windows used for data imputation for the three approaches were: 1) entire time-course for each vehicle ID, 2) day, and 3) trip (defined as duration between vehicle's ignition statuses ON to OFF). An algorithm for identification of ignition ON and OFF events is also presented, since this signal was not explicitly captured during the data acquisition phase. As a case study, these imputation techniques were applied to the data from a driver behavior classification experiment.
2017-03-28
Technical Paper
2017-01-0262
Taewon Kim, Xi Luo, Mustafa Al-Sadoon, Ming-Chia Lai, Marcis Jansons, Doohyun Kim, Jason Martz, Angela Violi, Eric Gingrich
Abstract Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
2017-03-28
Technical Paper
2017-01-0092
Vladimir Hahanov, Wajeb Gharibi, Eugenia Litvinova, Svitlana Chumachenko, Arthur Ziarmand, Irina Englesi, Igor Gritsuk, Vladimir Volkov, Anastasiia Khakhanova
Abstract The new cyber-technological culture of the transport control based on virtual road signs and streetlight signals on the screen of car is the future of Humanity. A cyber-physical system (CPS) Smart Cloud Traffic Control, which realizes the mentioned culture, is proposed; it is characterized by the presence of the digitized regulatory rules, vehicles, infrastructure components, and also accurate monitoring, active cloud streetlight-free cyber control of road users, traffic lights, automatic output of operational regulatory actions (virtual traffic signs and traffic signals) to monitor of each vehicle. The main components of the cyber-physical system are the following: infrastructure, road users and rules, which have digital representation in cyberspace to realize a route, based on digital monitoring and cloud mobile control.
2017-03-28
Technical Paper
2017-01-0091
Songyao Zhou, Gangfeng Tan, Kangping Ji, Renjie Zhou, Hao Liu
Abstract The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
2017-03-28
Technical Paper
2017-01-0093
Balachander Dhanavanthan
Abstract Radio Frequency (RF) propagation in vehicular environments exhibits major transformations from indoor, outdoor and farmland multipath environments. The innovative advancement in Wireless Sensor Networks (WSNs) has made it necessary to recognise and predict the RF propagation losses for WSNs in vehicular environments. Very few models exist for network planning and deployment in vehicular environments. All of these models need an extensive statistical estimations and an in-depth knowledge of the vehicular environment. In this paper a different approach has been pursued and as a first step is to evaluate the factors which affect RF propagation in vehicular environments and how these factors affect each other while predicting propagation losses in vehicular environments.
2017-03-28
Technical Paper
2017-01-0081
Majid Majidi, Majid Arab, Vahid Tavoosi
Abstract In this research, an optimal real-time trajectory planning method is proposed for autonomous ground vehicles in case of overtaking a moving obstacle. When an autonomous vehicle detects a moving vehicle ahead of it in a proper speed and distance and the braking is not efficient due to the lost of its kinematic energy, the autonomous vehicle decides to overtake the obstacle by performing a double lane-change maneuver. A two-phase nonlinear optimal problem is developed for generating the path for the overtaking maneuver. The cost function of the first phase is defined in such a way that the vehicle approaches the moving obstacle as close as possible. Besides, the cost function of the second phase is defined as the minimization of the sum of the vehicle lateral deviation from the reference path and the rate of steering angle during the overtaking maneuver while the lateral acceleration of the vehicle does not exceed a safe limit.
2017-03-28
Technical Paper
2017-01-0071
Vahid Taimouri, Michel Cordonnier, Kyoung Min Lee, Bryan Goodman
Abstract While operating a vehicle in either autonomous or occupant piloted mode, an array of sensors can be used to guide the vehicle including stereo cameras. The state-of-the-art distance map estimation algorithms, e.g. stereo matching, usually detect corresponding features in stereo images, and estimate disparities to compute the distance map in a scene. However, depending on the image size, content and quality, the feature extraction process can become inaccurate, unstable and slow. In contrast, we employ deep convolutional neural networks, and propose two architectures to estimate distance maps from stereo images. The first architecture is a simple and generic network that identifies which features to extract, and how to combine them in a multi-resolution framework.
2017-03-28
Technical Paper
2017-01-0072
Yang Zheng, Navid Shokouhi, Amardeep Sathyanarayana, John Hansen
Abstract With the embedded sensors – typically Inertial Measurement Units (IMU) and GPS, the smartphone could be leveraged as a low-cost sensing platform for estimating vehicle dynamics. However, the orientation and relative movement of the smartphone inside the vehicle yields the main challenge for platform deployment. This study proposes a solution of converting the smartphone-referenced IMU readings into vehicle-referenced accelerations, which allows free-positioned smartphone for the in-vehicle dynamics sensing. The approach is consisted of (i) geometry coordinate transformation techniques, (ii) neural networks regression of IMU from GPS, and (iii) adaptive filtering processes. Experiment is conducted in three driving environments which cover high occurrence of vehicle dynamic movements in lateral, longitudinal, and vertical directions. The processing effectiveness at five typical positions (three fixed and two flexible) are examined.
