Display:

Results

Viewing 91 to 120 of 16558
2017-09-04
Technical Paper
2017-24-0050
Anjan Rao Puttige, Robin Hamberg, Paul Linschoten, Goutham Reddy, Andreas Cronhjort, Ola Stenlaas
Abstract Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
2017-09-04
Technical Paper
2017-24-0046
Richard Stone, Ben Williams, Paul Ewart
Abstract The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
2017-09-04
Technical Paper
2017-24-0054
Francesco de Nola, Giovanni Giardiello, Alfredo Gimelli, Andrea Molteni, Massimiliano Muccillo, Roberto Picariello
Abstract In the last few years, the automotive industry had to face three main challenges: compliance with more severe pollutant emission limits, better engine performance in terms of torque and drivability and simultaneous demand for a significant reduction in fuel consumption. These conflicting goals have driven the evolution of automotive engines. In particular, the achievement of these mandatory aims, together with the increasingly stringent requirements for carbon dioxide reduction, led to the development of highly complex engine architectures needed to perform advanced operating strategies. Therefore, Variable Valve Actuation (VVA), Exhaust Gas Recirculation (EGR), Gasoline Direct Injection (GDI), turbocharging, powertrain hybridization and other solutions have gradually and widely been introduced into modern internal combustion engines, enhancing the possibilities of achieving the required goals.
2017-09-04
Technical Paper
2017-24-0069
Hyunwook Park, Jugon Shin, Choongsik Bae
Abstract The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
2017-09-04
Technical Paper
2017-24-0068
Roberto Finesso, Ezio Spessa, Yixin Yang, Giuseppe Conte, Gennaro Merlino
Abstract A real-time approach has been developed and assessed to control BMEP (brake mean effective pressure) and MFB50 (crank angle at which 50% of fuel mass has burnt) in a Euro 6 1.6L GM diesel engine. The approach is based on the use of feed-forward ANNs (artificial neural networks), which have been trained using virtual tests simulated by a previously developed low-throughput physical engine model. The latter is capable of predicting the heat release and the in-cylinder pressure, as well as the related metrics (MFB50, IMEP - indicated mean effective pressure) on the basis of an improved version of the accumulated fuel mass approach. BMEP is obtained from IMEP taking into account friction losses. The low-throughput physical model does not require high calibration effort and is also suitable for control-oriented applications.
2017-09-04
Technical Paper
2017-24-0153
Sergey Shcherbanev, Alexandre De Martino, Andrey Khomenko, Svetlana Starikovskaia, Srinivas Padala, Yuji Ikeda
Abstract Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution.
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
Abstract The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influence the filter back pressure and therefore the engine performance and the fuel consumption. Thus a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations, which may lead to damages of the filter and fuel penalty.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Abstract 1 Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOX emissions would allow to eliminate the NOX sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric oxide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbulence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0137
Zhen Zhang, Luigi del Re, Richard Fuerhapter
Abstract During transients, engines tend to produce substantially higher peak emissions like soot - the main fraction of particular matter (PM) - which are the longer the more important as the steady state emissions are better controlled. While Diesel particulate filters are normally able to block them, preventing their occurrence would of course be more important. In order to achieve this goal, however, they must be measurable. While for most emissions commercial sensors of sufficient speed and performance are available, the same is not true for PMs, especially for production engines. Against this background, in the last years the possible use of a full stream 50Hz sensor based on Laser Induced Incandescence (LII) was investigated, and the results were very encouraging, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like the AVL Opacimeter) but confirmed by the analysis of combustion.
