Display:

Results

Viewing 31 to 60 of 16508
2017-09-19
Technical Paper
2017-01-2107
Thorsten Kiehl, Jan Philip Speichert, Ethan Higgins, Ralf God
For an “end-to-end passenger experience that is secure, seamless and efficient” the International Air Transport Association (IATA) proposes Near Field Communication (NFC) and a single token concept to be enablers for future digital travel. NFC is a wireless technology commonly utilized in Portable Electronic Devices (PEDs) and contactless smart cards. It is characterized by the following two attributes: a tangible user interface and secured short range communication. While manufacturers are currently adapting PED settings to enable NFC in the flight mode, the integration and use of this technology in aircraft cabins still remains a challenge. There are no explicit qualification guidelines for electromagnetic compatibility (EMC) testing in an aircraft environment available and there is a lack of a detailed characterization of NFC equipped PEDs.
2017-09-19
Technical Paper
2017-01-2018
Won Il Jung, Larry Lowe, Luis Rabelo, Gene Lee, Ojeong Kwon
Operator training using a real weapon in a real-world environment is risky, expensive, time-consuming, and restricted to the given environment. The simulator, or a virtual simulation, is usually employed to solve these limitations. As the operator is trained to maximize weapon effectiveness, the effectiveness-focused training can be completed. However, the training was completed in limited scenarios without guidelines to optimize the weapon effectiveness for an individual operator, thus the training will not be effective with a bias. For overcoming this problem, we suggest a methodology on guiding effectiveness-focused training of the weapon operator using big data and Virtual and Constructive (VC) simulations. Big data, which includes structured, unstructured, and semi-structured types, are generated by VC simulations under a variety of scenarios.
2017-09-19
Technical Paper
2017-01-2020
Michael Croegaert
Modern military aircraft platforms are using more and more power which results in an ever increasing power density (SWaP). This in turn, generates more heat that has to be dissipated from the instrument panel and cockpit of the aircraft. Complicating this further is that the use of structural composites which are not efficient conductors of heat and the mission requirements of small heat signatures. Therefore alternative means of extracting the heat from the avionics systems must be used. Liquid cooled systems have the advantage over air cooled systems of a much higher heat transfer rate and the fact that the heat can be transported a significant distance from the source. Liquid cooled avionics have their own challenges as well. The architecture of the components (cold plates, etc) used for extracting the heat from the electronics component must be optimized to perform consistently and reliably while maintaining the smallest footprint possible in the already crowded instrument panel.
2017-09-19
Technical Paper
2017-01-2028
Steven Nolan, Patrick Norman, Graeme Burt, Catherine Jones
Turbo-electric distributed propulsion (TeDP) for aircraft allows for the complete redesign of the airframe so that greater overall fuel and emissions benefits can be achieved. Whilst conventional electrical power systems may be used for smaller aircraft, much larger aircraft are likely to require the use of superconducting electrical power systems to enable the required whole system power density and efficiency levels to be achieved. The TeDP concept requires an effective electrical fault management and protection system. However, the fault response of a superconducting TeDP power system and its components has not been well studied to date, limiting the effective capture of associated protection requirements. For example, with superconducting systems it is the possible that a hotspot is formed on one of the components, such as a cable. This can result in one subsection, rather than all, of a cable quenching.
2017-09-19
Technical Paper
2017-01-2030
Benjamin Cheong, Patrick Wheeler, Pericle Zanchetta, Michael Galea
In effort to reduce environmental impact of the aerospace industry, More Electric Aircraft (MEA) concepts with electrical systems for fuel pumping, wing ice protection, environmental control systems and aircraft actuation are becoming more and more widely researched. The replacement of hydraulic actuators by motor drives for flight control surfaces is particularly attractive for maintainability, reduction in operating costs and to eliminate the hydraulic fluid. High power density of aerospace motor drives is a key factor in the successful realization of these concepts. An integrated system design approach offer optimization opportunities for further improvements in power density however the challenge lies in its multi-disciplinary modelling and the handling of numerous optimization variables or constraints that are discrete and non-linear in nature. A 4-level modelling paradigm has been proposed by multiple authors to represent a motor drive.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C[1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentability needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2108
Denis Buzdalov, Alexey Khoroshilov
Different modelling techniques intended to deal with complexity of modern IMA systems are widely used now. Models can be used to help developers to lay out relevant information structurally. They can also be used to perform different formal analyses on machine-readable models like schedulability analysis, network load checks, WCET for software parts, FTA and FMEA and etc. For some kinds of analyses, special models are created on different stages of development. We suppose that reuse of models for different aspects and development stages is generally a good thing. In some cases it allows to reduce costs on development process; also it allows to make preservation of consistency between models more automatic. We are aware that using the same model for different stages or aspects can cause additional cost in the model maintenance. In this paper we are trying to make a step to further (including practical) research on this topic.
