Display:

Results

Viewing 1 to 30 of 11612
2017-09-04
Technical Paper
2017-24-0057
Roberto Finesso, Omar Marello, Ezio Spessa, Yixin Yang, Gilles Hardy
A model-based control of BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed for a Euro VI 3.0L diesel engine for heavy-duty applications. The control is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, brake torque, exhaust gas temperatures, NOx and soot engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. The chemical energy release has been simulated using the accumulated fuel mass approach. The in-cylinder pressure was estimated on the basis of a single-zone heat release model, using the net energy release as input. The latter quantity was obtained starting from the simulated chemical energy release, and evaluating the heat transfer of the charge with the walls.
2017-09-04
Technical Paper
2017-24-0066
Maria Cristina Cameretti, Roberta De Robbio, Raffaele Tuccillo
The present study deals with the simulation of a Diesel engine fuelled by natural gas/diesel in dual fuel mode to optimize the engine behaviour in terms of performance and emissions. In dual fuel mode, the natural gas is introduced into the engine’s intake system. Near the end of the compression stroke, diesel fuel is injected and ignites, causing the natural gas to burn. The engine itself is virtually unaltered, but for the addition of a gas injection system. The CO2 emissions are considerably reduced because of the lower carbon content of the fuel. Furthermore, potential advantages of dual-fuel engines include diesel-like efficiency and brake mean effective pressure with much lower emissions of oxides of nitrogen and particulate matter. In previous papers [1, 2, 3], the authors have presented some CFD results obtained by the KIVA 3V and Fluent codes by varying the diesel/NG ratio and the diesel pilot injection timing at different loads.
2017-09-04
Technical Paper
2017-24-0053
Silvio A. Pinamonti, Domenico Brancale, Gerhard Meister, Pablo Mendoza
The use of state of the art simulation tools to allow for effective front-loading of the calibration process is essential to off-set these additional efforts; therefore, the process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight of representation domain of a mean value engine model. This paper focuses on the methodologies for correlating dynamic simulations with vehicle measured dynamic data (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle. This correlation is performed using simulated tests run within the AVL mean value model MoBEO (model based engine optimization).
2017-09-04
Technical Paper
2017-24-0048
Jose V. Pastor, Jose M. Garcia-Oliver, Antonio Garcia, Mattia Pinotti
In the past few years various studies have shown how the application of a highly premixed dual fuel combustion for CI engines leads a strong reduction for both pollutant emissions and fuel consumption. In particular a drastic soot and NOx reduction were achieved. In spite of the most common strategy for dual fueling has been represented by using two different injection systems, various authors are considering the advantages of using a single injection system to directly inject blends in the chamber. In this scenario, a characterization of the behavior of such dual-fuel blend spray became necessary, both in terms of inert and reactive ambient conditions. In this work, a light extinction imaging (LEI) has been performed in order to obtain two-dimensional soot distribution information within a spray flame of different diesel/gasoline commercial fuel blends. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector.
2017-09-04
Technical Paper
2017-24-0029
Tommaso Lucchini, Gianluca D'Errico, Tarcisio Cerri, Angelo Onorati, Gilles Hardy
Heavy-duty engines have to be carefully designed and optimized in a wide portion of their operating map to satisfy the emissions and fuel consumptions requirements for the different applications they are used for. Within this context, computational fluid dynamics is a useful tool to support combustion system design, making possible to test effects of injection strategies and combustion chamber design. Within this context, the predictive capability of the combustion model play a big role since it has to ensure accurate predictions in terms of cylinder pressure trace and the main pollutant emissions in a reduced amount of time. For this reason, both detailed chemistry and turbulence chemistry interaction need to be included. In this work, the authors intend to apply combustion models based on tabulated kinetics for the prediction of Diesel combustion in Heavy Duty Engines. Three different approaches were considered: well-mixed model, presumed PDF and flamelet progress variable.
