Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 207
2014-09-16
Technical Paper
2014-01-2246
Yanbin Yao
Abstract Drilling plays a significant process in the aircraft manufacturing. This paper develops a robot automatic drilling system for processing the titanium alloy, aluminum alloy and laminated composites component of aircraft. The accurate robot drilling system is comprised of ABB IRB6640-235 robot, drilling end-effector, end-effctor control system and vision system. Experimental results show that the system absolute location precision is within 0.3mm, and the drilling efficiency can be up to four holes per minute. The drilling efficiency and quality of the aircraft component can be increased immensely by the developed robot automatic drilling system.
2014-09-16
Technical Paper
2014-01-2259
Greg Adams
Abstract Electroimpact has developed a second generation of mobile robots with several improvements over the first generation. The frame has been revised from a welded steel tube to a welded steel plate structure, making the dynamic response of the structure stiffer and reducing load deflections while maintaining the same weight. The deflections of the frame have been optimized to simplify position compensation. The caster mechanism is very compact, offers greater mounting flexibility, and improved maneuverability. The mechanism uses a pneumatic airbag for both lifting and suspension. The robot sled has been improved to offer greater rigidity for the same weight, and dual secondary feedback scales on the vertical axis further improve the rigidity of the overall system. Maintenance access has been improved by rerouting the cable and hose trays, and lowering the electrical cabinet. The mobile robot is sized so it can be shipped complete on a lowboy trailer for deliveries that can be completed by truck.
2014-09-16
Technical Paper
2014-01-2234
Nelson W. Sorbo, Jason J. Dionne
Abstract The use of composite materials and composite stackups (CO-Ti or CO-Al) in aerospace and automotive applications has been and will continue to grow at a very high rate due to the high strength and low weight of the materials. One key problem manufacturers have using this material is the ability to efficiently drill holes through the layers to install fasteners and other components. This is especially true in stackups of CFRP and titanium due to the desire of drilling dry for the CFRP layer and the need for cooling when drilling the high strength Ti layer. By using CO2 through tool cooling, it is possible to protect both layers. Through work supported by the National Science Foundation (NSF) and Department of Energy (DOE) it is shown that CO2 through tool cooling productivity can be significantly increased while maintaining required hole tolerances in both the composite and Ti layers. Improvements in tool life have been demonstrated when compared to either emulsion or dry drilling.
2014-09-16
Technical Paper
2014-01-2274
Riley HansonSmith, Alan Merkley
Abstract The Boeing Company is striving to improve quality and reduce defects and injuries through the implementation of lightweight “Right Sized” automated drill and fasten equipment. This has lead to the factory adopting Boeing developed and supplier built flex track drill and countersink machines for drilling fuselage circumferential joins, wing panel to spar and wing splice stringers. The natural evolution of this technology is the addition of fastener installation to enable One Up Assembly. The critical component of One Up Assembly is keeping the joint squeezed tightly together to prevent burrs and debris at the interface. Traditionally this is done by two-sided machines providing concentric clamp up around the hole while it is being drilled. It was proposed that for stiff structure, the joint could be held together by beginning adjacent to a tack fastener, and assemble the joint sequentially using the adjacent hole clamp up from the previous hole to keep the joint clamped up. This process would significantly decrease the costs and complexity that is usually associated with two sided equipment involved in One Up drilling and fastening.
2014-09-16
Technical Paper
2014-01-2270
Jason Rediger, Joseph Malcomb, Craig Sylvester
Abstract A new portable floor drilling machine, the 767AFDE, has been designed with a focus on increased reach and speed, ease-of-use, and minimal weight. A 13-foot wide drilling span allows consolidation of 767 section 45 floor drilling into a single swath. A custom CNC interface simplifies machine operations and troubleshooting. Four servo-driven, air-cooled spindles allow high rate drilling through titanium and aluminum. An aluminum space frame optimized for high stiffness/weight ratio allows high speed operation while minimizing aircraft floor deflection. Bridge track tooling interfaces between the machine and the aircraft grid. A vacuum system, offline calibration plate, and transportation dolly complete the cell.