2017-09-19
Technical Paper
2017-01-2109
Kiran Thupakula
Airport environment consists of several object movements both in air and on ground. In air objects include aircrafts, UAVs and birds etc. On ground objects include aircrafts, airport structures, ground vehicles and ground personnel etc. Detecting, classifying, identifying and tracking these objects are necessary for avoiding collisions in all environmental situations. Multiple sensors need to be employed for capturing the object shape and position from multiple directions. Data from these sensors are combined and processed for object identification. In current scenario, there is no comprehensive traffic monitoring system that uses multisensor data for monitoring in all the airport areas. In this paper, for explanation purpose, a hypothetical airport traffic monitoring system [1] is presumed that uses multiple sensors for avoiding collisions.
2017-09-19
Technical Paper
2017-01-2159
Federico Cappuzzo, Olivier Broca, Jeremy Leboi
To answer the ever-increasing complexity of aircraft, it becomes of foremost importance to better and earlier assess the interactions among their systems and sub-systems. The study presents the Virtual Integrated Aircraft (VIA) methodology, which allows achieving the integration of aircraft systems with virtual means, complementing and preceding physical integration, which is usually completed at the end of the validation and integration phase. LMS Imagine.Lab platform provides the means for applying this methodology. A simulation architecture, integrating models from different platforms, is built and simulations are run on High Performance Computers (HPC) to cover multiple scenarios and therefore validate the selected architecture and pre-design in the early system development phases. Equipment, systems and subsystems are essential for the performance, safety, reliability and comfort.
2017-09-19
Technical Paper
2017-01-2160
Ferdinand Spek, Maarten Weehuizen, Ilja Achterberg
In new aircraft programs, systems’ functionality is increasingly becoming integrated into modular avionics. Controllers may not be delivered by the systems supplier so this trend creates a new interface between systems and controllers. A functional software specification is therefore needed to facilitate the building of the software by the controller supplier. In the case of an ECS system controller, the hardware was obtained from different suppliers and a software functional specification was needed for the controller supplier. To be able to design and verify the system functionality, an integrated ECS simulation model was created which coupled the thermodynamics of the aircraft and ECS system to the controller actions. The model also included functionality to simulate sensor noise and component failures. The thermodynamic model was created in Matlab/Simulink and consisted of a combination of direct programming as well as data on a Flowmaster model for the bleed system.
2017-09-19
Technical Paper
2017-01-2165
Christian Moeller, Hans Christian Schmidt, Philip Koch, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
The high demand of efficient large scale machining operations by concurrently decreasing operating time and costs has led to an increasing usage of industrial robots in contrast to large scaled machining centers. The main disadvantage of industrial robots used for machining processes is their poor absolute accuracy, caused by the serial construction, resilience of gearings and sensitivity for temperature changes. Additionally high process forces that occur during machining of CFRP structures in aerospace industry lead to significant path errors due to low structural stiffness of the robot kinematic. These errors cannot be detected by means of motor encoders. That is why calibration processes and internal control laws have no effect on errors caused by elastic deformation. In this research paper an approach for increasing the absolute accuracy of an industrial milling robot with help of a laser tracker system during machining tasks will be presented.
2017-09-19
Technical Paper
2017-01-2036
William Schley
Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands vary randomly. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
2017-09-19
Technical Paper
2017-01-2104
Marc Gatti
Certification of a mono or multicore processor is going to request to demonstrate that we are capable of mastering the determinism of the execution of all the applications which are going to be executed. Regarding the multicore we introduce a level of complexity to be managed regarding the execution of the application in parallel on each of the cores of the multicore processor whatever is the internal architecture of the processor. In an IMA context, in a mono-core processor: • This determinism is insured by the control of the WCET allowing defining a maximal boundary for all the accesses to all the services offered by the Operating System. • The Platform Provider has no information about the applications which are going to be executed. In this condition the computation of a WCET on a multi-core, like it is done currently, will be realized by introducing constraints at the level of the internal functioning of the multi-core processor.
