Display:

Results

Viewing 271 to 300 of 16442
2017-03-28
Technical Paper
2017-01-0937
David Culbertson, James Pradun, Magdi Khair, Jeff Diestelmeier
Abstract Tightening regulations throughout the world demand a reduction in fuel consumption and NOX emission levels, creating an increasing need for additional heat for SCR aftertreatment. A durable and low cost heating system is needed for vehicles with hybrid or 24Vdc electricity. Recent development efforts have resulted in much smaller and lower cost heating systems for electrical systems ranging from 400 to 24Vdc. Test results demonstrate the feasibility of reducing the size of the heater and the relationship of heater power to the amount of time required to heat the exhaust. Intelligent solid state switching enables the heater to be smaller without compromising durability.
2017-03-28
Technical Paper
2017-01-1254
Raja Sangili Vadamalu, Christian Beidl
Powertrain systems exploiting information from vehicle connectivity have widened the system boundary resulting in additional degrees-of-freedom for predictive trajectory planning. Heuristic methods based on component characteristics are currently widely used for Energy Management (EM) functionality of hybridized powertrains. Despite their better usability, increased calibration effort and sensitivity to synthetic calibration scenarios are drawbacks of such control methods. Availability of predictive data, better computing power and challenges posed by various scenarios in real driving, have led to interest in online-optimizing EM functionality. Equivalent Consumption Minimization Strategy (ECMS) approaches based on Indirect optimal control /Pontryagin Minimum principle have difficulty in handling inequality state constraints. Extensions of ECMS make use of modifications to the equivalence factor/co-state, based on prediction of driving conditions.
2017-03-28
Technical Paper
2017-01-1204
Xiao Yang, Ted Miller
Abstract We try to understand the fast recharge capability of automotive lithium-ion batteries and its effect of fast charge on capacity degradation. We find out that 5 Ah prismatic Li-ion cells can be fully recharged in 3 minutes under a constant rate of 20C, or in 2 min (25.5C) from 0% to 85% state of charge (SOC) without undue stresses. We cycle the battery at 16C charge rate from 0 to 100%SOC and do not see any unexpected battery capacity loss in 50 cycles, where half of the cycles are charged at1C-rate as a reference capacity check. We realize that the batteries under the fast charge tests do not experience any negative impacts related to mass transport in either solid electrodes or the electrolyte system. In the paper, we propose a new procedure to measure the ac and dc resistances of the battery under continuous operation. Electrochemical impedance analyses on the whole battery and the individual electrodes are also conducted.
2017-03-28
Technical Paper
2017-01-1661
Georg Macher, Richard Messnarz, Eric Armengaud, Andreas Riel, Eugen Brenner, Christian Kreiner
Abstract The replacement of safety-critical mechanical components with electro-mechanical systems has led to the fact that safety aspects play a central role in development of embedded automotive systems. Recently, consumer demands for connectivity (e.g., infotainment, car-2-car or car-2-infrastructure communication) as well as new advances toward advanced driver assistance systems (ADAS) or even autonomous driving functions make cybersecurity another key factor to be taken into account by vehicle suppliers and manufacturers. Although these can capitalize on experiences from many other domains, they still have to face several unique challenges when gearing up for specific cybersecurity challenges. A key challenge is related to the increasing interconnection of automotive systems with networks (such as Car2X). Due to this connectivity, it is no longer acceptable to assume that safety-critical systems are immune to security risks.
2017-03-28
Technical Paper
2017-01-1683
Adit Joshi
Software for autonomous vehicles is highly complex and requires vast amount of vehicle testing to achieve a certain level of confidence in safety, quality and reliability. According to the RAND Corporation, a 100 vehicle fleet running 24 hours a day 365 days a year at a speed of 40 km/hr, would require 17 billion driven kilometers of testing and take 518 years to fully validate the software with 95% confidence such that its failure rate would be 20% better than the current human driver fatality rate [1]. In order to reduce cost and time to accelerate autonomous software development, Hardware-in-the-Loop (HIL) simulation is used to supplement vehicle testing. For autonomous vehicles, path following controls are an integral part for achieving lateral control. Combining the aforementioned concepts, this paper focuses on a real-time implementation of a path-following lateral controller, developed by Freund and Mayr [2].