2017-09-04
Journal Article
2017-24-0045
Blane Scott, Christopher Willman, Ben Williams, Paul Ewart, Richard Stone, David Richardson
Abstract In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
2017-09-04
Journal Article
2017-24-0051
Ferdinando Taglialatela, Mario Lavorgna, Silvana Di Iorio, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
2017-09-04
Journal Article
2017-24-0109
Nic Van Vuuren, Lucio Postrioti, Gabriele Brizi, Federico Picchiotti
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
2017-09-04
Journal Article
2017-24-0140
Roberto Aliandro Varella, Gonçalo Duarte, Patricia Baptista, Pablo Mendoza Villafuerte, Luis Sousa
Abstract Due to the need to properly quantify vehicle emissions in real world operation, Real Driving Emissions (RDE) test procedures will be used for measuring gaseous emissions on new EURO 6 vehicles.at the RDE 1 & 2: Commission Regulation (EU) 2016/427 of 10 March 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles. Updated regulations have been enhanced to define RDE tests boundaries and data analysis procedures, in order to provide an accurate way to obtain representative results. The boundary conditions defined for vehicle testing include external atmospheric temperature, which can range from 0°C to around 30°C, for moderate conditions and -7°C up to 35°C for extended conditions in RDE tests. As a result of this range of possible test ambient temperature, pollutant emissions and energy consumption can vary considerably.
2017-08-25
Technical Paper
2017-01-1945
Dr. Raimund Varnhagen
Abstract During recent years, all major North American and European commercial vehicle OEMs have introduced predictive functionalities based on an electronic horizon for their on-highway fleets. This is a system concept that lets vehicles know what is happening on the road ahead and allows them to react to that information without driver involvement. When an electronic horizon is used in heavy-duty trucks, a significant reduction in fuel consumption is possible as a key application. This is achieved by optimizing the algorithms in the engine control unit, the transmission control device or other control units in the vehicle. There is a clear business case for the vehicle owners. In this paper we review the long development from early navigation technologies to an in-vehicle sensor, called an electronic horizon. We present an overview of different architectures from several perspectives as well as multiple use cases for commercial vehicles.
2017-08-01
Journal Article
2017-01-9283
Peter R. Hooper
Abstract This paper reports on the research and development challenges experienced from dynamometer testing of a spark ignition UAV engine operating on heavy fuel. The engine is a segregated scavenging two stroke engine with air charge delivery by means of integral stepped pistons overcoming durability issues of conventional crankcase scavenged engines. A key element of the experimental study builds upon performance development to address the need for repeatable cold start on low volatility fuel thereby eliminating gasoline from UAV theatres of deployment. Lubrication challenges normally associated with crankcase scavenged two stroke engines are avoided by the integrated re-circulatory lubrication system. The fuel explored in this study is kerosene JET A-1.
2017-07-10
Technical Paper
2017-28-1935
Vellavedu Velumani Praveen, P Baskara Sethupathi
Abstract Formula SAE is a prestigious engineering design competition, where student team design, fabricate and test their formula style race car, with the guidelines of the FSAE rulebook, according to which the car is designed, for example the engine must be a four-stroke, Otto-cycle piston engine with a displacement no greater than 710cc. According to FSAE 2017 Rule Book [1], ARTICLE 3, IC3.2 and IC3.3 state that the maximum sound level should not exceed 110 dBC at an average piston speed of 15:25 m/s (for the KTM 390 engine, which has 60 mm stroke length, the noise level will be measured at 7500 RPM) and 103 dBC at Idle RPM. So, the active muffler which works as a normal reflective muffler till the 7500 RPM range, after which an electronic controlled throttle mechanism is used to reduce the backpressure (since after 7500 RPM the noise level doesn't matter in FSAE) by using tach signal from the engine to control the throttle (two position).
2017-07-10
Technical Paper
2017-28-1969
Senthil Ram Nagapillai Durairaj, Thulasirajan Ganesan, Praveen Chakrapani Rao
Abstract Magnesium alloy current being used for automotive sector and are being significantly used for manufacturing engine block as offering higher power to weight ratio to the vehicle. In this context, the magnesium alloy has been used in the replacement of aluminium alloy for the starter housing which in turn increase the power to weight ratio of the motor. Considering the operation condition of starter motor in the engine of the vehicles, the starter motor is being exposed to the harsh environment, where its system is being tested for Noise, Vibration and Harshness. In this paper, the magnesium alloy housing is used to study the vibration and noise developed in the starter motor and the same is compared with the noise and vibration of the motor when it being used with Aluminium alloy Housing. First, the vibration study is carried out for the housing part alone to capture the resonant frequency of the both housing alloy say, Aluminium and Magnesium.
