Display:

Results

Viewing 1 to 30 of 784
2016-11-18
WIP Standard
AIRA5C1116
This is a blank form that customers can download in order to record pertinent data after a tire incident using a standardized method.
2016-11-08
Journal Article
2016-32-0052
Michael Schoenherr, Mathieu Grelaud, Ami Hirano
Abstract The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years.
2016-11-03
Magazine
SAE Convergence 2016 Talk of the healthy aspects of disruption mingles with SAE's renowned technical emphasis to foster the auto industry's continuing evolution toward electrification and autonomy. The Battery Man Speaks The speed of progress in automotive lithium batteries has impressed AABC's Dr. Menahem Anderman. So has silicon-graphite anode technology development from Tesla and Panasonic. Industry 4.0: The smart factory arrives The plants that produce automotive systems and vehicles are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. Editorial: Promise of 48 volts is no shock Nissan unveils variable-compression-ratio ICE for 2018 Infiniti production model Optimizing engine oil warm-up strategies for 'real-world' driving In search of higher-energy-content batteries Making Multiphysics fast and convenient I.D.
2016-10-17
Technical Paper
2016-01-2226
Mohammad Alzorgan, Joshua Carroll, Essam Al-Masalmeh, Abdel Raouf Turki Mayyas
Abstract Advanced Driver Assistance Systems (ADAS) is an essential aspect of the automotive technology in this era of technological revolution, where the goal is to make vehicles more convenient, safe, and energy efficient. Taking advantage of more degrees of freedom available within vehicle “energy management” allows more margin to maximize efficiency in the propulsion systems. It is envisioned by this research that future fuel economy regulations will consider the potential benefits of emerging connectivity and automation technologies of vehicle’s fuel consumption. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevation are obtained by use of Geographic Information System (GIS) maps in order to optimize the controller. The optimization is then reflected on the powertrain of the vehicle.
CURRENT
2016-09-30
Standard
J3016_201609
This Recommended Practice provides a taxonomy for motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis and that range in level from no driving automation (level 0) to full driving automation (level 5). It provides detailed definitions for these six levels of driving automation in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.
2016-09-27
Technical Paper
2016-01-8105
Shengguang Xiong, Gangfeng Tan, Xuexun Guo, Mengying Yang, Yongbing Xu, Bo Huang
Abstract Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
2016-09-27
Technical Paper
2016-01-8012
Daniel E. Williams, Amine Nhila, Kenneth Sherwin
Abstract A large percentage of commercial vehicles transport freight on our interstate highway system. These vehicles spend the vast majority of their duty cycle at high speed maintaining a lane. As steering is integrated into ADAS, objective performance measures of this most common mode of commercial vehicle operation will be required. Unfortunately in the past this predominant portion of the commercial vehicle duty cycle was overlooked in evaluating vehicle handling. This lanekeeping mode of operation is also an important, although less significant portion of the light vehicle duty cycle. Historically on-center handling was compromised to achieve acceptable low speed efforts. With the advent of advanced active steering systems, this compromise can be relaxed. Objective measures of lanekeeping are developed and performance of various advanced steering systems is quantified in this important operating mode.
2016-09-27
Journal Article
2016-01-8013
Marius Feilhauer, Juergen Haering, Sean Wyatt
Abstract The way to autonomous driving is closely connected to the capability of verifying and validating Advanced Driver Assistance Systems (ADAS), as it is one of the main challenges to achieve secure, reliable and thereby socially accepted self-driving cars. Hardware-in-the-Loop (HiL) based testing methods offer the great advantage of validating components and systems in an early stage of the development cycle, and they are established in automotive industry. When validating ADAS using HiL test benches, engineers face different barriers and conceptual difficulties: How to pipe simulated signals into multiple sensors including radar, ultrasonic, video, or lidar? How to combine classical physical simulations, e.g. vehicle dynamics, with sophisticated three-dimensional, GPU-based environmental simulations? In this article, we present current approaches of how to master these challenges and provide guidance by showing the advantages and drawbacks of each approach.
2016-09-27
Journal Article
2016-01-8104
Ryo Yamaguchi, Hiromichi Nozaki
Abstract In this study, we report on the development of a steering assistance control system that feeds back information on the outside environment collected by laser sensors to the vehicle driver. The system consists of an emergency avoidance assistance control program that performs obstacle detection and avoidance, as well as a cornering assistance control program that operates by detecting the white lines painted on roadways. Driving simulator experiments were conducted in order to confirm the effectiveness of these functions, as well as to improve understanding of the synergistic effects of the steering assistance and chassis control functions: camber angle control and derivative steering assistance (DSA) control.