2017-03-28
Technical Paper
2017-01-1655
Paul Wooderson, David Ward
Abstract An essential part of an effective cybersecurity engineering process is testing the implementation of a system for vulnerabilities and validating the effectiveness of countermeasures. The SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems provides a recommended framework which organizations can use to implement a cybersecurity engineering process, which includes activities such as integration and testing, penetration testing and verification/validation of cybersecurity requirements at the hardware, software and system levels. This presentation explores the different kinds of testing that are appropriate at each of these process steps and discusses some important differences between cybersecurity testing and more familiar forms of testing.
2017-03-28
Technical Paper
2017-01-0893
Marek Tatur, Kiran Govindswamy, Dean Tomazic
Abstract Demanding CO2 and fuel economy regulations are continuing to pressure the automotive industry into considering innovative powertrain and vehicle-level solutions. Powertrain engineers continue to minimize engine internal friction and transmission parasitic losses with the aim of reducing overall vehicle fuel consumption. Strip friction methods are used to determine and isolate components in engines and transmissions with the highest contribution to friction losses. However, there is relatively little focus on friction optimization of Front-End-Accessory-Drive (FEAD) components such as alternators and Air Conditioning (AC) compressors. This paper expands on the work performed by other researchers’ specifically targeting in-depth understanding of system design and operating strategy.
2017-03-28
Journal Article
2017-01-0896
Philip Griefnow, Jakob Andert, Dejan Jolovic
Abstract The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
2017-03-28
Technical Paper
2017-01-0013
Gaurav Gupta, Ujjwal Modi
Abstract Flickering problems in automotive vehicles have been observed from long time. After assessing numerous vehicles it was observed that whenever the hazard lights in a vehicle are activated, it leads to flickering problems in lights/small electrical components. This paper is to provide the solution for flickering snags in electrical components in a vehicle. The lights that are analyzed to be flickering/wavering are generally small loads such as LEDs in the bus roof area, small parking lamps, LEDs used in instrument clusters, cabin lamps, etc. The flickering in lights can turn out to be very unappealing at certain times. This absurd behavior can lead to extreme discomfort to the passengers and can also be a source of major distraction to the driver. This study presents the design & development for a vehicle platform & implementation that assesses the problem. Because of abrupt behavior of flasher circuits, voltage surges are observed, leading to flickering problems.
2017-03-28
Technical Paper
2017-01-1616
Scott A. Rush
Abstract Modern automotive manufacturing and after-sale service environments require tailoring of configuration values or “calibrations” within the vehicle’s various electronic control units (ECUs) to that vehicle’s specific option content. Historically, ECU hardware and software limitations have led designers to implement calibratable values using opaque binary blocks tied directly to ECU internal software data structures. Such coupling between calibration data files and ECU software limits traceability and reuse across different software versions and ECU variants. However, more and more automotive ECUs are featuring fast microprocessors, large memories, and preemptive, multi-tasking operating systems that open opportunities to object-oriented approaches. This paper presents the CalDef system for automotive ECU calibration software architecture.
2017-03-28
Technical Paper
2017-01-0042
David Andrade, Rodrigo Adamshuk, William Omoto, Felipe Franco, João Henrique Neme, Sergio Okida, Angelo Tusset, Rodrigo Amaral, Artur Ventura, Max Mauro Dias Santos
Abstract The continuous growth of market for Advanced Driver Assistance Systems based on image processing features leads to the advance of the applied techniques, increasing thus the driving safety. Mostly of the edge detection algorithms are traditional approaches, and to achieve improvements it is necessary to combine different methods. The purpose of this work is to implement a strategy for road lanes detection using the traditional Canny operator. Oriented filters are used to remove unnecessary information and vehicle’s yaw rate signal is used to adaptively correct the filter orientation according to the lane boundaries directions. In sequence, morphological filters using dilation and analysis of connected components are applied in order to remove the noise components of the edge detection stage.