2017-09-04
Technical Paper
2017-24-0022
Alessio Dulbecco, Gregory Font
Diesel engine pollutant emissions legislation is becoming more and more stringent. New driving cycles, including increasingly more severe transient engine operating conditions and low temperature ambient conditions, extend considerably the engine operating domain to be optimized to attain the expected engine performance. Technological innovations, such as high pressure injection systems, EGR loops and intake pressure boosting systems allow significant improvement of engine performance. Nevertheless, because of the high number of calibration parameters, combustion optimization becomes expensive in terms of resources. System simulation is a promising tool to perform virtual experiments and consequently to reduce costs, but for this models must be able to account for relevant in-cylinder physics to be sensitive to the impact of technology on combustion and pollutant formation.
2017-09-04
Technical Paper
2017-24-0025
Francesco Sapio, Andrea Piano, Federico Millo, Francesco Concetto Pesce
Development trends in modern Common Rail Fuel Injection System (FIS) show dramatically increasing capabilities in terms of optimization of the fuel injection pattern through a constantly increasing number of injection events per engine cycle along with a modulation and shaping of the injection rate. In order to fully exploit the potential of the abovementioned fuel injection pattern optimization, numerical simulation can play a fundamental role by allowing the creation of a kind of a virtual injection rate generator for the assessment of the corresponding engine outputs in terms of combustion characteristics such as burn rate, emission formation and combustion noise (CN). This paper is focused on the analysis of the effects of digitalization of pilot events in the injection pattern on Brake Specific Fuel Consumption (BSFC), CN and emissions for a EURO 6 passenger car 4-cylinder diesel engine.
2017-09-04
Technical Paper
2017-24-0024
Andrea Piano, Federico Millo, Davide Di Nunno, Alessandro Gallone
The need for achieving a fast warm up of the exhaust system has raised in the recent years a growing interest in the adoption of Variable Valve Actuation (VVA) technology for automotive diesel engines. As a matter of fact, different measures can be adopted through VVA to accelerate the warm-up of the exhaust system, such as using hot internal Exhaust Gas Recirculation (iEGR) to heat the intake charge, especially at part load, or adopting early Exhaust Valve Opening (eEVO) timing during the expansion stroke, so to increase the exhaust gas temperature during blowdown. In this paper a simulation study is presented evaluating the impact of VVA on the exhaust temperature of a modern light duty 4-cylinder diesel engine, 1.6 liters, equipped with a Variable Geometry Turbine (VGT).
2017-09-04
Technical Paper
2017-24-0012
Andrea Piano, Giulio Boccardo, Federico Millo, Andrea Cavicchi, Lucio Postrioti, Francesco Concetto Pesce
Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero dwell time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.
2017-09-04
Technical Paper
2017-24-0009
Federico Millo, Giulio Boccardo, Andrea Piano, Luigi Arnone, Stefano Manelli, Giuseppe Tutore, Andrea Marinoni
To comply with TIER IV emission standard, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines and Politecnico di Torino has been carried out to exploit the potential of new technologies to meet the TIER IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the TIER IV emission standard sets a 0.4g/kWh NOx limit for the NRSC steady state test cycle, that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load. As a consequence, the low air to fuel ratio and the risk of high soot emissions must be handled by means of high fuel injection pressure and proper injection patterns.
2017-09-04
Technical Paper
2017-24-0006
Alejandro Aljure, Xavier Tauzia, Alain Maiboom
Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency. However, they require more accessories to function properly, such as a turbocharging system and post-treatment system. The most important pollutants emitted from diesel engines are NOx and particles (in conventional engines), being difficult to reduce and control because reducing one increases the other. Low temperature combustion (LTC) diesel engines are able to reduce both pollutants, but increase emissions of CO and HC. One way to achieve LTC conditions is by using multiple injection (pilot/main, split injection, etc.). However, understanding multiple injection is no easy task, so far done by trial and error and experience. Therefore, a numerical 1D model is to be adapted to simulate multiple injection situations in a diesel engine. In this paper, existing models are compared to determine the necessary conditions to adapt the model to handle multiple injection.
2017-09-04
Technical Paper
2017-24-0021
Sabino Caputo, Federico Millo, Giancarlo Cifali, Francesco Concetto Pesce
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction (ideally up to 46 %) and for Brake Specific Fuel Consumption (BSFC) reduction (up to 9 %), while firedeck, liner and valves only contribute respectively to 23 %, 19 % and 15 % in heat transfer decrease.
2017-09-04
Technical Paper
2017-24-0019
Alexander Mason, Aaron W. Costall, John R. McDonald
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model.
