Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 691
2017-09-19
Technical Paper
2017-01-2124
Violet Leavers
Within the aviation industry the analysis of wear debris particles recovered from magnetic plugs and lubricating fluids is an essential condition monitoring tool. However, in large organisations, high staff turnover in remote work environments often leaves dangerous gaps in on-site support and background knowledge. The current work seeks to bridge those gaps by developing interactive software dedicated to wear debris particle classification, root cause diagnosis and serviceability prognostics. During the research several hundred wear debris particle images were collected, analysed and classified. Each image was analyzed by a number of experts and at each stage of the analysis the experts were questioned about the knowledge and experience used to make their diagnoses and prognoses. The end result is the compilation of an extensive knowledge base representing the combined expertise of a number of highly trained engineers, each with decades of hands-on experience.
2017-09-19
Technical Paper
2017-01-2126
Ashutosh Kumar Jha, Gaurav Sahay, Adishesha Sivaramasastry
In aerospace industry, the concept of Integrated Vehicle Health Management (IVHM) has gained momentum and is becoming need of the hour for entire value chain in the industry. Identifying and sensing right parameters at right time is the key for success of IVHM. It has opened up challenge to the sensor providers to make sensors smarter, self-contained to compute and communicate efficiently. The expected benefits of lesser time to maintenance, reduced operating cost and very busy airports are motivating aircraft manufacturers to come up with tools, techniques and technologies to enable advanced diagnostic and prognostic systems in aircrafts. These features not only enable detection of failures but also support prediction of tentative failures upfront based on historical data, trend analysis and estimating the future trends. At present, various groups are working on different systems and platforms for health monitoring of an aircraft e.g.
2017-09-19
Technical Paper
2017-01-2125
Mohammad Barkat, Vivek Karan, Pradeep N
The exponential increase in the number of aircrafts and air travellers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
2017-09-04
Technical Paper
2017-24-0044
Jeremy Rochussen, Jeff Son, Jeff Yeo, Mahdiar Khosravi, Patrick Kirchen, Gordon McTaggart-Cowan
Abstract Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
2017-06-05
Technical Paper
2017-01-1868
Rod Morris-Kirby, Evan Harry
Abstract The authors previously presented at SAE 2015, the use of acoustic diagnostic network algorithms (Acoustic DNA) for the measurement and analysis of noise paths in motor vehicles. To further the understanding of the huge amount of data created in this method, especially by the end user or customer, a secure web based application platform has been engineered. The current paper presents operating aspects of the web based approach, including cyber security, multi device accessibility and intuitive user interface together with an innovative optimization toolbox from which both noise sources and vehicle body systems can be modified to be target compliant.
2017-03-28
Technical Paper
2017-01-1685
Gopal K. Chamarthi, Andrew Sarkar, Paul Baltusis, Mark Laleman
Abstract An average luxury car contains more than 50 sensors connected, to over 28 microprocessors, through multiple communication networks. What makes these complex machines diagnosable at a dealership, is the ability of sophisticated diagnostics algorithms. Besides use of diagnostics in service, diagnosing a failure is also key for functional safety and vehicle availability. Safety related diagnostic functions such as loss of Brake fluid and leaky fuel system detection are critical. Once a failure is detected, Vehicle availability functions extend vehicle operation, so that one could reach the dealership without being stranded. The number of failure modes in a car could far exceed tens of thousands, thereby identifying key failure modes that require diagnostics can be a challenge.
2017-03-28
Technical Paper
2017-01-1686
Muhammad Askar
Abstract A vehicle's electrical system is one of the top sources of problems requiring service. For years now electronic means of service documentation have been replacing static documents as a way of speeding vehicle troubleshooting. The next step on this path of evolution is to turn this e-documentation into smart maintenance systems, capable of offering technicians true data insights and highly-efficient diagnostic procedures. This paper briefly summarizes the technologies underpinning the evolution in electrical system diagnosis and repair; which include schematic layout automation using prototypes and rule-based styling, instant language translation, 2D/3D view links with schematics, interactive diagnostic procedures, and dynamically-generated signal-tracing diagrams. These technologies empower after sales service teams with state-of-the-art capabilities; which not only reduce costs but also improve the quality of the brand in the eyes of its customers.