2017-03-28
Technical Paper
2017-01-0037
Xianyao Ping, Gangfeng Tan, Yahui Wu, Binyu Mei, Yuxin Pang
Abstract The drivers' hysteretic perception to surrounding environment will affect vehicular fuel economy, especially for the heavy-duty vehicles driving under complex conditions and long distance in mountainous areas. Unreasonable acceleration or deceleration on the slope will increase the fuel consumption. Improving the performance of the engine and the transmission system has limited energy saving potential, and most fuel-efficient driving assistant systems don't consider the road conditions. The main purpose of this research is to introduce an economic driving scheme with consideration of the prestored slope information in which the vehicle speed in mountainous slopes is reasonably planned to guide the driver's behavior for reduction of the fuel consumption. Economic driving optimization algorithm with low space dimension and fast computation speed is established to plan accurate and real-time economic driving scheme.
2017-03-28
Journal Article
2017-01-0118
Yang Wang, Ankit Goila, Rahul Shetty, Mahdi Heydari, Ambarish Desai, Hanlong Yang
Regarding safety, obstacle avoidance has been considered as one of the most important features among ADAS systems for ground vehicles. However, the implementation of obstacle avoidance functions to commercial vehicles are still under progress. In this paper, we demonstrate a complete process of obstacle avoidance strategy for unmanned ground vehicle and implement the strategy on the self-developed Arduino based RC Car. In this process, the sensor LIDAR was used to detect the obstacles on the fore-path. Based on the measured LIDAR data, an optimized path is automatically generated with accommodation of current car position, obstacle locations, car operation capability and global environmental restrictions. The path planning is updated in real time while new or changing obstacles being detected. This algorithm is validated by the simulation results with the RC car. The comparison will be discussed at the end of this paper.
2017-03-28
Journal Article
2017-01-0267
Tomasz Haupt, Gregory Henley, Angela Card, Michael S. Mazzola, Matthew Doude, Scott Shurin, Christopher Goodin
Abstract The Powertrain Analysis and Computational Environment (PACE) is a powertrain simulation tool that provides an advanced behavioral modeling capability for the powertrain subsystems of conventional or hybrid-electric vehicles. Due to its origins in Argonne National Lab’s Autonomie, PACE benefits from the reputation of Autonomie as a validated modeling tool capable of simulating the advanced hardware and control features of modern vehicle powertrains. However, unlike Autonomie that is developed and executed in Mathwork’s MATLAB/Simulink environment, PACE is developed in C++ and is targeted for High-Performance Computing (HPC) platforms. Indeed, PACE is used as one of several actors within a comprehensive ground vehicle co-simulation system (CRES-GV MERCURY): during a single MERCURY run, thousands of concurrent PACE instances interact with other high-performance, distributed MERCURY components.
2017-03-28
Journal Article
2017-01-0386
Michael Wohlthan, Gerhard Pirker, Andreas Wimmer
Abstract To achieve high power output and good efficiency and to comply with increasingly stricter emission standards, modern combustion engines require a more complex engine design, which results in a higher number of control parameters. As the measurement effort and the number of sensors for engine development at the test bed continue to increase, it is becoming nearly impossible for the test bed engineer to manually check measurement data quality. As a result, automated methods for analysis and plausibility checks of measurement data are necessary in order to find faults as soon as they occur and to obtain test results of the highest possible quality. This paper presents a methodology for automated fault diagnosis on engine test beds. The methodology allows reliable detection of measurement faults as well as the identification of the root cause of faults.
2017-03-28
Journal Article
2017-01-0404
Anatoliy Dubrovskiy, Sergei Aliukov, Sergei Dubrovskiy, Alexander Alyukov
Abstract Currently, a group of scientists consisting of six doctors of technical sciences, professors of South Ural State University (Chelyabinsk, Russia) has completed a cycle of scientific research for creation of adaptive suspensions of vehicles. We have developed design solutions of the suspensions. These solutions allow us to adjust the performance of the suspensions directly during movement of a vehicle, depending on road conditions - either in automatic mode or in manual mode. We have developed, researched, designed, manufactured, and tested experimentally the following main components of the adaptive suspensions of vehicles: 1) blocked adaptive dampers and 2) elastic elements with nonlinear characteristic and with improved performance.