2014-09-16
Technical Paper
2014-01-2255
Joseph R. Malcomb
Abstract Automated countersink measurement methods which require contact with the workpiece are susceptible to a loss of accuracy due to cutting debris and lube build-up. This paper demonstrates a non-contact method for countersink diameter measurement on CFRP which eliminates the need for periodic cleaning. Holes are scanned in process using a laser profilometer. Coordinates for points along the countersink edge are processed with a unique filtering algorithm providing a highly repeatable estimate for major and minor diameter.
2014-09-16
Technical Paper
2014-01-2241
Jamie Skovron, Laine Mears, Durul Ulutan, Duane Detwiler, Daniel Paolini, Boris Baeumler, Laurence Claus
Abstract A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat. The friction drilling, thread forming process, hereto referred to as “FDS” is an automated continuous process that allows multi-material joining by utilizing a screw as both the tool and the fastener.
2014-09-16
Technical Paper
2014-01-2271
Ryan Haldimann, Daniel Orf
Abstract In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
2014-09-16
Technical Paper
2014-01-2258
Sylvain Laporte, Etienne Gueydon, Alain Auffret, Cosme De Castelbajac
Abstract In today's aircraft assembly process several new features make drilling operations very challenging according to production requirements. Parts are made of thin or thick multi-material stacks with a large scope to cover and complex assembly sequences. In addition, the current ramp-up in aircraft programs involves to improve productivity while keeping process quality and reliability. In this context robotic solution meets perfectly all these requirements as it is flexible, reconfigurable, fast and agile. Among the possible end-effectors, the Barrel Multi-Function End Effector (BMFEE) appears to be the most flexible solution to allow many different process configurations. The latest developments have been focused on the drilling equipment of this BMFEE. In fact the drilling process efficiency can be constantly improved especially in terms of reliability, quality and productivity. Therefore vibration-assisted drilling system has been integrated into the BMFEE drilling module. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided.
2014-09-16
Technical Paper
2014-01-2236
Julian Lonfier, Côme De Castelbajac
Abstract As aircraft programs currently ramp up, productivity of assembly processes needs to be improved while keeping quality, reliability and manufacturing cost requirements. Efficiency of the drilling process still remains an issue particularly in the case of CFRP/metal stacks: hot and long metallic chips are difficult to remove and often damage the surface of CFRP holes. Low frequency axial vibration drilling has been proposed to solve this issue. This innovative drilling process allows breaking up the metallic chips in such a way that jamming is avoided. This paper presents a case of CFRP/Ti6Al4V drilling on a CNC machine where productivity must be increased. A comparison is made between the current regular process and the MITIS drilling process. First the analysis and comparison method is presented. The current process is analyzed and its limits are highlighted. Then the vibration process is implemented and its performances are studied. Both processes are compared according to the following criteria: chip morphology, thrust force, power consumption, tool life, cycle time, holes quality and manufacturing costs.
2014-04-01
Technical Paper
2014-01-0825
Yi-Hsin Chen, Xu Chen, Nan Xu, Lianxiang Yang
Abstract The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive). Although this technique is effective for some applications, strain gages provide the localized or averaged data and cannot capture the peak or high resolution data when this technique is applied on high strain gradient areas.
2013-09-17
Technical Paper
2013-01-2152
Karl-Erik Neumann, Robert Reno
The improvements in Parallel Kinematic Machines (PKM) coupled with new innovative technologies, allow for Advanced Automated Milling, Drilling and Fastening in the Aerospace industry. Providing economical alternatives to processes that currently utilize highly customized machine tools, sacrificing flexibility and dynamics, or complex robotic cells sacrificing system capabilities with the rigidity and accuracy limitations of serial robots. The latest in PKM technology eliminates the ball joints that were mandatory in all previous PKM machines, as well as the heavy platforms or structures supporting the actuators. This allows for the strength and rigidity common to machine tools, but with the flexibility and high dynamics associated with standard serial robots. The new use of Auto-Calibration and cross lasers allow for highly accurate positioning, adaptation to a material surface, edge, datum, hole, etc. or to reference the machine to the adjacent work zone. Specific advanced automated applications will demonstrate the applications of drilling, milling, orbital drilling and fastening.