2017-03-28
Technical Paper
2017-01-1626
Tomas Poloni, Jianbo Lu
Abstract This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
2017-03-28
Technical Paper
2017-01-1192
Amardeep Sidhu, Afshin Izadian, Sohel Anwar
In this paper, multiple-model adaptive estimation techniques have been successfully applied to fault detection and identification in lithium-ion batteries. The diagnostic performance of a battery depends greatly on the modeling technique used in representing the system and the associated faults under investigation. Here, both linear and non-linear battery modeling techniques are evaluated and the effects of battery model and noise estimation on the over-charge and over-discharge fault diagnosis performance are studied. Based on the experimental data obtained under the same fault scenarios for a single cell, the non-linear model based detection method is found to perform much better in accurately detecting the faults in real time when compared to those using linear model based method.
2017-03-28
Technical Paper
2017-01-1690
Dirk Hall, Tim Felke
Abstract An IVHM Reference Model contains relations between Symptoms, Failure Modes, Troubleshooting Tests and Corrective Actions. Since it also encodes the specific vehicle variants for which these items are applicable, it can be used to create vehicle variant specific fault isolation plans for a pattern of symptoms on a specific vehicle. This paper will discuss the methodology through which a diagnostic reasoner can use a fault model, vehicle reported symptoms and vehicle configuration data to produce a vehicle fault specific troubleshooting plan. This paper will also discuss how a wide variety of Diagnostic Work Plans can be automatically created for a platform and its variants and how these plans can be adapted by Service Engineering authors to further improve their content.
2017-03-28
Journal Article
2017-01-0233
Weihong Guo, Shenghan Guo, Hui Wang, Xiao Yu, Annette Januszczak, Saumuy Suriano
Abstract The wide applications of automatic sensing devices and data acquisition systems in automotive manufacturing have resulted in a data-rich environment, which demands new data mining methodologies for effective data fusion and information integration to support decision making. This paper presents a new methodology for developing a diagnostic system using manufacturing system data for high-value assets in automotive manufacturing. The proposed method extends the basic attributes control charts with the following key elements: optimal feature subset selection considering multiple features and correlation structure, balancing the type I and type II errors in decision making, on-line process monitoring using adaptive modeling with control charts, and diagnostic performance assessment using shift and trend detection. The performance of the developed diagnostic system can be continuously improved as the knowledge of machine faults is automatically accumulated during production.
2017-03-28
Journal Article
2017-01-0386
Michael Wohlthan, Gerhard Pirker, Andreas Wimmer
Abstract To achieve high power output and good efficiency and to comply with increasingly stricter emission standards, modern combustion engines require a more complex engine design, which results in a higher number of control parameters. As the measurement effort and the number of sensors for engine development at the test bed continue to increase, it is becoming nearly impossible for the test bed engineer to manually check measurement data quality. As a result, automated methods for analysis and plausibility checks of measurement data are necessary in order to find faults as soon as they occur and to obtain test results of the highest possible quality. This paper presents a methodology for automated fault diagnosis on engine test beds. The methodology allows reliable detection of measurement faults as well as the identification of the root cause of faults.
2017-03-28
Journal Article
2017-01-0015
Wolfgang Granig, Dirk Hammerschmidt, Hubert Zangl
Abstract Functional safe products conforming to the ISO 26262 standard are getting more important for automotive applications wherein electronic takes more and more response for safety relevant operations. Consequently safety mechanisms are needed and implemented in order to reach defined functional safety targets. To prove their effectiveness diagnostic coverage provides a measurable quantity. A straight forward safety mechanism for sensor systems can be established by redundant signal paths measuring the same physical quantity and subsequently performing an independent output difference-check that decides if the data can be transmitted or an error message shall be sent. This paper focuses on the diagnostic coverage figure calculation of such data correlation-checks for linear sensors which are also shown in ISO 26262 part5:2011 ANNEX D2.10.2.