2017-03-28
Technical Paper
2017-01-0076
Modar Horani, Ghaith Al-Refai, Osamah Rawashdeh
Abstract Current implementations of vision-based Advanced Driver Assistance Systems (ADAS) are largely dependent on real-time vehicle camera data along with other sensory data available on-board such as radar, ultrasonic, and GPS data. This data, when accurately reported and processed, helps the vehicle avoid collisions using established ADAS applications such as Forward Collision Avoidance (FCA), Autonomous Cruise Control (ACC), Pedestrian Detection, etc. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) over Dedicated Short Range Communication (DSRC) provides basic sensory data from other vehicles or roadside infrastructure including position information of surrounding traffic. Exchanging rich data such as vision data between multiple vehicles, and between vehicles and infrastructure provides a unique opportunity to advance driver assistance applications and Intelligent Transportation Systems (ITS).
2017-03-28
Technical Paper
2017-01-0078
Alexander Katriniok, Peter Kleibaum, Christian Ress, Lutz Eckstein
Abstract Today, automated vehicles mostly rely on ego vehicle sensors such as cameras, radar or LiDAR sensors that are limited in their sensing capability and range. Vehicle-to-everything (V2X) communication has the potential to appropriately complement these sensors and even allow for a cooperative, proactive interaction of vehicles. As such, V2X communication might play a vital role on the way to smart and efficient traffic solutions. In the public funded research project UK Autodrive, we are currently investigating and experimentally evaluating V2X-based applications based on dedicated short range communication (DSRC). Moreover, the novel application intersection priority management (IPM) is part of the research project. IPM aims at automating intersections in such a way that vehicles can pass safely and even more efficiently without the use of traffic lights or signs.
2017-03-28
Technical Paper
2017-01-0275
N. Obuli Karthikeyan, N. Prajitha, P. Sethu Madhavan
Abstract As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
2017-03-28
Technical Paper
2017-01-0445
Muthukumar Arunachalam, Arunkumar S, PraveenKumar Sampath, Abdul Haiyum, Yash Khakhar
Abstract In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0432
Bing Zhu, Zhipeng Liu, Jian Zhao, Weiwen Deng
Abstract Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
2017-03-28
Technical Paper
2017-01-0398
Robert A. Smith, Allison Ward, Daniel Brintnall
Abstract Both pellet raw material and resulting extruded insulation samples were obtained from three grades of PVC used to produce automotive insulation and were examined for thermal stability on a Thermogravimetric Analyzer (TGA). The Flynn Wall technique was used to obtain degradation activation energies by plotting ln(heating rate) vs 1/T and using a literature value of 7% weight loss as the point of performance failure. The Arrhenius relationship was used to predict multiple year lifetimes at 100°C from the multiple hour degradation times observed on the TGA at 200°C. The insulation specimens of two of the samples were found to be significantly less thermally stable than the pellets - indicating slight decomposition occurred during extrusion onto the cable core. All cable insulation samples predicted service lifetimes many times the expected auto life. A PVC insulation sample was examined for failure at various oven aging temperatures using ASTM D3032 mandrel wrap testing.
2017-03-28
Technical Paper
2017-01-0429
Michael Holland, Jonathan Gibb, Kacper Bierzanowski, Stuart Rowell, Bo Gao, Chen Lv, Dongpu Cao
Abstract This paper outlines the procedure used to assess the performance of a Lane Keeping Assistance System (LKAS) in a virtual test environment using the newly developed Euro NCAP Lane Support Systems (LSS) Test Protocol, version 1.0, November 2015 [1]. A tool has also been developed to automate the testing and analysis of this test. The Euro NCAP LSS Test defines ten test paths for left lane departures and ten for right lane departures that must be followed by the vehicle before the LKAS activates. Each path must be followed to within a specific tolerance. The vehicle control inputs required to follow the test path are calculated. These tests are then run concurrently in the virtual environment by combining two different software packages. Important vehicle variables are recorded and processed, and a pass/fail status is assigned to each test based on these values automatically.