2013-09-17
Technical Paper
2013-01-2227
Shuhei Segawa, Junich Tamura, Satoshi Suzuki, Hisao Oka, Kiichi Meguro, Yoshiji Satou
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
2013-09-17
Technical Paper
2013-01-2224
Joseph R. Malcomb
Previous Flex Track drilling systems move along two parallel tracks that conform to the contour of a work piece surface. Until recently, applications have been limited to relatively simple surfaces such as the cylindrical mid-body fuselage join of a commercial aircraft. Recent developments in the state of the art have introduced the 5-axis variant which is capable of precision drilling on complex contours. This paper presents solutions to two positioning challenges associated with this added functionality: the ability to align the spindle axis normal to an angled drilling surface while maintaining accuracy in tool-point position, the ability to maintain synced motion between dual drives on complex track profiles.
2013-09-17
Technical Paper
2013-01-2223
Peter Mueller-Hummel, Prithvi Sripathy, Abdelatif Atarsia
Ever since the advent of fiber reinforced polymer materials in the field of Aerospace, Metal-FRP stacks started to gain importance due to their superior fatigue performance, phenomenal low weight and good specific strength. However the machining, specially drilling these multi stack materials has always proved to be a challenge for the field of manufacturing and assembly. Drilling holes in only metal with a drill (metal drill), the material removal is through a process of clear shearing since the tool is much harder and sharper than the base material. The tools hence wears at a much slower and gradual rate, also the malleable properties of the machined metal compensate to the reduced cutting capability of the worn out drill. These properties of the machined metal act like a ‘FAIL SAFE’ mechanism during the machining process assuring a trouble free fail safe environment during the drilling process. However, drilling FRP composites is altogether a different story. The very properties that make the FRP composite superior make it a challenge for machining.
2013-09-17
Technical Paper
2013-01-2337
Peter Mueller-Hummel, Abdelatif Atarsia, Axel Wiemann
This article describes the physical background and the experience in the drilling of carbon fiber and aluminum-carbon fiber stacks. Low temperatures and intelligent chip removal technologies are the most important requirements for dry drilling or to avoid the MQL (minimum quantity lubrication). The drilling in one shot and in IT8 quality is mandatory. In case of machining metal, like aluminum or titanium, a lot of heat is generated by the tools and the cutting process. Machining of composites, the material and the tool should remain as cold as possible even by drilling without external or internal coolant. A new drill design is now developed, qualified and patented by MAPAL that allows the dry drilling of metals at very low temperatures also. We are now able to drill, all batches (composite / aluminum) without MMS. The high drilling feed and due to that, the shorter contact length between the tool and the material stack also gives us approximately twice the tool life. The new tool has already been qualified for drilling stacks in the wing box assembly, without MMS and a CPK value of 2.4.
2013-09-17
Technical Paper
2013-01-2338
Troy Gray, Daniel Orf, Greg Adams
The versatility of the accurate robot has been increased by coupling it with a mobile platform with vertical axis. The automation can be presented to fixed aircraft components such as wings, fuselage sections, flaps, or other aircraft assemblies requiring accurate drilling, inspection, and fastening. The platform accommodates a tool changer, ride along coupon stand, fastener feed system, and other systems critical for quality automated aircraft assembly. The accurate robot's flexibility is increased by a floor resynchronization system. The indexing system is replaced by an automated two-camera onboard vision system and miniature targets embedded in the factory floor, with accuracy comparable to cup and cone alternatives. The accurate robot can be deployed by casters, curvilinear rail, or air bearings.
2013-09-17
Technical Paper
2013-01-2078
Jeremy Jallageas, Mehdi Cherif, Jean-Yves K'nevez, Olivier Cahuc
To reduce the weight of aero structures, composite materials are combined with metallic parts. These multilayer materials are one-shot drilled during the assembly process. During drilling, interactions appear between the different layers creating new quality issues. To improve machining efficiency, the portable semi-automated drilling units commonly used for such operations need to be upgraded. For this purpose, vibration systems have been recently introduced into drilling units. This article first considers the effect of the reciprocating axial movement on the quality of the machined surface, then focuses on the effect of the oscillation parameters (frequency, magnitude) on the cutting process (cutting forces, thermal load, etc.). Experimental and numerical results are used to find the method that produces the optimal vibration setting. This method is then applied to the case of drilling composite-metallic stack. We conclude that specific vibration parameters need to be set up according to the type of material drilled (composite, metallic).
