Criteria

Text:
Display:

Results

Viewing 1 to 30 of 255
2017-03-28
Technical Paper
2017-01-0650
Xinyu Li, Xinyu Ge, Ying Wang
Abstract The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
2017-03-28
Technical Paper
2017-01-1012
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Salim Abbasbhai Channiwala
Abstract In developing countries like India, large numbers of portable gensets are used as a power source due to the scarcity of grid power supply. The portable gensets, ranging from 0.5 kW to 5 kW are very popular in the residential areas, for example, small restaurants, and shopping complexes, etc. These gensets are using various fuels like gasoline, diesel, LPG, and kerosene in small internal combustion engines. Such engines are the significant source of air pollution, as these are running in the vicinity of populated areas and higher human exposure to these pollutants.Theses gensets are regulated by exhaust and noise emissions norms, set by statutory bodies like the ministry of environment and forest and central pollution control board of India.
2017-03-28
Technical Paper
2017-01-1732
Payodh Dwivedi
Abstract The conventional hybrid engine faces one major problem i.e. high cost of production. Although hybrid engines, in many sense proved to be highly efficient and environmental friendly, but high cost of production makes them less feasible and limits their applications. This problem is overcome by a new design in which instead of having Internal Combustion(IC) engine and electric motor separately, these two are incorporated under same housing. This involves a different working mechanism of electric motor which is as described below- This mechanism is applied to a normal engine which has two or more than two cylinders in any configuration or orientation. Taking example of In-line four cylinder engines as it is most widely used. In this the two cylinders work on conventional internal combustion mechanism, but the other two cylinders are electric cylinder and works on electricity.
2017-01-10
Technical Paper
2017-26-0179
Murugesan Venkatesan, VE Annamalai
Abstract The Indian Economy is becoming significant in the late years. There will be more middle class individuals in the coming years having higher purchasing power, bringing about sharp increment in the ownership of vehicles. The quantity of End-of-Life Vehicles (ELVs) in 2015 is evaluated at 8.7 million and by 2025, this figure is assessed to ascend to 21.8 million. Car breaking yards' ELV recycling practices result in inadequate resource recovery and various forms of pollution. 75-80% of the ELV constitutes of metal and recycled due to its economic benefits. The rest of the 25-30% comprises of plastics, rubber, glass and operating fluids which are mostly disposed off in land or water. Existing international literature has analyzed ELV recycling and remanufacturing practices in India as separate topics.
2017-01-10
Technical Paper
2017-26-0001
Kuldeep Singh, Anoop Chawla, Sudipto Mukherjee, Pradeep Agrawal
Abstract The importance of on-site, in-depth accident research studies has been recognized internationally especially in developed countries. In order to address problems related to road safety, it is important to understand the epidemiology and causation of crashes. For this an in-depth investigation of the crash site, vehicles involved and injury details is required. Detailed crash information helps in analysing the events leading to crash and developing safety measures and/or intervention to reduce crashes. In order to pilot such an activity in India, an in-depth accident data collection activity had been carried out on national highway connecting Delhi to Jaipur (NH-8) for a duration of over a year by a joint team of IIT-Delhi and NATRiP. A total of 1220 road traffic accidents (RTA) notifications were received by the team, of which 186 cases were attended and detailed data was collected in a pre-decided format.
2017-01-10
Technical Paper
2017-26-0137
Marco Schöggl, Ernst-Georg Lorinser
Abstract With the official publication of the “RDE package 1” on 31st March 2016 the long awaited start of RDE testing is now fixed. This event marks a milestone in the emission legislation for passenger cars and is the first of a series of four RDE packages to fade-in real world testing of passenger cars in Europe. During the same time India announced in the Gazette of India on 19th February, 2016 - G.S.R. 187(E). - the draft of introduction of Bharat VI by April 1st 2020 [5] which also should include the Real Driving Emissions (RDE) on-road certification as per procedure laid down in AIS137 and as amended from time to time. As European RDE legislation will be the baseline for Indian RDE legislation rules this paper will highlight the differences and challenges expected between the requirements in Europe compared to India during the first tests done by AVL Technical Center Private Limited located in Gurgaon.