2017-03-28
Technical Paper
2017-01-0395
Xin Xie, Danielle Zeng, Boyang Zhang, Junrui Li, Liping Yan, Lianxiang Yang
Abstract Vehicle front panel is an interior part which has a major impact on the consumers’ experience of the vehicles. To keep a good appearance during long time aging period, most of the front panel is designed as a rough surface. Some types of surface defects on the rough surface can only be observed under the exposure of certain angled sun light. This brings great difficulties in finding surface defects on the production line. This paper introduces a novel polarized laser light based surface quality inspection method for the rough surfaces on the vehicle front panel. By using the novel surface quality inspection system, the surface defects can be detected real-timely even without the exposure under certain angled sun light. The optical fundamentals, theory derivation, experiment setup and testing result are shown in detail in this paper.
2017-03-28
Technical Paper
2017-01-0394
Junrui Li, Ruiyan Yang, Zhen Li, Changqing Du, Dajun Zhou, Lianxiang Yang
Abstract Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
2017-03-28
Technical Paper
2017-01-1667
Scott Piper, Mark Steffka, Vipul Patel
Abstract With the increasing content of electronics in automobiles and faster development times, it is essential that electronics hardware design and vehicle electrical architecture is done early and correctly. Today, the first designs are done in the electronic format with circuit and CAD design tools. Once the initial design is completed, several iterations are typically conducted in a “peer review” methodology to incorporate “best practices” before actual hardware is built. Among the many challenges facing electronics design and integration is electromagnetic compatibility (EMC). Success in EMC starts at the design phase with a relevant “lessons learned” data set that encompasses component technology content, schematic and printed circuit board (PCB) layout, and wiring using computer aided engineering (CAE) tools.
2017-03-28
Technical Paper
2017-01-1668
Amin Emrani, Steve Spadoni
Abstract The demand for more features in a vehicle is growing at an extraordinary rate. This trend especially with emerging autonomous functions shows no sign of slowing. The energy requires to supply this ever growing system goes through multiple conversion, protection and other elements before it actually powers the loads. Considering the loss of each of these elements for a vehicle and multiplying the value by the total numbers of cars, underlines the need for an optimized electrical distribution system to power all loads efficiently. In this paper, Smart Step-Down Convertor is introduced as a power supply to power devices which operate at voltages below the power net voltage while protecting the power net and the devices against faults.
2017-03-28
Technical Paper
2017-01-1676
Hartmut Lackner
Abstract Software systems, and automotive software in particular, are becoming increasingly configurable to fulfill customer needs. New methods such as product line engineering facilitate the development and enhance the efficiency of such systems. In modern, versatile systems, the number of theoretically possible variants easily exceeds the number of actually built products. This produces two challenges for quality assurance and especially testing. First, the costs of conventional test methods increase substantially with every tested variant. And secondly, it is no longer feasible to build every possible variant for the purpose of testing. Hence, efficient criteria for selecting variants for testing are necessary. In this contribution, we propose a new test design method that enables systematic sampling of variants from test cases. We present six optimization criteria to enable control of test effort and test quality by sampling variants with different characteristics.
2017-03-28
Technical Paper
2017-01-1679
Felix Martin, Michael Deubzer
Abstract In the automotive industry a steady increase in the number of functions driven by innovative features leads to more complex embedded systems. In the future even more functions will be implemented in the software, especially in the areas of automatic driving assistance functions, connected cars, autonomous driving, and mobility services. To satisfy the increasing performance requirements, multi- and many-core controllers are used, even in the classic automotive domains. This case study has been conducted in the steering system domain, but the results can be applied to other areas as well. Safety critical functions of classic automotive domains must fulfill strict real-time requirements to avoid malfunctions, which can potentially endanger people and the environment. For this reason, ISO 26262 requires verification of the performance and timing behavior of system critical functions.
2017-03-28
Technical Paper
2017-01-1672
Siddartha Khastgir, Gunwant Dhadyalla, Stewart Birrell, Sean Redmond, Ross Addinall, Paul Jennings
Abstract The advent of Advanced Driver Assistance Systems (ADAS) and automated driving has offered a new challenge for functional verification and validation. The explosion of the test sample space for possible combinations of inputs needs to be handled in an intelligent manner to meet cost and time targets for the development of such systems. This paper addresses this research gap by using constrained randomization techniques for the creation of the required test scenarios and test cases. Furthermore, this paper proposes an automated constrained randomized test scenario generation framework for testing of ADAS and automated systems in a driving simulator setup. The constrained randomization approach is deployed at two levels: 1) test scenario randomization 2) test case randomization.