2017-07-10
Technical Paper
2017-28-1967
Senthil Ram Nagapillai Durairaj, Thulasirajan Ganesan, Praveen Chakrapani Rao
Abstract Global Automotive Industry is mandated with the task of emission reduction and mileage improvements. One of the key areas being looked at from mileage standpoint is light weighting. While Aluminum body is replacing Steel is many vehicular applications, in Starter Motor Aluminum is the key component. Therefore, any attempt at light weighting must consider Aluminum. A Starter motor fits directly on to the engine. Aluminum being the housing material provides structural stability. It also performs the role of heat dissipation being a good thermal conductor and source of electrical ground path. Aluminum constitutes 20 - 25% of Starter motor weight. Any significant weight reduction cannot be achieved unless we look at the components made of Aluminum, namely die cast Housing and End plate. The alternatives considered in this study include engineered plastics, magnesium alloy and composites.
2017-06-29
Journal Article
2017-01-9000
Teresa Donateo, Antonio Ficarella
Abstract The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
2017-06-28
Journal Article
2017-01-9181
Zhongming Xu, Nengfa Tao, Minglei Du, Tao Liang, Xiaojun Xia
Abstract A coupled magnetic-thermal model is established to study the reason for the damage of the starter motor, which belongs to the idling start-stop system of a city bus. A finite element model of the real starter motor is built, and the internal magnetic flux density nephogram and magnetic line distribution chart of the motor are attained by simulation. Then a model in module Transient Thermal of ANSYS is established to calculate the stator and rotor loss, the winding loss and the mechanical loss. Three kinds of losses are coupled to the thermal field as heat sources in two different conditions. The thermal field and the components’ temperature distribution in the starting process are obtained, which are finally compared with the already-burned motor of the city bus in reality to predict the damage. The analysis method proposed is verified to be accurate and reliable through comparing the actual structure with the simulation results.
2017-06-26
Solution Notes
SN-0001
Automating a manufacturing process often comes with substantial investment or sustained operational costs of complex subsystems. But, by reducing complexity and using technologically mature components, it is possible to develop viable scaled and robust automated solutions. For the past several years, aerospace manufacturers have endeavored to automate manufacturing processes as much as possible for both production efficiencies and competitive advantage. Automating processes like drilling, fastening, sealing, painting, and composite material production have reaped a wide range of benefits; from improving quality and productivity to lowering worker ergonomic risks. The results have improved supply chains from small component manufacturers all the way up to airframe assemblers. That said, automation can be very expensive, and difficult to introduce when a product is anywhere beyond the beginning of its life cycle.
2017-06-22
Technical Paper
2017-36-0044
Felipe Heuer, Roberson Oliveira, Guilherme Reksiedler, Vilson R. Mognon, Thiago Greboge, Laerte C. da Rosa, Rafael R. de Carvalho, Giordano B. Wolaniuk, Ricardo M. Schmal
Abstract The focus of this study was to develop and validate a steering system assistance based on precise geolocation. The initial analysis was carried out using a mathematical model of a generic vehicle, to perform Matlab® simulations aiming to generate an algorithm capable of controlling the vehicle steering autonomously. Based on the results of those simulations it was possible to determinate that a RTK (Real Time Kinematic) would be a suitable technology for the geolocation system, meeting precision and control requirements. In order to validate the system in a real environment, a scale model RC car was equipped with a specific embedded electronic capable of recording the path driven and reproducing it autonomously. A HMI was developed making possible to visualize the vehicle during its operation. Coordinated with the vehicle, a remote cockpit with telemetry system emulates the steering wheel rotation.