2017-03-28
Journal Article
2017-01-1623
Tim Felke, Steven Holland, Sachin Raviram
Abstract Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
2017-03-28
Journal Article
2017-01-1684
Hassene Jammoussi, Imad Makki, Michael Kluzner, Robert Jentz
Air Fuel Ratio (AFR) imbalance between engine cylinders remains one of the most challenging problems in powertrain systems diagnostics. California Air Resources Board(CARB) has started imposing specific requirements on automotive companies since 2011 that required the integration of on-board diagnostics (OBD) monitor for the detection and reporting of this type of powertrain malfunction. In this paper, some methodologies of AFR cylinder imbalance monitoring are investigated and a novel approach is proposed that shows reliable detection capability compared to the other methods. The proposed method requires certain conditions during deceleration fuel shutoff events to intrusively reactivate the cylinders and determine the imbalance condition. The method was evaluated on a V6 3.7L engine in an experimental Lincoln MKZ vehicle. Vehicle results are shown and discussed.
2017-03-28
Journal Article
2017-01-1688
Hassene Jammoussi, Imad Makki
The usage of the universal exhaust gas oxygen (UEGO) sensor to control the air-fuel ratio (AFR) in gasoline engines allowed to significantly improve the efficiency of the combustion process and reduce tailpipe emissions. The diagnostics of this sensor is very important to ensure proper operation and indicate the need for service when the sensor fails to accurately determine the AFR upstream of the catalyst. California air resources board (CARB) has imposed several legislations around the operation of the UEGO sensor and particularly when specific faults would cause tailpipe emissions to exceed certain limits. In this paper, the possible sensor faults are reviewed, and a non-intrusive diagnostics monitor is proposed to detect, identify and estimate the magnitude of the fault present. This paper extends the approach in [4] where technical details are emphasized and algorithm improvements are discussed.
2017-03-28
Journal Article
2017-01-1689
Peter Subke, Muzafar Moshref, Andreas Vach, Markus Steffelbauer
Abstract (Summary) Remote diagnostic systems support diagnostic communication by having the capability of sending diagnostic request services to a vehicle and receiving diagnostic response services from a vehicle. These diagnostic services are specified in diagnostic protocols, such as SAE J1979, SAE J1939 or ISO 14229 (UDS). For the purpose of diagnostic communication, the tester needs access to the electronic control units as communication partners. Physically, the diagnostic tester gets access to the entire vehicle´s E/E system, which consists of connectors, wiring, the in-vehicle network (e.g. CAN), the electronic control units, sensors, and actuators. Any connection of external test equipment and the E/E system of a vehicle poses a security vulnerability. The combination can be used for malicious intrusion and manipulation.
2017-03-28
Journal Article
2017-01-0614
Hao Chen, Volker Sick
Abstract Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
2017-03-28
Journal Article
2017-01-0619
Ravi Teja Vedula, Thomas Stuecken, Harold Schock, Cody Squibb, Ken Hardman
Abstract Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
2016-10-17
Technical Paper
2016-01-2159
Zheming Li, Yann Gallo, Ted Lind, Oivind Andersson, Marcus Alden, Mattias Richter
Abstract Soot emissions from diesel internal combustion engines are strictly regulated nowadays. Laser extinction measurement (LEM) and natural luminosity (NL) of sooty flames are commonly applied to study soot. LEM measures soot along the laser beam path and it can probe soot regardless of temperature. NL integrates the whole field of view and relies on soot temperature. In this work, a comparison of simultaneously recorded LEM and NL data has been performed in a heavy-duty optical engine. A 685 nm laser beam is used for LEM. The laser was modulated at 63 kHz, which facilitated subtraction of the background NL signal from the raw LEM data. By Beer-Lambert’s law, KL factor can be calculated and used as a metric to describe soot measurements. A compensation of transmitted laser intensity fluctuation and soot deposits on optical windows has been performed in this work.