2017-03-28
Journal Article
2017-01-0427
Yue Shi, Qingwei Liu, Fan Yu
Abstract An EV prototype, with all the wheels respectively driven by 4 inwheel motors, is developed, and undergoes a series of practical measurements and road tests. Based on the obtained vehicle parameters, a multi-body dynamics model is built by using SolidWorks and Adams/Car, and then validated by track test data. The virtual prototype is served as the control plant in simulation. An adaptive fractional order PID (A-FO-PID) controller is designed to enhance the handling and stability performance of the EV. Considering the model uncertainties, e.g. the variation in body mass distribution and the consequent change in yaw moment of inertial, a Parameter Self-Adjusting Differential Evolution (PSA-DE) algorithm is adopted for tuning the controller parameters, i.e. KP, KI, KD, λ and μ. As a modification of traditional DE algorithm, the so-called Variance of Population’s Fitness is utilized to evaluate the diversity of the population.
2017-03-28
Journal Article
2017-01-0426
Chen Lv, Hong Wang, Bolin Zhao, Dongpu Cao, Wang Huaji, Junzhi Zhang, Yutong Li, Ye Yuan
Abstract The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
2017-03-28
Journal Article
2017-01-0073
Andreas Barthels, Christian Ress, Martin Wiecker, Manfred Müller
Abstract Vehicle to Vehicle Communication use case performance heavily relies on market penetration rate. The more vehicles support a use case, the better the customer experience. Enabling these use cases with acceptable quality on vehicles without built-in navigation systems, elaborate map matching and highly accurate sensors is challenging. This paper introduces a simulation framework to assess system performance in dependency of vehicle positioning accuracy for matching approach path traces in Decentralized Environmental Notification Messages (DENMs) in absence of navigation systems supporting map matching. DENMs are used for distributing information about hazards on the road network. A vehicle without navigation system and street map can only match its position trajectory with the trajectory carried in the DENM.
2017-03-28
Journal Article
2017-01-0077
Scott E. Bogard, Shan Bao, David LeBlanc, Jun Li, Shaobo Qiu, Bin Liu
Abstract This paper provides an analysis of how communication performance between vehicles using Dedicated Short-range Communication (DSRC) devices varies by antenna mounting, vehicle relative positions and orientations, and between receiving devices. DSRC is a wireless technology developed especially for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. A frequency band near 5.9 GHz has been set aside in the US and other countries for exploring safety and other uses for road vehicles. DSRC devices installed onboard vehicles broadcast their location using global navigation space systems (GNSS), speed, heading, and other information. This can be used to study communication performance in many scenarios including: car-following situations, rear-end crash avoidance, oncoming traffic situations, left turn advisory, head-on crash avoidance and do-not-pass warnings.
2017-03-28
Technical Paper
2017-01-1654
Arun Ganesan, Jayanthi Rao, Kang Shin
Abstract Modern vehicles house many advanced components; sensors and Electronic Control Units (ECUs) — now numbering in the 100s. These components provide various advanced safety, comfort and infotainment features, but they also introduce additional attack vectors for malicious entities. Attackers can compromise one or more of these sensors and flood the vehicle’s internal network with fake sensor values. Falsified sensor values can confuse the driver, and even cause the vehicle to misbehave. Redundancy can be used to address compromised sensors, but adding redundant sensors will increase the cost per vehicle and is therefore less attractive. To balance the need for security and cost-efficiency, we exploit the natural redundancy found in vehicles. Natural redundancy occurs when the same physical phenomenon causes symptoms in multiple sensors. For instance, pressing the accelerator pedal will cause the engine to pump faster and increase the speed of the vehicle.
2017-03-28
Technical Paper
2017-01-1653
Jon Barton Shields, Jörg Huser, David Gell
Abstract This paper discusses the merits, benefits and usage of autonomous key management (with implicit authentication) (AKM) solutions for securing ECU-to-ECU communication within the connected vehicle and IoT applications; particularly for transmissions between externally exposed, edge ECU sensors connected to ECUs within the connected vehicle infrastructure. Specific benefits addressed include reductions of communication latency, implementation complexity, processing power and energy consumption. Implementation issues discussed include provisioning, key rotation, synchronization, re-synchronization, digital signatures and enabling high entropy.