2017-06-22
Technical Paper
2017-36-0045
Juliano Mologni, Jefferson Ribas, Cesareo Siqueira
Abstract We have seen recently in Brazil a significant number of medium and high voltage power cables falling on vehicles causing catastrophic accidents leading to serious injuries and deceases. It is advised that the car works as a shield so passengers inside the vehicle should not open doors and windows, but to the knowledge of the authors no work has presented a quantified study showing details like electromagnetic field intensity and 3D plots to really illustrate this situation. This work uses numerical simulation to replicate a scenario of a high power cable in direct contact with a vehicle and numerous positions of human body models inside and outside of the vehicle. Electromagnetic field is calculated showing the shielding effectiveness of the vehicle chassis. Also, current density are calculated to show the path of the current including the human body models.
2017-06-22
Technical Paper
2017-36-0047
Felipe Lima dos Reis Marques, Sender Rocha dos Santos, Mauro Fernando Basquera Junior, Thiago Chiachio do Nascimento, Raul Fernando Beck, Maria de Fátima Negreli Campos Rosolem, Ricardo Souza Figueiredo, Rogério Valentim Pereira
Abstract One main feature of the power demand profile is it varies time to time and its price changes accordingly. During the peak the less cost-effective and flexible power supplies must complement the base-load power plants in order to supply the power demand. Conversely, during the off-peak period when less electricity is consumed, those costly power plants can be stopped. This is a scenario which Energy Storage System (ESS) and photovoltaic (PV) generation plants could add flexibility and cost reduction to the customers and utilities. These aspects are only achieved due to the ESS, which enables the optimal use of energy produced by the photovoltaic modules through load management and discharge of the battery in the most convenient times.
2017-06-17
Journal Article
2017-01-9078
Dong Gao, MiaoHua Huang, Jiangang Xie
In order to solve the environmental pollution and energy crisis, Electric Vehicles (EVs) have been developed rapidly. Lithium-ion (Li-ion) battery is the key power supply equipment for EVs, and the scientific and accurate prediction of its Remaining Useful Life (RUL) has become a hot topic in the field of new energy research. The internal resistance and capacity are often used to characterize the Li-ion battery State of Health (SOH) from which RUL is obtained. However, in practical applications, it is difficult to obtain internal resistance and capacity information by using the non-intrusive measurement method. Therefore, it is necessary to extract the measurable parameters to characterize the degradation of Li-ion battery. At present, the methods of extracting health indicators based on measurable parameters have gained preliminary results, but most of them are derived from the Li-ion battery discharging data.
2017-06-05
Technical Paper
2017-01-1904
Tan Li, Ricardo Burdisso, Corina Sandu
Abstract Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
Abstract The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation… Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions.
2017-06-05
Technical Paper
2017-01-1868
Rod Morris-Kirby, Evan Harry
Abstract The authors previously presented at SAE 2015, the use of acoustic diagnostic network algorithms (Acoustic DNA) for the measurement and analysis of noise paths in motor vehicles. To further the understanding of the huge amount of data created in this method, especially by the end user or customer, a secure web based application platform has been engineered. The current paper presents operating aspects of the web based approach, including cyber security, multi device accessibility and intuitive user interface together with an innovative optimization toolbox from which both noise sources and vehicle body systems can be modified to be target compliant.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1783
Chris Todter, Olivier Robin, Paul Bremner, Christophe Marchetto, Alain Berry
Abstract Surface pressure measurements using microphone arrays are still challenging, especially in an automotive context with cruising speeds around Mach 0.1. The separated turbulent boundary layer excitation and the side mirror wake flow generate both acoustic and aerodynamic components, which have wavenumbers that differ by a factor of approximately 10. This calls for high spatial resolution measurements to fully resolve the wavenumber-frequency spectrum. In a previous publication [1], the authors reported a micro-electro-mechanical (MEMS) surface microphone array that successfully used wavenumber analysis to quantify acoustic versus turbulence loading. It was shown that the measured surface pressure at each microphone could be strongly influenced by self-noise induced by the microphone “packaging”, which can be attenuated with a suitable windscreen.
Viewing 91 to 120 of 16558