2016-09-20
Technical Paper
2016-01-2046
Neno Novakovic
Abstract A Landing Gear Control and Actuation System (LGCAS) is one of the most complex aircraft systems. Due to the large landing gear masses and high performance requirements, aircraft hydraulic power with multiple hydraulic actuators and valves is used to provide system dynamic. LGCAS also requires a electrical source of energy for the electro-mechanical components, sensors and electronic control unit. For many years, correct fault isolation in a complex kinematic system, such as an aircraft landing gear actuation system, has been a great challenge with limited success. The fault isolation design challenge rests on the fact that landing gear control and actuation system has many so called “passive” components, whose basic function cannot be continuously monitored without additional sensors, transducers, and designated health monitoring equipment.
2016-09-20
Journal Article
2016-01-2022
Ajay Rao, Vivek Karan, Pradeep Kumar
Abstract Turbulence is by far the number one concern of anxious passengers and a cause for airline injuries. Apart from causing discomfort to passengers, it also results in unplanned downtime of aircrafts. Currently the Air Traffic Control (ATC) and the meteorological weather charts aid the pilot in devising flight paths that avoid turbulent regions. Even with such tailored flight paths, pilots report constant encounters with turbulence. The probability of turbulence avoidance can be increased by the use of predictive models on historical and transactional data. This paper proposes the use of predictive analytics on meteorological data over the geographical area where the aircraft is intended to fly. The weather predictions are then relayed to the cloud server which can be accessed by the aircraft planned to fly in the same region. Predictive algorithms that use Time series forecasting models are discussed and their comparative performance is documented.
2016-06-15
Technical Paper
2016-01-1836
Sylvestre Lecuru, Pascal Bouvet, Jean-Louis Jouvray, Shanjin Wang
Abstract The recent use of electric motors for vehicle propulsion has stimulated the development of numerical methodologies to predict their noise and vibration behavior. These simulations generally use models based on an ideal electric motor. But sometimes acceleration and noise measurements on electric motors show unexpected harmonics that can generate acoustic issues. These harmonics are mainly due to the deviation of the manufactured parts from the nominal dimensions of the ideal machine. The rotor eccentricities are one of these deviations with an impact on acoustics of electric motors. Thus, the measurement of the rotor eccentricity becomes relevant to understand the phenomenon, quantify the deviation and then to use this data as an input in the numerical models. An innovative measurement method of rotor eccentricities using fiber optic displacement sensors is proposed.
2016-04-05
Journal Article
2016-01-0639
Brian C. Kaul, Benjamin Lawler, Akram Zahdeh
Abstract Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
2016-04-05
Journal Article
2016-01-0076
Mostafa Anwar Taie, Eman Magdy Moawad, Mohammed Diab, Mohamed ElHelw
Abstract New challenges and complexities are continuously increasing in advanced driver assistance systems (ADAS) development (e.g. active safety, driver assistant and autonomous vehicle systems). Therefore, the health management of ADAS’ components needs special improvements. Since software contribution in ADAS’ development is increasing significantly, remote diagnosis and maintenance for ADAS become more important. Furthermore, it is highly recommended to predict the remaining useful life (RUL) for the prognosis of ADAS’ safety critical components; e.g. (Ultrasonic, Cameras, Radar, LIDAR). This paper presents a remote diagnosis, maintenance and prognosis (RDMP) framework for ADAS, which can be used during development phase and mainly after production. An overview of RDMP framework’s elements is explained to demonstrate how/when this framework is connected to database servers and remote analysis servers.
2016-04-05
Technical Paper
2016-01-0072
Jihas Khan
Abstract Unified Diagnostic Service and On Board Diagnostics require a client side device with necessary software to implement certain specific algorithms. This paper proposes a highly optimized and generic model based architecture to implement client side algorithms used in Unified Diagnostic Service systems and with On Board Diagnostics which can be reused for any hardware target. The proposed method can implement particular algorithms which include flow control, timing control, database parsing, logging of messages, diagnostic database parsing, security unlock, intuitive HMI layer, DTC display with textual information, frame control, multi network - multi ECU support, software flashing, physical-functional message handling, and interfacing for multiple hardware host devices. Re-usability of this model based product ensures that it can be ported to the diagnostic tool used by a work shop engineer or by a diagnostics validation engineer working at OEM or Tier 1suppliers.