2017-01-10
Technical Paper
2017-26-0145
Benjamin Rodriguez Sharpe, Oscar Delgado, Mehul Garg
Abstract This analysis is a comprehensive assessment of the fuel-saving technologies and technology packages for three representative diesel HDV types in India: a 40-tonne Gross Vehicle Weight (GVW) tractor-trailer, 25-tonne rigid truck, and a 16-tonne transit bus. These representative vehicle types are modeled after top-selling models in the Indian market based on sales data from fiscal year 2013-14. To model these vehicle types are accurately as possible, the study team acquired detailed engine maps that match the engine models in the respective vehicles and sought input on other vehicle systems from some of the leading Indian HDV manufacturers and suppliers. Using Autonomie as the vehicle simulation platform, the authors investigate the fuel consumption impacts of both individual technologies and combinations of technologies in the following areas: engine, transmission, driveline, aerodynamics, tires, material substitution (i.e., curb weight reduction), and hybridization.
2017-01-10
Technical Paper
2017-26-0144
Dominik Lamotte, Peter Neumann, Klaus Schrewe
Abstract Emissions of diesel engine are considered to be harmful to health especially particulate emissions. Therefore, the introduction of diesel particulate filters (DPF) were successively forced by government due to reducing the emission limits to a level where inner engine measures are not sufficient anymore. To limit additional fuel consumption by increasing backpressure over the DPF, the collected soot has to be regenerated continuously or discrete by active regeneration. Active regeneration is usually realized by injecting additional fuel either due to the engines injection system into the combustion chamber (late post injection) or via an additional fuel injection device in the exhaust line. This enables increasing exhaust temperature and / or an exothermic reaction in the diesel oxidation catalyst (DOC) of the aftertreatment system.
2017-01-10
Technical Paper
2017-26-0268
Ashit Kumar, Amarjeet Singh, Dinesh S Dhankhar, Felix Regin
Abstract Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
2016-04-05
Technical Paper
2016-01-0171
Xunzhe Zhang, Richard Stobart, Ran Bao
Abstract China is the world’s largest automotive producer and has the world’s biggest automobile market. However, in the past decades, the development of China’s automotive industry has depended primarily on the foreign direct investment; domestic automakers have struggled in the lower ranks of car producers. In recent years, China’s automotive industry, supported by government policies, has been improving their Research and Development (R&D) capacity, to compete with their international peers. Against this background, China’s automotive industry requires a large number of R&D professionals who have not only a higher degree but also the applied and practical knowledge and skills of research. For the purpose of meeting the industry’s needs, a new Professional Automotive Engineering Masters Programme was launched in 2009, which aims to deliver the Masters to be the R&D professionals in the future.
2016-04-05
Technical Paper
2016-01-0341
Jan-Friedrich Brand, Patrick Garcia, Laxman Nalage, Pradip Ithape
Abstract Several factors influence a company working culture including its industry, its geographical region, as well as the cultural and the educational background of its employees. Despite these, Japanese companies have successfully transferred a company’s working culture from Japan to other countries [2], so that only minor regional differences in productivity remain. Such transfer is possible with a strong process oriented mind set and working style. This paper examines the change in a working culture associated with the prototyping of exhaust systems in India. That change required a shift from a reactive “firefighting” mode of working to a structured, projectable and reliable working environment. The goal was to achieve increased in-time delivery, higher quality, greater flexibility, more innovation and reduced cost. The same process approach may be transferred from India to other parts of the world, while allowing for country-specific influences on a company’s working culture.
2016-04-05
Technical Paper
2016-01-0409
Fatih Unal, Cem Sorusbay
Abstract In an effort to support design and testing activities at product development lifecycle of the engine, proper duty cycle is required. However, to collect data and develop accurate duty cycles, there are not any vehicles equipped with prototype engines at customers. Therefore, in this paper, discrete duty cycle development methodology is studied to generate trailer truck engine usage profile which represents driving conditions in Turkey for engines in development phase. Cycles are generated using several vehicles equipped with prototype engines and professional drivers that can mimic customer usage. Methodology is based on defining real-world customer driving profile, discretizing real-world drives into separate events, collecting vehicle data from each discrete drive, determining the weight of events by conducting customer surveys and creating a representative reference usage profile with data analysis.