2017-09-04
Technical Paper
2017-24-0164
Erik Svensson, Lianhao Yin, Per Tunestal, Marcus Thern, Martin Tuner
The engine concept Partially Premixed Combustion (PPC) has proved higher efficiency compared to conventional diesel combustion (CDC) and spark ignition gasoline engines (SI). The relatively simple implementation of the concept is an advantage, however, high pumping losses has made its use challenging in multi-cylinder heavy duty (HD) engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modeling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder Scania D13 engine. The engine was modified to incorporate long route EGR and a single stage turbocharger, however, with externally compressed air being optionally supplied to the compressor.
2017-09-04
Technical Paper
2017-24-0167
Enrico Mattarelli, Carlo Rinaldini, Tommaso Savioli, Giuseppe Cantore, Alok Warey, Michael Potter, Venkatesh Gopalakrishnan, Sandro Balestrino
A CFD study on a 2-stroke (2-S) opposed piston high speed direct injection (HSDI) Diesel engine is reported in this work. The engine main features (bore, stroke, port timings, et cetera) were defined in a previous stage of the project, with the support of CFD-1D engine simulations and empirical hypotheses. The current analysis is focused on the assembly made up of scavenge ports, manifold and cylinder. The first step of the study consisted in the construction of a parametric mesh on a simplified geometry. Two geometric parameters and 3 different operating conditions were considered. A CFD-3D simulation by using a customized version of the KIVA-4 code was performed on a set of 243 different cases, sweeping all the most interesting combinations of geometric parameters and operating conditions. The post-processing of this huge amount of data allowed us to define the most effective geometric configuration, named baseline.
2017-09-04
Technical Paper
2017-24-0161
Noboru Uchida, Hideaki Osada
It can’t be avoided reducing heat loss from in-cylinder wall for further improvement in brake thermal efficiency (BTE). Especially for diesel engines, spray flame interference on the cavity and piston top wall during combustion period could be a major cause of the heat loss. To reduce heat transfer between hot gas and cavity wall, thin Zirconia layer (0.5mm) on the cavity surface of the forged steel piston was firstly formed by thermal spray coating aiming higher surface temperature swing precisely synchronized with flame temperature near the wall resulting in the reduction of temperature difference. However, no apparent difference in the heat loss was observed. On the contrary, BTE was deteriorated by the increase in other energy losses. To find out the reason why heat loss was not so improved, direct observation of flame impingement to the cavity wall was carried out with the top view visualization technique, for which one of the exhaust valves was modified to a sapphire window.
2017-09-04
Technical Paper
2017-24-0143
Sathaporn Chuepeng, Kampanart Theinnoi, Manida Tongroon
The combustion in reactivity controlled compression ignition (RCCI) mode of diesel engine have been gained more attention as one among other strategies to increase operating range for premixed combustion and to improve fuel economy. A low reactivity fuel such as high octane number fuel, alcohol blends for example, is early fumigated (or injected) and premixed with air prior to induction to the combustion chamber. Later on adjacent to the end of the compression stroke, the diesel fuel as a high reactivity fuel is directly injected into the homogeneous pre-mixture and ignited. This can also promote lower nitrogen oxides and particulate matter emissions. The main aim of this work is to characterize the combustion phenomena and particulate matter in nano-size from the RCCI engine using neat hydrous ethanol as the low reactivity fuel.
2017-09-04
Technical Paper
2017-24-0139
Francesco Barba, Alberto Vassallo, Vincenzo Greco
The aim of the present study is to improve the effectiveness of the engine and aftertreatment calibration process through the critical evaluation of several methodologies available to estimate the soot mass flow produced by diesel engines and filtered by Diesel Particulate Filters (DPF). In particular, the focus of the present study has been the development of a reliable simulation method for the accurate prediction of the engine-out soot mass flow starting from Filter Smoke Number (FSN) measurements executed in steady state conditions, in order to predict the DPF loading considering different engine working conditions corresponding to NEDC and WLTP cycles. In order to achieve this goal, the study was split into two parts: - Correlation between ‘wet soot’ (measured by soot filter weighing) and the ‘dry soot’ (measured by the Micro Soot Sensor MSS).