2017-09-19
Technical Paper
2017-01-2158
Fernando Stancato, Luis Carlos dos Santos, Marcelo Pustelnik
A problem of interest of the aeronautical industry is the positioning of electronic equipments in racks and the associated ventilation system project to guarantee the equipment operational conditions. The relevance of the proper operation of electronic equipments increases considerably when high economical costs, performance reduction and safety are involved. The appropriate operational conditions of the electronic components happen when the working temperature of the equipment installed in the rack is inside a safety project temperature band. Therefore, the analysis and modelling of heat transfer processes for aircraft rack design becomes mandatory. This paper presents a parametric study considering volumetric and superficial heat generation in electronic equipment within racks in an aircraft. Simulations were performed using the commercial CFD Fluent code and results were compared to experimental data.
2017-09-17
Technical Paper
2017-01-2500
Bo Huang, Longjie Xiao
Head-up Display (HUD) system can avoid divers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will uses the color and position change of the indicator symbol to remind drivers of braking information like braking time, braking severity, which can alert drivers to make braking operations timely and accurately. The system has the advantages of safe, intuition and real-time. The vehicle safety speed is calculated according to the road parameters like adhesion coefficient, slope and curvature as well as vehicle parameters like vehicle mass and centroid. And then the appropriate braking operations like braking time are obtained by combining the vehicle status like speed and steering.
2017-09-04
Technical Paper
2017-24-0130
Antonio Paolo Carlucci, Marco Benegiamo, Sergio Camporeale, Daniela Ingrosso
Nowadays, In-Cylinder Pressure Sensors (ICPS) have become a mainstream technology that promises to change the way the engine control is performed. Among all the possible applications, the prediction of raw (engine-out) NOx emissions would allow to eliminate the NOx sensor currently used to manage the after-treatment systems. In the current study, a semi-physical model already existing in literature for the prediction of engine-out nitric ox-ide emissions based on in-cylinder pressure measurement has been improved; in particular, the main focus has been to improve nitric oxide prediction accuracy when injection timing is varied. The main modification introduced in the model lies in taking into account the turbu-lence induced by fuel spray and enhanced by in-cylinder bulk motion.
2017-09-04
Technical Paper
2017-24-0069
Hyunwook Park, Jugon Shin, Choongsik Bae
Spray and combustion characteristics of diesel fuel were investigated in order to get a better understanding of the evaporation and combustion behavior under simulated cold-start conditions of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the target ambient conditions were selected as the engine cranking. Mie scattering and shadowgraph techniques were conducted to visualize the liquid and vapor phase of the fuel under non-combustion condition (O2 concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion condition (O2 concentration=21%). The fuel was injected with an injection pressure of 30MPa, which is a typical value during cranking period. The liquid penetration of the fuel was increased at 573K of ambient temperature compared to that at 663K due to the poor evaporation characteristic and the increased fuel viscosity from the lower fuel temperature.
2017-09-04
Technical Paper
2017-24-0068
Roberto Finesso, Ezio Spessa, Yixin Yang, Giuseppe Conte, Gennaro Merlino
A real-time approach has been developed and assessed to control BMEP (brake mean effective pressure) and MFB50 (crank angle at which 50% of fuel mass has burnt) in a Euro 6 1.6L GM diesel engine. The approach is based on the use of feed-forward NNs (neural networks), which have been trained using virtual tests simulated by a previously developed low-throughput physical engine model. The latter is capable of predicting the heat release and the in-cylinder pressure, as well as the related metrics (MFB50, IMEP – indicated mean effective pressure) on the basis of an improved version of the accumulated fuel mass approach. BMEP is obtained from IMEP taking into account friction losses. The low-throughput physical model does not require high calibration effort and is also suitable for control-oriented applications. However, control tasks characterized by stricter demands in terms of computational time may require a modeling approach characterized by a further lower throughput.
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influences the filter back pressure and therefore the engine performance and the fuel consumption which is why a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations leading to damages of the filter and fuel penalty.
2017-09-04
Journal Article
2017-24-0140
Roberto Aliandro Varella, Gonçalo Duarte, Patricia Baptista, Pablo Mendoza Villafuerte, Luis Sousa
Due to the need to properly quantify vehicle emissions in real world operation, Real Driving Emissions (RDE) test procedures will be used for measuring gaseous emissions on new EURO 6 vehicles.at the RDE 1 & 2: Commission Regulation (EU) 2016/427 of 10 March 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles. Updated regulations have been enhanced to define RDE tests boundaries and data analysis procedures, in order to provide an accurate way to obtain representative results. The boundary conditions defined for vehicle testing include external atmospheric temperature, which can range from 0ºC to around 30ºC, for moderate conditions and -7oC up to 35oC for extended conditions in RDE tests. As a result of this range of possible test ambient temperature, pollutant emissions and energy consumption can vary considerably.