2016-04-05
Technical Paper
2016-01-1285
Xiang Cheng, Han Hao, Zongwei Liu, Fuquan Zhao
Abstract Compared with conventional vehicles, electric vehicles (EVs) offer the benefits of replacing petroleum consumption and reducing air pollutions. However, there have been controversies over greenhouse gas (GHG) emissions of EVs from the life-cycle perspective in China’s coal-dominated power generation context. Besides, it is in doubt whether the cost-effectiveness of EVs in China exceeds other fuel-efficient vehicles considering the high prices. In this study, we compared the life-cycle GHG emissions of existing vehicle models in the market. Afterwards, a cost model is established to compare the total costs of vehicles. Finally, the cost-effectiveness of different vehicle types are compared. It is concluded that the GHG emission intensity of EVs is lower than reference and hybrid vehicles currently and is expected to decrease with the improvement of the power grid.
2016-04-05
Technical Paper
2016-01-0880
Carlos Alberto Romero, Ricardo Acosta, Juan Lopez
Abstract It is the aim of the present paper to communicate some preliminary results of the research in progress related to the introduction of LPG as a supplementing fuel for the Colombian power grid supply. Most of the power units operating in Colombian oil wells are running on Diesel fuel and natural gas. Other fuels like LPG, heavy and dual fuel have received attention in recent years, due partially to the necessity to relieve the national overall petroleum dependency problem, and also because of the availability of a sizable amount of LPG derived from natural gas purification. In an effort to assess the use of LPG as a fuel alternative to Diesel and natural gas in oil wells, a field study has been carried out.
2016-04-05
Journal Article
2016-01-0687
Weiyong Tang, Bob Chen, Kevin Hallstrom, Ansgar Wille
Nowadays the Chinese legislative development and the implementation of advanced technologies to curb HDD emissions have been a subject of worldwide attention. Currently China is warping its efforts to deploy and enforce the launch of nationwide Stage IV and is also preparing for the setup and implementation of future regulation standards. Focus discussion here is on the aftertreatment pathways to meet China current and future emissions standards, based on market uniqueness. This paper seeks to provide retrospectives of the adoption of V-SCR on China stage IV HDD vehicles, through presenting findings from two separate postmortem analyses of field returned catalyst parts and also through comparative study with local catalyst products. The paper also discusses the challenges and possible solutions meeting the WHTC requirement for Stage IV and V city vehicles.
2016-02-01
Technical Paper
2016-28-0244
Kumaraswamy Udugu, Viswanatha Reddy Saddala, Sridhar Lingan
Abstract Traffic injuries are an important public health issue. To prevent these injuries, safety systems in a vehicle are recognized as valuable tools. These safety systems are active before and during a crash event. Passive safety is one such safety tool which comprises of occupant restraint systems to prevent fatal injuries during an event of a crash. To improve the real life safety further, active safety systems plays an important role in mitigating the real world accidents. Moreover, effective integration of active and passive safety systems has a potential to further reduce car occupant fatalities. However, in the recent developments in India towards road safety, vehicle safety standards are oriented more towards passive safety. In the present work, road accidents data from India between 2005 and 2014 are studied, to estimate the major mode of accidents and factors influencing the fatal injuries.
2015-09-29
Technical Paper
2015-01-2774
Hoon Lee, Hoimyung Choi, Minje Park, Kyoungdoug Min, Nankyu Lee, Jinil Park, Jong-Hwa Lee
Abstract To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
2015-09-22
Technical Paper
2015-36-0348
Rafael V. Fornari, Decio Yamada, Alexandre Suzuki
Abstract The purpose of this paper is to present the origins and the technology of the different types of non-manual transmissions systems currently available and the wide potential to incorporate such technologies to the vehicles made in Brazil. The Brazilian market is experiencing a huge increase in automated and automatic transmissions vehicles share, and the OEMs are adopting different strategies to offer competitive products with affordable prices to enter in this segment. Many different alternatives are available, and there is no obvious winner. This paper will describe the concepts, the architecture and the operations of such systems and point out the pros and cons of each one.
2015-09-22
Technical Paper
2015-36-0319
Rogerio da Silva Couto
Abstract Carbon canisters are used in gasoline passenger vehicle and light duty truck applications. The component is part of the vehicle emission control system. Activated carbon (also known as charcoal) traps hydrocarbon vapors from the fuel tank and vapors created during the fuel tank refueling and venting events. Canister design, charcoal type and performance have been driven by evaporative emission regulations around the world, and evaporative emission requirements have enhanced through the years. The trend of evaporative emission requirements in Brazil indicates the use of improved carbon canisters in the near future. Carbon canisters are needed to store hydrocarbons that would otherwise pollute the environment. Wood based activated carbon is manufactured from sawdust, which is a renewable resource. The result is a healthier earth on which we live. Figure 1 illustrates the activation process of carbon. Figure 1 Activation process of carbon.