2017-03-28
Technical Paper
2017-01-1657
Jesse Edwards, Ameer Kashani
Abstract In the past few years, automotive electronic control units (ECUs) have been the focus of many studies regarding the ability to affect the deterministic operation of safety critical cyber-physical systems. Researchers have been able to successfully demonstrate flaws in security design that have considerable, dramatic impacts on the functional safety of a target vehicle. With the rapid increase in data connectivity within a modern automobile, the attack surface has been greatly broadened to allow adversaries remote access to vehicle control system software and networks. This has serious implications, as a vast number of vulnerability disclosures released by security researchers point directly to common programming bugs and software quality issues as the root cause of successful exploits which can compromise the vehicle as a whole. In this paper, we aim to bring to light the most prominent categories of bugs found during the software development life cycle of an automotive ECU.
2017-03-28
Technical Paper
2017-01-1659
Mert D. Pesé, Karsten Schmidt, Harald Zweck
Abstract The automotive industry experiences a major change as vehicles are gradually becoming a part of the Internet. Security concepts based on the closed-world assumption cannot be deployed anymore due to a constantly changing adversary model. Automotive Ethernet as future in-vehicle network and a new E/E Architecture have different security requirements than Ethernet known from traditional IT and legacy systems. In order to achieve a high level of security, a new multi-layer approach in the vehicle which responds to special automotive requirements has to be introduced. One essential layer of this holistic security concept is to restrict non-authorized access by the deployment of embedded firewalls. This paper addresses the introduction of automotive firewalls into the next-generation domain architecture with a focus on partitioning of its features in hardware and software.
2017-03-28
Technical Paper
2017-01-1612
Tri P. Doan, Subramaniam Ganesan
Abstract Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller area network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to be encrypted and secured. With this new feature of CAN FD, we propose a hardware design - CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. AES-128 algorithm will provide confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) will provide integrity and authentication of CAN message. The design has been modeled and verified by using Verilog HDL – a hardware description language, and implemented successfully into Xilinx FPGA chip by using simulation tool ISE (Xilinx).
2017-03-28
Journal Article
2017-01-1554
Ajith Jogi, Sujatha Chandramohan
Abstract Over the years, commercial vehicles, especially tractor-semitrailer combinations have become larger and longer. With the increasing demand for their accessibility in remote locations, these vehicles face the problem of off-tracking, which is the ensuing difference in path radii between the front and rear axles of a vehicle as it maneuvers a turn. Apart from steering the rear axle of the semitrailer, one of the feasible ways of mitigating off-tracking is to shift the fifth wheel coupling rearwards. However, this is limited by the distribution of the semitrailer’s load between the two axles of the tractor; any rearward shift of the fifth wheel coupling results in the reduction of the total static load on the tractor’s front axle and hence available traction. This may in turn lead to directional instability of the vehicle. In the present work, a new model of the fifth wheel coupling is proposed which the authors call Split fifth wheel coupling (SFWC).
2017-03-28
Journal Article
2017-01-0290
Veera Aditya Yerra, Srikanth Pilla
Abstract The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
2017-03-28
Journal Article
2017-01-0317
James Henry Wrock, Pengying Niu, Huairui Guo
Abstract Automobiles have a high degree of mechanical and electrical complexity. However, product complexity has the accompanying effect of requiring high levels of design and process oversight. The net result is a product creation process which is prone to creating failures. These failures typically have their origin in an overall lack of complete understanding of the system in terms of materials, geometries and energy flows. Despite all of the engineering intentions, failures are inevitable, common, and must be dealt with accordingly. In the worst case, if a failure manifests itself into an observable failure the customer may have a negative experience. Therefore, it is imperative that design engineers, suppliers along with reliability professionals be able to assess the design risk. One approach to assess risk is the use of degradation analysis.
2017-03-28
Journal Article
2017-01-0551
Alessandro D'Adamo, Sebastiano Breda, Salvatore Iaccarino, Fabio Berni, Stefano Fontanesi, Barbara Zardin, Massimo Borghi, Adrian Irimescu, Simona Merola
Abstract Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
2017-03-28
Journal Article
2017-01-0555
Salvatore Iaccarino, Sebastiano Breda, Alessandro D'Adamo, Stefano Fontanesi, Adrian Irimescu, Simona Merola
Abstract The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
Viewing 271 to 300 of 16442