2013-09-17
Technical Paper
2013-01-2226
Abdelatif Atarsia
This technical paper deals with design and manufacture of axial and orbital cutters for drilling large diameters holes in Carbon Fiber Reinforced Plastics (CFRP) / Titanium (TA6V) thick stack by means of an Automated Drilling Unit fixed on a drilling template. Creating tools that drill such stacked holes in a single operation is particularly difficult. The common strategies for tool designs designated to cutting composites stacked with metals as titanium include uncoated carbide, tools with a diamond coating applied by chemical vapor deposition (CVD). It is also question of what kind of drilling process should we use to achieve larger holes in minimum time. Therefore, axial drilling process with pilot, drill and ream steps find a competitor drilling process named orbital drilling which can achieve both operations in one step allowing then, burrless, free delamination, small and easy removable chips all with one tool being able to achieve different hole sizes. The present study compares the quality of drilled holes in term of both materials hole diameters, exit burr and cycle time which become a decision gate for the process choice.
2013-09-17
Technical Paper
2013-01-2296
Michael Assadi, Christopher Martin, Eliot Siegel, Dennis Mathis
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment. Using high precision servo control, each layer could be customized with specific drill parameters optimized to improve hole quality and decrease drill cycle time.
2012-09-10
Technical Paper
2012-01-1851
Roger C. Richardson
Tooling structures to make wing/wing, fuselage/fuselage, and wing/fuselage mates have long been rather massive tools. Not only are these tools large and expensive, but they often obstruct the very drilling and fastening work to be done in the mate tool. Furthermore, these legacy mate tools can only do one job - a mate tool cannot be used for a different airplane, or even a different part of the same airplane. A flexible, more versatile system will lower the cost of aircraft with a low quantity production run planned, and a more open design can reduce the cost of assembly on a high production aircraft. This paper will discuss the development and recent breakthroughs that allow the mating of any size aircraft sections with very high precision using only a set of specialized jacks that provide six degrees-of-freedom coupled with a non-contact measurement system. Data extracted directly from a CAD 3-D model is fed into a computer system that is then used with a closed-loop control system to align the aircraft sections and/or wings in water, butt, station, roll, pitch, and yaw.
2012-09-10
Technical Paper
2012-01-1890
Marco Moehle
The demand of fulfilling continually increasing customer requirements forces suppliers to always improve their system solutions to be state of the art. The subject Project Management Approach explains the planning and realization of complete Integrated Assembly Lines for Aircraft structural parts and components. The paper will describe and focus on the main aspects of the state of the art technology in automated fastening, drilling and assembly processes to meet the required customer production and reporting criteria. Furthermore the paper will present existing production examples in support of the established project management process.
2012-09-10
Technical Paper
2012-01-1865
Peter Mueller-Hummel, Christian Meiners
Industrial robot applications are going to reduce cost in capital investment and enhancing the capability. A new concept of drill technology is successfully running in composite trailing edge manufacturing for drilling 5/8\mi holes in Composite/Aluminum stacks in IT8 quality. This article characterizes the special features of drilling of CFRP/Titanium and Aluminum stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach IT8 quality in one shot operation.
2012-09-10
Technical Paper
2012-01-1860
ZhaoCai DU, Yanbin YAO
A method of noncontact laser distance measurement is proposed for the digital drilling and riveting of complex surface. By means of measurement resulting from locating devices, the normal direction of measured region on curved surface is evaluated. The posture of end-effector fixed on the end of industrial robot is adjusted to feed along the evaluated normal direction. The datum plane for calibration is derived using the least square plane fitting method. The position and posture of locating devices are calibrated on the basis of the distances between locating devices and datum plane. The normal direction of measured area is derived from the distances measured by locating devices. A numerical example illustrates the correctness of the proposed method. The method can be used for positioning and attitude-adjusting for digital manufacturing and assembly.