2017-03-28
Technical Paper
2017-01-1675
Genís Mensa, Núria Parera, Alba Fornells
Abstract Nowadays, the use of high-speed digital cameras to acquire relevant information is a standard for all laboratories and facilities working in passive safety crash testing. The recorded information from the cameras is used to develop and improve the design of vehicles in order to make them safer. Measurements such as velocities, accelerations and distances are computed from high-speed images captured during the tests and represent remarkable data for the post-crash analysis. Therefore, having the exact same position of the cameras is a key factor to be able to compare all the values that are extracted from the images of the tests carried out within a long-term passive safety project. However, since working with several customers involves a large amount of different cars and tests, crash facilities have to readapt for every test mode making it difficult for them to reproduce the correct and precise position of the high-speed cameras throughout the same project.
2017-03-28
Technical Paper
2017-01-1686
Muhammad Askar
Abstract A vehicle's electrical system is one of the top sources of problems requiring service. For years now electronic means of service documentation have been replacing static documents as a way of speeding vehicle troubleshooting. The next step on this path of evolution is to turn this e-documentation into smart maintenance systems, capable of offering technicians true data insights and highly-efficient diagnostic procedures. This paper briefly summarizes the technologies underpinning the evolution in electrical system diagnosis and repair; which include schematic layout automation using prototypes and rule-based styling, instant language translation, 2D/3D view links with schematics, interactive diagnostic procedures, and dynamically-generated signal-tracing diagrams. These technologies empower after sales service teams with state-of-the-art capabilities; which not only reduce costs but also improve the quality of the brand in the eyes of its customers.
2017-03-28
Technical Paper
2017-01-1681
Kyaw Soe
Abstract This paper describes a test system for improving the completeness and representativeness of automotive electrical/electronic (E/E) test benches. This is with the aim to enable more testing and hence increase the usage and effectiveness of these facilities. A proportion of testing for automotive electrical and electronics systems and components is conducted using E/E testing boards (“test-boards”). These are table-like rigs consisting of most or all electrical and electronic parts connected together as per a car/truck/van. A major problem is that the testing is conducted on the equivalent of a static vehicle: test-boards lack basic dynamic elements such as a running engine, vehicle motion, environmental, component and fluid temperatures, etc. This limits the testing that can be carried out on such a test-board.
2017-03-28
Technical Paper
2017-01-1683
Adit Joshi
Software for autonomous vehicles is highly complex and requires vast amount of vehicle testing to achieve a certain level of confidence in safety, quality and reliability. According to the RAND Corporation, a 100 vehicle fleet running 24 hours a day 365 days a year at a speed of 40 km/hr, would require 17 billion driven kilometers of testing and take 518 years to fully validate the software with 95% confidence such that its failure rate would be 20% better than the current human driver fatality rate [1]. In order to reduce cost and time to accelerate autonomous software development, Hardware-in-the-Loop (HIL) simulation is used to supplement vehicle testing. For autonomous vehicles, path following controls are an integral part for achieving lateral control. Combining the aforementioned concepts, this paper focuses on a real-time implementation of a path-following lateral controller, developed by Freund and Mayr [2].
2017-03-28
Technical Paper
2017-01-1616
Scott A. Rush
Abstract Modern automotive manufacturing and after-sale service environments require tailoring of configuration values or “calibrations” within the vehicle’s various electronic control units (ECUs) to that vehicle’s specific option content. Historically, ECU hardware and software limitations have led designers to implement calibratable values using opaque binary blocks tied directly to ECU internal software data structures. Such coupling between calibration data files and ECU software limits traceability and reuse across different software versions and ECU variants. However, more and more automotive ECUs are featuring fast microprocessors, large memories, and preemptive, multi-tasking operating systems that open opportunities to object-oriented approaches. This paper presents the CalDef system for automotive ECU calibration software architecture.
2017-03-28
Technical Paper
2017-01-1640
Peng Liu, Liyun Fan, Wenbo Peng, Xiuzhen Ma, Enzhe Song
Abstract A novel high-speed electromagnetic actuator for electronic fuel injection system (EFIS) of diesel engine is proposed in this paper. By using a permanent magnet and an annular flange, the design of the novel actuator aims to overcome the inherent drawbacks of the conventional solenoid electromagnetic actuator, such as high power consumption and so on. A method of multi-objective optimization combined with response surface methodology and Genetic Algorithm (GA) is employed to obtain the optimal design of the novel actuator. First, combined with design of experiments and finite element analysis, the second order polynomial response surface models (SOPRSM) of electromagnetic forces are produced by the least square principle. Second, the complete multi-objective optimization mathematical model (MOMM) of the novel actuator based on SOPRSM is built, aiming to maximize the net electromagnetic force on the armature and minimize the drive current.
Viewing 151 to 180 of 16558