2017-09-04
Technical Paper
2017-24-0137
Zhen Zhang, Luigi del Re, Richard Fuerhapter
During transients, engines tend to produce substantially higher peak emissions which are the longer the more important as the steady state emissions are better controller. To this end, they must be measurable in an adequate time scale. While for most emissions there are commercially available sensors of sufficient speed and performance, the same is not true for soot, especially for production engines. Against this background, in the last years we have investigated together with a supplier of measurement systems the possible use of a 50Hz sensor based on LII and of the same size of a standard oxygen probe, and the results were very positive, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like AVL Opacimenter or Microsoot) but confirmed e.g. by incylinder 2 color spectroscopy. The higher speed is also due to the position, as the sensor can be mounted above or below the turbine in a turbocharged CI engine.
2017-09-04
Technical Paper
2017-24-0129
Vladimir Merzlikin, Svetlana Parshina, Victoria Garnova, Andrey Bystrov, Alexander Makarov, Sergey Khudyakov
The core of this paper is reduction of exhaust emission and increase of diesel efficiency due to application of microstructure ceramic semitransparent heat-insulating coatings (SHIC). The authors conducted experimental study of thermal state of internal-combustion engine piston head with a heat-insulating layer formed by plasma coating method. The paper presents physical and mathematical simulation of improved optical (transmittance, reflectance, absorption, scattering) and thermo radiative (emittance) characteristics determining optimal temperature profiles inside SHIC. The paper considers the effect of subsurface volumetric heating up and analyzes temperature maximum position inside subsurface of this coating. Decrease of SHIC surface temperature of the coated piston in comparison with temperature of traditional opaque heat-insulating coatings causes NOx emission reduction.
2017-09-04
Technical Paper
2017-24-0124
Michael Maurer, Peter Holler, Stefan Zarl, Thomas Fortner, Helmut Eichlseder
To fulfil the new European real driving emissions (RDE) legislation, the LNT operation strategy – especially for DeNOx events – has to be optimized to minimize NOx as well as CO and HC emissions. On one hand the DeNOx purges should be long enough to fully regenerate the lean NOx trap, on the other hand the purges should be as short as possible to reduce the fuel consumption penalty from rich mode. Fundamental experiments have been conducted on a synthetic-gas-test-bench, purposely designed to test LNT catalysts. This methodology allowed to remove NOx from the gasfeed after the lean storage phase. The actually reduced amount of NOx could be easily calculated from the NOx storage before a regeneration minus the NOx that was desorbed during the DeNOx event and afterwards thermally desorbed NOx. To show the effect of aging method on the regeneration characteristics, tests have been performed with a in a car endurance run aged LNT and a synthetic hydrothermally aged LNT.
2017-09-04
Technical Paper
2017-24-0113
Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco, Maria Cristina Cameretti
The management of multiple injections in compression ignition (CI) engines is one of the most common way to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) isa new developed technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
2017-09-04
Technical Paper
2017-24-0116
Ekarong Sukjit, Pansa Liplap, Somkiat Maithomklang, Weerachai Arjharn
In this study, two oxygenated fuels consisting of butanol and diethyl ether (DEE), both possess same number of carbon, hydrogen and oxygen atom but difference functional group, were blended with the waste plastic pyrolysis oil to use in a 4-cylinder direct injection diesel engine without any engine modification. In addition, the effect of castor oil addition to such fuel blends was also investigated. Four tested fuels with same oxygen content were prepared for engine test, comprising DEE16 (84% waste plastic oil blended with 16% DEE), BU16 (84% waste plastic oil blended with 16% butanol), DEE11.5BIO5 (83.5% waste plastic oil blended with 11.5% DEE and 5% castor oil) and BU11.5BIO5 (83.5% waste plastic oil blended with 11.5% butanol and 5% castor oil). The results found that the DEE addition to waste plastic oil increased more emissions than the butanol addition at low engine operating condition.