2017-09-04
Technical Paper
2017-24-0137
Zhen Zhang, Luigi del Re, Richard Fuerhapter
During transients, engines tend to produce substantially higher peak emissions which are the longer the more important as the steady state emissions are better controller. To this end, they must be measurable in an adequate time scale. While for most emissions there are commercially available sensors of sufficient speed and performance, the same is not true for soot, especially for production engines. Against this background, in the last years we have investigated together with a supplier of measurement systems the possible use of a 50Hz sensor based on LII and of the same size of a standard oxygen probe, and the results were very positive, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like AVL Opacimenter or Microsoot) but confirmed e.g. by incylinder 2 color spectroscopy. The higher speed is also due to the position, as the sensor can be mounted above or below the turbine in a turbocharged CI engine.
2017-09-04
Technical Paper
2017-24-0153
Sergey Shcherbanev, Alexandre De Martino, Andrey Khomenko, Svetlana Starikovskaia, Srinivas Padala, Yuji Ikeda
Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution.
2017-09-04
Technical Paper
2017-24-0003
Andreas Sidorow, Vincent Berger, Ghita Elouazzani
Abstract Gasoline engines have typically a waste gate actuator to control the boost pressure. The electrification of the vehicle and combustion engine components leads to new challenges of application of electric actuators in engine components, like turbochargers, which are faced with relatively high ambient temperatures. Another challenge is a simulation and prediction of the mechanical load on the actuator and kinematic components at different application scenarios, which can help to find the optimal solution which fulfills the durability, controllability, etc. targets. This paper deals with a physical dynamic model of an electric waste-gate actuator and kinematic components. The modeling includes a thermal, electrical and mechanical parts of the turbocharger control system and is validated on test-bench and engine measurements including pulsation effects.
2017-09-04
Technical Paper
2017-24-0046
Richard Stone, Ben Williams, Paul Ewart
Abstract The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
2017-09-04
Technical Paper
2017-24-0050
Anjan Rao Puttige, Robin Hamberg, Paul Linschoten, Goutham Reddy, Andreas Cronhjort, Ola Stenlaas
Abstract Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
2017-09-04
Technical Paper
2017-24-0054
Francesco de Nola, Giovanni Giardiello, Alfredo Gimelli, Andrea Molteni, Massimiliano Muccillo, Roberto Picariello
Abstract In the last few years, the automotive industry had to face three main challenges: compliance with more severe pollutant emission limits, better engine performance in terms of torque and drivability and simultaneous demand for a significant reduction in fuel consumption. These conflicting goals have driven the evolution of automotive engines. In particular, the achievement of these mandatory aims, together with the increasingly stringent requirements for carbon dioxide reduction, led to the development of highly complex engine architectures needed to perform advanced operating strategies. Therefore, Variable Valve Actuation (VVA), Exhaust Gas Recirculation (EGR), Gasoline Direct Injection (GDI), turbocharging, powertrain hybridization and other solutions have gradually and widely been introduced into modern internal combustion engines, enhancing the possibilities of achieving the required goals.
2017-09-04
Journal Article
2017-24-0045
Blane Scott, Christopher Willman, Ben Williams, Paul Ewart, Richard Stone, David Richardson
Abstract In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
2017-09-04
Journal Article
2017-24-0051
Ferdinando Taglialatela, Mario Lavorgna, Silvana Di Iorio, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
2017-09-04
Journal Article
2017-24-0109
Nic Van Vuuren, Lucio Postrioti, Gabriele Brizi, Federico Picchiotti
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
2017-07-10
Technical Paper
2017-28-1935
Vellavedu Velumani Praveen, P Baskara Sethupathi
Abstract Formula SAE is a prestigious engineering design competition, where student team design, fabricate and test their formula style race car, with the guidelines of the FSAE rulebook, according to which the car is designed, for example the engine must be a four-stroke, Otto-cycle piston engine with a displacement no greater than 710cc. According to FSAE 2017 Rule Book [1], ARTICLE 3, IC3.2 and IC3.3 state that the maximum sound level should not exceed 110 dBC at an average piston speed of 15:25 m/s (for the KTM 390 engine, which has 60 mm stroke length, the noise level will be measured at 7500 RPM) and 103 dBC at Idle RPM. So, the active muffler which works as a normal reflective muffler till the 7500 RPM range, after which an electronic controlled throttle mechanism is used to reduce the backpressure (since after 7500 RPM the noise level doesn't matter in FSAE) by using tach signal from the engine to control the throttle (two position).
Viewing 31 to 60 of 16508