2015-09-22
Technical Paper
2015-36-0199
Toshizaemom Noce, Felipe Paoli, Amanda Martins, Sergio de Morais Hanriot, Cristiana Brasil Maia, Ricardo Sodré
Abstract The limits of tailpipe CO2 emissions are getting lower worldwide and the automobile manufacturers are looking for both on-cycle and off-cycle technologies to reduce these emissions. Some new innovative technologies are being studied to help reduce emissions. The use of the so called eco-innovations such as a battery charging solar roof to claim off-cycle credits of CO2, is already regulated in Europe by the document “Technical Guidelines for the preparation of applications for the approval of innovative technologies pursuant to Regulation (EC) No 443/2009 of the European Parliament and of the Council”. According to this document, the average solar radiation in Europe is 120W/m2. In Brazil, in which the latitudes are lower than in Europe, the weighted average solar radiation, according to the licensing trend has not been calculated yet.
2015-09-01
Technical Paper
2015-01-2017
Rinaldo Caprotti, Romaeo Dallanegra, Jiang Dahai
Retrofitting current and legacy diesel vehicles with Diesel Particulate Filters (DPFs) and associated aftertreatment technology has long been an option to enable vehicles with older engines to meet specific regional emissions legislation. A major positive is the ability for enforced vehicle retrofitting to have an immediate impact on the local air quality in urban environments without vehicle owners having to purchase new vehicles. Retrofit in China in comparison to Europe, for example, is in its relative infancy as China's emission legislation rapidly moves towards adopting European like limits whilst available diesel fuel continues to have variable sulphur concentrations. This paper details the results from a two phase retrofit-study conducted to investigate the ability for Fuel Borne Catalyst (FBC) technology to regenerate DPFs in retrofitted Light Duty (LD) vehicles in China.
2015-04-14
Technical Paper
2015-01-0142
Gopal Athani, Srinivasa Raju Gavarraju, Shashi Kulkarni, Ramakrishna Koduru, Kapil Dongare, Prasad Rao Yerraguntla
Abstract Engine Stop/Start System (ESS) is a prominent subsystem in the Micro Hybrid Systems, and helps to reduce greenhouse gas emissions and fuel consumption. Fundamentally, ESS detects the idle running of the engine, and shuts it down autonomously, and allows the driver to restart the engine, with a routine action like pressing or releasing the clutch or brake pedal. When an engineer designs a system like ESS, typical approach to trigger the system functions is by establishing a sequence of events, detecting it, and enabling the triggers. Influence of the functions on other vehicle systems or vice versa is also considered, and system design is revised to achieve the functional safety. This results in a set of hard rules to be followed for the system functions to work.
2015-04-14
Journal Article
2015-01-0469
Ning Wang, Yafei Liu
Abstract The Chinese government initiated the “Ten Cities, Thousand Vehicles” program for electric vehicles from the year of 2009 to 2012. The demonstration results indicate that an integral city readiness system is required in the promotion of electric vehicles, including the government policies, charging infrastructure, after-sales service, business models and consumer awareness. Through the analysis of related literature and summary reports from 25 demonstration cities, a partial least squares (PLS) path model with 5 major factors and 13 observation indicators was developed to assess the city readiness of electric vehicle adoption. The 5 factors consist of government policies and investment, charging infrastructure construction and operation, business models and maintenance service system, consumer awareness education, operation scope and environmental benefits. Based on the PLS results, 25 cities are classified into 6 groups with the clustering analysis model.
2015-04-14
Technical Paper
2015-01-0249
Kannan Subramanian, Ganesh Kumar Ramakrishnan, Sindhuja Renganathan, Karthik Vssnt, Kumar Prasad Telikepalli, Aravapalli Sriniwas
Abstract Development of Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs) is gaining traction across all geographies to help meet increasing fuel economy regulations and as a pathway to offset concerns due to climate change. But HEVs and EVs have so far been a nascent market for India. These technologies have primarily shifted towards Lithium-ion batteries (LIB) for energy storage due to its high energy and power densities. In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating boundary of the vehicles, as well as provide the requirements at a competitive cost. In other words, the LIBs have to sustain the normal life cycle requirements and withstand wide range of storage temperatures that the conventional gasoline/diesel vehicles have been good at and still ensure good life.