2016-09-14
Technical Paper
2016-01-1895
Xin Bi, Zheng Ma, Wei Wang, Jinsong Du
Abstract A 24GHz multi-function assist system has been developed for advanced automotive radar, which includes different applications in Blind Spot Detection (BSD), Lane Change Assist (LCA), Doors Open Warning (DOW) and Rear Cross Traffic Alert (RCTA). The multi-function radar is based on the micro-strip antenna, which has a reasonable design on main-lobe and side-lobes. According the antenna, the radar can operate in mid-range mode with a high gain and a narrow beam width, whilst performing well in short-range and wide-angle mode.
2016-09-14
Technical Paper
2016-01-1905
Gaoming Fang, Hui Chen
Abstract Electric Power Steering (EPS) is the actuator of several lateral-dynamic-related Advanced Driver Assistance Systems (ADAS). A driving simulator with EPS will be much helpful for the ADAS development. However, if a real EPS is used in the driving simulator, it is quite difficult to realize the road reaction force accurately and responsively. To overcome this weakness, a virtual EPS platform is established. The virtual EPS platform contains two parts: one is the vehicle and EPS model, the other is the force feedback actuator (FFA) of the Steer-by-Wire (SBW) system. The FFA is an interface between the driver and the EPS/vehicle model. The reactive torque of the FFA is obtained based on the models. Meanwhile, the input of the EPS model is the steering angle of the FFA. Comparing to a real EPS, the virtual EPS platform has a problem of instability because of the actuator lag of the FFA. Therefore, a damping control method is applied to make the system stable.
2016-09-14
Technical Paper
2016-01-1900
Yafei Wang, Hiroshi Fujimoto, Yoichi Hori
Abstract Vehicle lateral states such as lateral distance at a preview point and heading angle are indispensable for lane keeping control systems, and such states are normally estimated by fusing signals from an onboard vision system and inertial sensors. However, the sampling rates and measurement delays are different between the two kinds of sensing devices. Most of the conventional methods simply neglect measurement delay and reduce sampling rate of the estimator to adapt to the slow sensors/devices. However, the estimation accuracy is deteriorated, especially considering the delay of visual signals may not be constant. In case of electric vehicles, the actuators for steering and traction are motors that have high control frequency. Therefore, the frequency of vehicle state feedback may not match the control frequency if the estimator is infrequently updated.
2016-09-14
Journal Article
2016-01-1892
Jiao Guo, Weiwen Deng, Sumin Zhang, Shiqian Qi, Xin Li, Chenghao Wang, Jun Wang
Abstract The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
2016-09-14
Technical Paper
2016-01-1907
Yaxin Li, Ying Wang, Weiwen Deng, Xin Li, Zhenyi liu, Lijun Jiang
Abstract LiDAR sensors have played more and more important role on Intelligent and Connected Vehicles (ICV) and Advanced Driver Assistance Systems (ADAS) .However, the development and testing of LiDAR sensors under real driving environment for ADAS applications are greatly limited by various factors, and often are impossible due to safety concerns. This paper proposed a novel functional LiDAR model under virtual driving environment to support development of LiDAR-based ADAS applications under early stage. Unlike traditional approaches on LiDAR sensor modeling, the proposed method includes both geometrical modeling approach and physical modeling approach. While geometric model mainly produces ideal scanning results based on computer graphics, the physical model further brings physical influences on top of the geometric model. The range detection is derived and optimized based on its physical detection and measurement mechanism.
2016-06-03
Magazine
Executive viewpoints Industry leaders offer their insights on the state of the heavy-duty on- and off-highway industries in this annual series of opinion pieces. The executives share their views on the most pressing technologies and trends shaping their business and the industry moving forward. Annual Product Guide Top products from throughout the industry covering technologies such as Powertrain & Energy, Hydraulics, Electronics, and Testing & Simulation.
2016-05-05
Magazine
New dawn at Honda R&D President Yoshiyuki Matsumoto aims to invigorate Honda's technology and product-development organization with 'full soul.' Automated driving meets regulation: NHTSA and the next 50 years The challenges and opportunities on the road to 'zero deaths' demand a new level of federal automotive safety technical standards, and a new safety-defect reporting and recall system. NHTSA and the U.S. Congress must act boldly and quickly to make it happen. Autonomous driving meets regulation: Hands off, eyes off, brain off Euro NCAP'S president warns that without coherent policies, the growing availability of automated technologies may result in piecemeal technology development-and unintentional consequences. Designer yin meets engineer yang Efficient and effective vehicle development means even closer collaboration between the two former sparring partners.