2012-09-10
Technical Paper
2012-01-1868
J B Mann, C J Saldana, Y Guo, H Yeung, W D Compton, S Chandrasekar
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
2012-09-10
Technical Paper
2012-01-1866
Sylvain Laporte, Côme De Castelbajac
Aircraft design has mainly changed in the past years, introducing new materials such as CFRP at a large scale. Even if this great change brought many advantages: weight, sustainability, reliability… it upset the way to produce basic parts and to assembly. A special difficulty lies in drilling multiple stacks made of different materials, i.e. metal (aluminum, titanium, stainless steel) + CFPR. Indeed, as the process has to drill through those stacks during a unique operation, cutting conditions and tool technologies are a compromise. As a consequence, tool life cycle, productivity and above all, hole quality are no longer optimum. Some materials, such as titanium requires low cutting speed and high feed rate whereas CFRP requires opposite trends. Moreover, heat generated by cutting metal (especially titanium) can damage CFRP when overheated metallic chips pass through. Finally, the compromise for cutting conditions and tool technology can generate long metallic chips that may congest drill flutes and entail hole damages or tool breakage.
2011-10-18
Technical Paper
2011-01-2666
Kevin W. Myhill
A Pneumatic Adaptive drilling system has proven to be of significant benefit when looking to increase the production rate of drilling Titanium/CFRP stack materials that are increasingly present in new aircraft designs. The system also offers additional benefits in coolant control, cutter life and preventing drilling beyond a set cycle count while also minimizing air consumption. This paper reviews the history of “adaptive drilling”, the concept and theory when applied to a pneumatic positive feed drill, current applications and the potential future for the technology.
2011-10-18
Technical Paper
2011-01-2533
Lutz Deitert
During mechanical assembly, individual parts are joined by different types of fasteners which are commonly to be installed into tightly tolerated holes. Drilling of widely used modern materials like CFRP and titanium leads to challenges in terms of tool and process development. A significant challenge is one step drilling in assemblies made from mixed material stacks. It results in deviating hole diameters making the additional reaming operation essential.”But also drilling of thick single material stacks imposes difficulties in terms of hole tolerance, chip extraction, heat accumulation and lubrication issues, leading to the necessity of drilling in several steps to achieve the required hole quality and integrity. During orbital drilling the drive spindle rotates eccentrically in addition to tool rotation and feed movement, leading to a circular path of the cutting tool. Orbital drilling can offer advantages compared with conventional drilling and reaming. The eccentricity can be set steplessly even during the drilling process which allows to drill different hole diameters with one tool, tapered holes, change diameter within the hole or to perform a finishing cut during the tool return stroke.
2011-10-18
Technical Paper
2011-01-2613
Jesse Peck, Kurt Massey
Growing use of composite materials in aircraft wing construction requires a new generation of drilling machines. Electroimpact developed the LTD machine to address the specific needs posed by large scale composite wing box assembly. The machine maximizes the efficacy of blind access to create a single sided assembly process. Innovative design greatly reduces machine weight and foundation requirements. Optimized processes and automation tools increase the drilling capacity. The mobile machine maximizes plant flexibility by carrying out work on both wing surfaces across multiple assembly jigs. Through thoughtful engineering and thoroughly developed processes the LTD presents a highly capable and cost efficient solution for composite wing box drilling automation.
2011-10-18
Technical Paper
2011-01-2727
Niklas Björlingson, Anders Nelson, Joakim Edberg
PFD 1500 is a positive feed drill developed to offer process enhancement possibilities and cost savings both when drilling blank aluminum and stacks with CFRP and titanium. The design concept is completely modular, which offers unique versatility in a drill motor which quickly can be configured to meet any application in its niche. Designed to meet today's torque requirements, PFD 1500 mitigates many of the quality problems normally experienced with the use of positive feed drills. In use on assembly lines, PFD 1500 has proven to be capable of drilling close tolerance holes of large diameters in significantly shorter time than earlier proven possible.
Viewing 1 to 30 of 207

Filter