2015-04-14
Technical Paper
2015-01-1464
Qiang Chen, Miao Lin, Bing Dai, Jiguang Chen
Abstract In China, nearly 25% of traffic fatalities are pedestrians. To avoid those fatalities in the future, rapid development of countermeasures within both passive and active safety is under way, one of which is autonomous braking to avoid pedestrian crashes. The objective of this work was to describe typical accident scenarios for pedestrian accidents in China. In-depth accident analysis was conducted to support development of test procedures for assessing Autonomous Emergency Braking (AEB) systems. Beyond that, this study also aims for estimating the mitigation of potential crash severity by AEB systems. The China In-depth Accident Study (CIDAS) database was searched from 2011 to 2014 for pedestrian accidents. A total of 358 pedestrian accidents were collected from the on-site in-depth investigation in the first phase of CIDAS project (2011-2014).
2015-04-14
Journal Article
2015-01-0468
Mingxian Wang, Wei Chen, Yan Fu, Yong Yang
Abstract As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
2015-03-10
Technical Paper
2015-01-0055
Neeraj Kumar, Prashant Kumar, M. Sithananthan, Reji Mathai, Ajay Kumar Sehgal, R. Suresh, B. P. Das
Abstract Volatile Organic Compounds (VOCs) present in ambient air are potentially toxic among the air pollutants. They are present in the urban atmosphere due to both exhaust emissions from vehicles and evaporative emissions at fuel filling stations. The present study aims to provide an indication of ambient levels of benzene, a carcinogenic VOC in the immediate vicinity of petrol filling stations in Delhi & National Capital Region (NCR). The monitoring of benzene is conducted across the vicinity of petrol stations to ascertain the effect of outside pollutant concentration on forecourt area. Continuous monitoring of benzene was achieved by an air quality monitoring facility stationed across the selected locations at four selected fuel filling stations. It was observed that the average concentrations of benzene measured during the study ranged between 2.28 ppb - 9.43 ppb.
2015-03-10
Technical Paper
2015-01-0031
Jung-Ok (Jo) Kuys, Gavin Melles, Scott Thompson-Whiteside, Ajay Kapoor
Abstract The Malaysia National Automotive Policy (NAP 2014) focuses on the systemic changes needed for the country to develop a competitive and sustainable automotive manufacturing sector. Alternative electric vehicles (EV) -including the public transport sector, in particular buses - forms part of this strategy. This also features in the Transport Scenarios for the Kuala Lumpur Structure Plan for 2020. Kuala Lumpur's population is expected to reach 10 million by 2020, the current public transport system is beset by problems, e.g. route congestion, a growing trend of private car ownership among a rising middle-class, and a range of environmental and infrastructure issues which must be challenged. A human-centred design approach to public transport focuses on developing (future) scenarios to accommodate the 2020 economic, environmental and social considerations building on Design for Sustainability (DfS), user needs, behaviour change and inclusivity principles.
2015-01-14
Technical Paper
2015-26-0034
Tushar Kanikdale, Shankar Venugopal
Abstract We present a framework for creating and analyzing future scenarios that are relevant to automotive engines in India. We propose an approach to enable us to continuously capture the diverse inputs from an ever changing external environment and be agile in strategic response to the changes. We have illustrated the application of future scenarios building process to IC engines. We have designed a critical technologies / parameters dashboard for the automotive industry to continuously monitor the evolution of the scenarios. The critical parameters are assigned current and future probabilities to visualize plausible alternative futures
2015-01-14
Journal Article
2015-26-0058
Sukrut Thipse, Ajit Vinayak Kulkarni, Suresh J Vispute, S D Rairikar, Shailesh B Sonawane, Vinayak Shivalink Sagare, Subhanker Dev, Kishor Kumar Kavathekar, Parag Mengaji, Ujjwala Shailesh Karle, Neelkanth V Marathe, Kausik Sinha
Abstract Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
Viewing 1 to 30 of 255

Filter