2016-04-07
Magazine
Defying the disruptors and driving innovation Four top engineering executives discuss how their "traditional" companies are finding new technology opportunities and business growth amid the start-ups-and are even doing some disrupting themselves. Preparing for a 48-volt revival The quest to improve fuel economy is not waning, nor is the desire to achieve higher mpg through the use of just the right lightweight material for the right vehicle application. Additive manufacturing enhances GTDI pistons Selective Laser Melting may help manufacture future gasoline-engine pistons with enhanced heat-transfer properties and reduced weight.
2016-04-05
Technical Paper
2016-01-0047
Umesh Patel, Sreenivasa Parnasala, Chamaraj Melinmath, KM Khalid, Chandrakantha Ursu
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
2016-04-05
Technical Paper
2016-01-0112
Dariusz Borkowski, Rafal Tomasz Dlugosz, Michał Szulc, Pawel Skruch, Pawel Markiewicz, Dominik Sasin, Marta Kolasa, Tomasz Talaska
Abstract In the presented paper we deal with an important problem in active safety systems, which is the multi-rate processing of different signals. Automotive systems are usually very complex, involving multiple subsystems, in which typically it is very difficult to obtain equal sampling rates. In many cases, this problem is ignored, which means that the signals samples stored in different time moments are silently assumed to be to sampled in the same time. Looking from the point of view of signal processing, this incorrect assumption often causes large harmonic distortions artifacts of processed signals. These distortions, in turn, generate harmonics of different frequencies. As a result, if processed signals are used to calculate the trajectories of objects seen by systems associated with the vehicle, may differ from the real world trajectories. This may cause occurrence of false positives or no reaction of the vehicle in case of emergency situation.
2016-04-05
Technical Paper
2016-01-0114
Chris Schwarz, Timothy Brown, John Lee, John Gaspar, Julie Kang
Abstract Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
2016-04-05
Technical Paper
2016-01-0116
Takayuki Tanaka, Shunsuke Nakajima, Takahiro Urabe, Hideyuki Tanaka
Abstract Mitsubishi Electric has been developing a lane keeping assist system (LKAS). This system consists of our products such as an electric power steering (EPS), a camera, and an electronic control unit (ECU) for ADAS. In this system, the camera detects a lane marker, the ECU estimates reference path and vehicle position, and calculates reference steering wheel angle, and the EPS controls a steering wheel angle based on reference steering wheel angle. In this paper, we explain the calculation method of reference steering wheel angle for path tracking control. We derive a formula of reference steering wheel angle calculation that converges lateral position deviation in desired time by using lateral position deviation change rate control on forward gaze point as path tracking control algorithm. Since the formula is obtained from the vehicle model, we can easily design a controller depending on the vehicle type, by using known vehicle specifications.
2016-04-05
Technical Paper
2016-01-0117
Bi-Cheng Luan, I-Hsuan Lee, Han-Shue Tan, Kang Li, Ding Yuan, Fang-Chieh Chou
Abstract This paper presents the design and implementation of a new steering control method for lane following control (LFC) using a camera. With the road information provided by the image sensor, the LFC system calculates the steering command based on the Target and Control (T&C) driver steering model. The T&C driver model employs a look-ahead control structure to capture the drivers’ core steering mechanism. Based on the models of the steering actuator and the vehicle dynamics, optimal control gains can be determined for any given look-ahead distance (normalized by the vehicle speed). With these simple gains, the vehicle can track very well along the center of the lane. This LFC system was first simulated under the Model-in-the-Loop (MiL) test using the CarSim simulation. The simulations show that the resultant lateral offsets are smaller than those from typical driver models.
2016-04-05
Technical Paper
2016-01-0108
Jihas Khan
Abstract Advanced driver assistance features like Advanced Emergency Brake Assist, Adaptive Cruise Control, Blind Spot Monitoring, Stop and Go, Pedestrian Detection, Obstacle Detection and Collision Detection are becoming mandatory in many countries. This is because of the promising results received in reducing 75% of fatalities related to road accidents. All these features use RADAR in detecting the range, speed and even direction of multiple targets using complex signal processing algorithm. Testing such ECUs is becoming too difficult considering the fact that the RADAR is integrated in the PCB of ECU. Hence the simulation of RADAR sensor for emulation of various real world scenarios is not a preferred solution for OEMs. Furthermore, Tier ones are not interested in a testing solution where the real RADAR sensor is bypassed. This paper discusses such issues which include the validation of the most modern Electronic Scanning RADARs.
2016-04-05
Technical Paper
2016-01-0121
Ulrich Vögele, Christian Endisch
Abstract Predictive velocity control can be used to enable efficient driving regarding fuel efficiency and driving time. Commonly, velocity optimization algorithms only take static information, like road slope and curvature, into account and neglect dynamic information, like traffic lights and other traffic participants, although the information is available through sensors or could be made available by vehicle-tovehicle or vehicle-to-infrastructure communication. Thus, static optimization algorithms do not provide optimal solutions in dynamic environments, caused by driver or assistance systems intervention. Because the incorporation of dynamic information increases the complexity of the problem to find an optimal control policy, its use in real-time applications is often prohibited. An algorithm is presented which allows a fast computation of all optimal speed profiles with regard to time and fuel consumption.