2017-09-04
Journal Article
2017-24-0118
Marius Zubel, Stefan Pischinger, Benedikt Heuser
Within the cluster of excellence “Tailor-Made Fuels from Biomass” at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for Diesel engine combustion. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines. For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load, the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
2017-09-04
Technical Paper
2017-24-0123
Christopher Eck, Futoshi Nakano
Small commercial vehicles (SCV) with Diesel engines require efficient exhaust aftertreatment systems to reduce the emissions while keeping the fuel consumption and total operating cost as low as possible. To meet current emission legislations in all cases, a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) and some NOx treatment device (e.g. a lean NOx trap or selective catalytic reduction, SCR) are required. Creating a cost-effective SCV also requires to keep the cost for the aftertreatment system as low as possible because the contribution to total vehicle cost is high. By using more sophisticated and more robust operating strategies and control algorithms, the hardware cost can be reduced. To keep the calibration effort at a low level, it is necessary to apply only algorithms which have a time-efficient calibration procedure. This paper will focus on the active regeneration of the DPF.
2017-09-04
Technical Paper
2017-24-0091
Hyun Woo Won, Alexandre Bouet, Joseph KERMANI, Florence Duffour
Reduce the CO2 footprint, limit the pollutant emissions and rebalance the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidate. Strait run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, allows to reduce both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to its higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology have been performed on a light-duty single cylinder compression-ignition engine.
2017-09-04
Technical Paper
2017-24-0075
Felix Leach, Riyaz Ismail, Martin Davy, Adam Weall, Brian Cooper
Modern Diesel cars, fitted with state-of- the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant complexity, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder—both during the injection and combustion events—and also to the induced air motion in and around the bowl prior to injection. In this paper the effects of two different piston bowl shapes are investigated – one with a stepped bowl lip, and the other without.
2017-09-04
Technical Paper
2017-24-0078
R. vallinayagam, S vedharaj, Yanzhao An, Alaaeldin Dawood PhD, Mohammad Izadi Najafabadi, Bart Somers, Junseok Chang, Mani Sarathy, Bengt Johansson
Light naphtha is a low boiling point fraction of crude oil, and is ideal for partially premixed combustion (PPC). Sufficient premixing can be realized due to its low boiling point and octane rating (RON = 64.5). This study investigates the combustion characteristics of light naphtha and a multicomponent surrogate under various start of injection (SOI) conditions. In this study, LN and a five component surrogate for LN comprising 43% n-pentane, 12% n-heptane, 10% 2-methylhexane, 25% iso-pentane and 10% cyclo-pentane is tested in a single cylinder optical diesel engine. The transition in combustion homogeneity from CI combustion to homogenized charge compression ignition (HCCI) combustion is compared between LN and its surrogate. The engine experimental results show a good agreement in terms of combustion phasing, ignition delay, start of combustion, in-cylinder pressure and rate of heat release between LN and its surrogate.
2017-09-04
Technical Paper
2017-24-0076
Mark A. Hoffman, Ryan O'Donnell, Zoran Filipi
The proven impact of combustion chamber deposits on advanced compression ignition combustion strategies has steered recent works toward the development of thermal barrier coatings, which can mimic their benefits on combustion efficiency and operational range expansion. However, recent work based on statistical thermodynamics has indicated that inter-molecular radiation during the combustion event may subject the combustion chamber walls to non-negligible radiation heat transfer, regardless of the relatively low soot formation within the well-mixed and lean charge. In the present paper, the impact of radiation heat transfer on combustion chamber deposits and thermal barrier coatings is studied. The morphological construction of the combustion chamber deposit layer is shown to be partially transparent to radiation heat transfer, drawing corollaries with ceramic based thermal barrier coatings.
2017-09-04
Technical Paper
2017-24-0080
Ross Ryskamp, Gregory Thompson, Daniel Carder, John Nuszkowski
Reactivity controlled compression ignition (RCCI) is a form of dual-fuel combustion that exploits the reactivity difference between two fuels to control combustion phasing. This combustion approach limits the formation of oxides of nitrogen (NOX) and soot while retaining high thermal efficiency. The research presented herein was performed to determine the influences that high reactivity (diesel) fuel properties have on RCCI combustion characteristics, exhaust emissions, fuel efficiency, and the operable load range. A 4-cylinder, 1.9 liter, light-duty CI engine was converted to run on diesel fuel (high reactivity fuel) and compressed natural gas (CNG) (low reactivity fuel). The engine was operated at 2100 revolutions per minute (RPM), and at two different loads, 3.6 bar brake mean effective pressure (BMEP) and 6 bar BMEP.
Viewing 1 to 30 of 11612

Filter