2016-04-05
Technical Paper
2016-01-0073
Peter Subke, Muzafar Moshref
Abstract Passenger cars are equipped with an OBD connector according to SAE J1962 / ISO 15031-3. Passenger cars that support ISO UDS on DoIP use the same connector with Ethernet pins according to ISO/DIS 13400-4 (Ethernet diagnostic connector). If external test equipment is connected to the Ethernet diagnostic connector via a 100BASE-TX cable with the RJ45 connector at the tester, a VCI is not necessary anymore. With a device that fits the Ethernet diagnostic connector physically and acts as a converter between the Ethernet signals and WLAN, external test equipment that supports wireless communication, can be connected to the vehicle. Examples for such wireless external test equipment include Android/iOS- based smart phones and tablets with purpose-made applications (APPs). The software components of external test equipment are standardized in ISO 22900 (MVCI). The MVCI D-Server processes data in ODX (ISO 22901) and sequences in OTX (ISO 13209).
2016-04-05
Technical Paper
2016-01-0865
R. Lockett, Mahesh Jeshani, Kassandra Makri, Richard Price
Abstract High-speed planar laser Mie scattering and Laser Induced Fluorescence (PLIF) were employed for the determination of Sauter Mean Diameter (SMD) distribution in non-evaporating diesel sprays. The effect of rail pressure, distillation profile, and consequent fuel viscosity on the drop size distribution developing during primary and secondary atomization was investigated. Samples of conventional crude-oil derived middle-distillate diesel and light distillate kerosene were delivered into an optically accessible mini-sac injector, using a customized high-pressure common rail diesel fuel injection system. Two optical channels were employed to capture images of elastic Mie and inelastic LIF scattering simultaneously on a high-speed video camera at 10 kHz. Results are presented for sprays obtained at maximum needle lift during the injection. These reveal that the emergent sprays exhibit axial asymmetry and vorticity.
2016-04-05
Technical Paper
2016-01-0376
Yunkai Gao, Zhaoxuan Feng, Jianguang Fang, Shihui Wang
Abstract The performance of the rear axle plays an important role in the performance of vehicle, and its fatigue durability is an integral part in the vehicle development. Taking a SUV model as the research subject, a new methodology of multi-channel spindle coupled road simulator and fatigue simulation analysis for rear axle assembly was introduced in the paper, aiming to address the fatigue design and its verification for the rear axle in the development phase. Firstly, road loads in the proving ground was collected by arranging proper sensors. Secondly, physical iteration was performed on the multichannel spindle coupled road simulator by taking six component forces at the wheel hub as the target signals. Then, after the time waveform replication of the loads the durability test was conducted. Finally, the validated simulation model was successfully implemented to improve the fatigue life of the axle.
2016-03-14
Journal Article
2016-01-9151
Somnath Sengupta, Alok Deb, Siddhartha Mukhopadhyay
Abstract Model based approaches for engine fault diagnosis mostly address the faults external to cylinder since they predominantly use simplified averaged models which do not capture within cycle dynamics. Hence, by using an instantaneous engine model which distinctly characterizes the cylinder’s modes, the events occurring within the cycle can be captured. The events happening across various modes and the engine subsystems can be due to normal operation or faults whose symptoms can be seen as features. In this work, which involves detection and classification of faults occurring in cylinders, is carried out in simulation environment, where, a Kalman filter for state estimation incorporating a nominal instantaneous mode based engine model is considered. Using this estimator as base, faults occurring repetitively (every cycle) are addressed whose features are seen across relevant modes of a cycle.
Viewing 1 to 30 of 691

Filter