2016-04-05
Technical Paper
2016-01-0122
Tatsuya Yoshikawa, Aoyagi Takahiko, Hiroshi Ishiguro
Abstract In a system with which acceleration and braking by the driver are automated, a gap against the system can be felt when the timing of acceleration or deceleration is different from that intended by the driver or the extent of acceleration or deceleration exceeds an acceptable limit. For an automated system, it is important to realize a control that provides comfort and a sense of security for the driver. This paper is related to the technology that secures the ride comfort felt by the driver (comfort and a sense of security) within an appropriate range and presents a discussion of the technological means to improve the ride comfort from a viewpoint particularly related to longitudinal direction.
2016-04-05
Technical Paper
2016-01-0144
Morgan A. Price, Vindhya Venkatraman, Madeleine Gibson, John Lee, Bilge Mutlu
Abstract Increasingly sophisticated vehicle automation can perform steering and speed control, allowing the driver to disengage from driving. However, vehicle automation may not be capable of handling all roadway situations and driver intervention may be required in such situations. The typical approach is to indicate vehicle capability through displays and warnings, but control algorithms can also signal capability. Psychophysical methods can be used to link perceptual experiences to physical stimuli. In this situation, trust is an important perceptual experience related to automation capability that is revealed by the physical stimuli produced by different control algorithms. For instance, precisely centering the vehicle in the lane may indicate a highly capable system, whereas simply keeping the vehicle within lane boundaries may signal diminished capability.
2016-04-05
Technical Paper
2016-01-0163
Thomas Rothermel, Jürgen Pitz, Hans-Christian Reuss
Abstract This paper proposes a framework for semi-autonomous longitudinal guidance for electric vehicles. To lower the risk for pedestrian collisions in urban areas, a velocity trajectory which is given by the driver is optimized with respect to safety aspects with the help of Nonlinear Model Predictive Control (NMPC). Safety aspects, such as speed limits and pedestrians on the roadway, are considered as velocity and spatial constraints within prediction horizon in NMPC formulation. A slack variable is introduced to enable overshooting of velocity constraints in situations with low risk potential to rise driver acceptance. By changing the weight of slack variable, the control authority can be shifted continuously from driver to automation. Within this work, a prototypical real-time implementation of the longitudinal guidance system is presented and the potential of the approach is demonstrated in human-in-the-loop test drives in the Stuttgart Driving Simulator.
2016-04-05
Technical Paper
2016-01-0153
Qingkun Jiang, Weiwen Deng, Bing Zhu
Abstract This paper reports an effort to improve plan of vehicle trajectory using an approach with rapidly-exploring random trees (RRT), which has been widely adopted in the prior art for complex and dynamic traffic environment. Design and implement of an integrated threat assessment is presented that evaluates threats of the trajectory. A node and trajectory evaluation index was introduced into the proposed RRT algorithm to connect an appropriate node and select the best trajectory. The contribution of this paper is on the threat assessment that takes into account not only obstacle avoidance but also stability. The simulation is conducted and the results show that the proposed method works as expected and is valid and effective.
2016-04-05
Technical Paper
2016-01-0118
Shinji Niwa, Mori Yuki, Tetsushi Noro, Shunsuke Shioya, Kazutaka Inoue
Abstract This paper presents detection technology for a driver monitoring system using JINS MEME, an eyewear-type wearable device. Serious accidents caused by human error such as dozing while driving or inattentive driving have been increasing recently in Japan. JINS MEME is expected to contribute to reducing the number of traffic deaths by constantly monitoring the driver with an ocular potential sensor. This paper also explains how a driver’s drowsiness level can be estimated from information on their blink rate, which can be calculated from the ocular potential.
2016-04-05
Journal Article
2015-01-9153
André Lundkvist, Arne Nykänen
Abstract The number of advanced driver assistance systems is constantly increasing. Many of the systems require visual attention, and a way to reduce risks associated with inattention could be to use multisensory signals. A driver's main attention is in front of the car, but inattention to surrounding areas beside and behind the car can be a risk. Therefore, there is a need for driver assistance systems capable of directing attention to the sides. In a simulator study, combined visual, auditory and vibrotactile signals for directional attention capture were designed for use in driver assistance systems, such as blind spot information, parking assistance, collision warnings, navigation, lane departure warning etc. An experiment was conducted in order to measure the effects of the use of different sensory modalities on directional attention (left/right) in driver assistance systems.
Viewing 1 to 30 of 784

Filter