Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2493
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply to the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on analytical and empirical expressions from literature. This includes various types of engine noise – fan, jet, and propeller noise – as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin. This part is again based on analytical and empirical formulations.
2017-06-05
Technical Paper
2017-01-1791
David Neihguk, Shreyas Fulkar
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
2017-06-05
Technical Paper
2017-01-1751
Nicolas Schaefer, Bart Bergen, Tomas Keppens, Wim Desmet
The continuous pursuit for lighter, more affordable and more silent cars, has pushed OEMs into optimizing the design of car components. The different panels surrounding the car interior cavity such as firewall, door or floor panels are of key importance to the NV performance. The design of the sound packages for high-frequency airborne input is well established. However, the design for the mid-frequency range is more difficult, because of the complex inputs involved, the lack of representative performance metrics and its high computational cost. In order to make early decisions for package design, performance maps based on the different design parameters are desired for mid-frequencies. This paper presents a framework to retrieve the response surface, from a numerical design space of finite-element frequency sweeps. This response surface describes the performance of a sound package against the different design variables.
2017-06-05
Technical Paper
2017-01-1758
Seung Min Lee, Dong Chul Park, Seonghyeon Kim, Sang Kwon Lee
Recently the interior sound is actively generated by the active sound design (ASD) device in a passenger car. Therefore, the objective evaluation method for the sound quality of actively designed sounds is required. In previous research, the sound quality of interior sound has been presented with powerful and pleasant for the existing passenger car. This paper presents a novel approach method for the objective evaluation of powerfulness and pleasantness of actively designed interior sound. The powerfulness has been evaluated based on the degreed of modulation and a quantity of low frequency booming of the sound in the paper. On the other hand, the pleasantness is evaluated based on the slope ratio of harmonic orders per octave in frequency domain. These evaluation methods are successfully applied to the objective evaluation of luxury passenger car.
2017-06-05
Technical Paper
2017-01-1844
Jiawei Liu, Yangfan Liu, J. Stuart Bolton
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in the past decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for its performance in sound pressure prediction.
2017-06-05
Technical Paper
2017-01-1840
Thierry Bourdon, Rainer Weber, Johann Massinger
Nowadays, the automotive industry is increasingly facing of reducing vibration & noise in the vehicle. More particularly on the engine area, the development of fuel components based on high pressure pumps, rails, any pipes and injectors are a subject of a particular NVH attention. The use of modern digital techniques such as 3D finite element vibroacoustic, leads to use virtual prototyping as complementary to traditional real hardware prototypes development. Among interest, number of iterative loops to reach a best design brings an important value to new product development with an optimized cost. Basically the core part of virtual prototyping is about 3D finite element models for each component. It is quite challenging to establish these models, as they must mimic the entire physical phenomenon of real structure borne hardwares sound in the whole audible frequency range.
2017-06-05
Technical Paper
2017-01-1861
Ismail Benhayoun, Frédéric Bonin, Antoine Milliet de Faverges, Julien Masson
NVH (Noise Vibration & Harshness) is one of the main focus areas during the development of products such as passenger cars or trucks. Physical test methods have traditionally been used to assess NVH, but the necessity for reducing cost and creating a robust solution early on in the design process has driven the increased usage of simulation tools. Development of well-defined methods and tools for NVH analysis allows today's OEMs to have a Virtual Engineering based Development Cycle from Concept to Test. However, not all NVH problems have been focused on, including the issue of Squeak and Rattle (S&R). In a vehicle, S&R is a recurring problem for interior plastic parts such as an Instrument Panel or Door Trim. Since 2012, Altair has been developing S&R Director (SnRD), which is a solution that identifies and combats S&R issues by embedding E-Line methodology [1] [2]. This methodology is based on Industry Best Practices, as described in the paper SAE 2012-01-1553.
2017-06-05
Journal Article
2017-01-1756
Seonghyeon Kim, Kyoung-Jin Chang, Dong Chul Park, Seung Min Lee, Sang Kwon Lee
This paper presents a systematic approach to interior engine sound design for enhancing sound character of car interior sound effectively. Nowadays an active noise control technology is widely used in vehicle industry. Particularly, an active sound design (ASD) technique using vehicle’s audio system for controlling interior sound due to powertrain has become a general method to improve sound quality or character. The ASD system using speakers has the advantage of creating various sounds relatively easy. In this study, the novel systematic approach is proposed to guide the efficient design of powerful and pleasant acceleration sound by order spectrum analysis. At first, primary attributes of powerful and pleasant sound were analyzed and sound concept was derived. Secondly, the optimal linearity and the level envelope of firing order were derived by subjective evaluation.
2017-03-28
Technical Paper
2017-01-0231
Shih-Po Lin, Yijung Chen, Danielle Zeng, Xuming Su
In the conventional approach, the material properties of laminate composites for crash simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to calibrate the material models in the intermediate stage. In this paper, a laminate cylinder tube under high-impact velocity in the direction of tube axis is chosen as an example for the crash analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction.
2017-03-28
Technical Paper
2017-01-1112
Jian yao, Li Chen, Ding Zhao Jr, Chunhao Lee, Ying Huang, Yin Chengliang
Abstract The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
2017-03-28
Technical Paper
2017-01-1263
Dennis Kibalama, Andrew Huster, Arjun Khanna, Aditya Modak, Margaret Yatsko, Gregory Jankord, Shawn Midlam-Mohler
Abstract The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
2017-03-28
Technical Paper
2017-01-1284
Khushal Ahmad, Monis Alam
Abstract With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
2017-03-28
Technical Paper
2017-01-1148
Toumadher Barhoumi, Hyunjun Kim, Dongsuk Kum
Abstract Finding optimal split hybrid configurations through exhaustive search is almost intractable, mainly due to the huge design space, e.g. 252 compound split configurations using two planetary gear sets (PG). Thus, a systematic exhaustive design methodology is required to find optimal configurations. While most of the prior studies proposed methodologies that assess the performance within the physical design space, i.e. based on the powertrain configurations, this paper proposes a compound lever-based comprehensive design methodology. The (virtual) compound lever is an attractive design tool defined by two design variables, i.e. α and β, that omits the redundancy existing within the physical design space, thus, reduces the computational load. The proposed method explores the entire (virtual) compound lever design space to find optimal compound split configurations with outstanding fuel economy and acceleration performance.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1336
Waqas Shaikh, Liangmo Wang, Sen Yang, Hanguan Xia, Yi Dong
Abstract In this advanced technological era, lightweight design for fuel efficiency and environmental friendliness is essential for both conventional and hybrid electric vehicles (HEVs), without sacrificing the durability which is an important design factor for vehicle safety. To achieve these objectives, reduction of the structural mass of the full vehicle plays a vital role. The scope of this paper is to describe design methodologies for the vehicle differential case applied to achieve light weight and to ensure product life. The focus of this paper includes two tasks. The topology optimization and fatigue analysis of a vehicle differential case are conducted. Finite element analysis (FEA) is used to simulate the stress with constraint. After that, optimization parameters (design variables, responses, objective functions and constraints) of a vehicle differential case are selected for lightweight design by solid isotropic microstructures with penalization (SIMP) method.
2017-03-28
Technical Paper
2017-01-1347
Jianhua Zhou, Min Xu, Bao Wang
Abstract Conventionally, the engines are calibrated under the assumption that engines will be made exactly to the prints, and all the engines from the same batch will be identical. However, engine-to-engine variations do exist which will affect the engine performances, and part-to-part variations, i.e., the tolerance, is an important factor leading to engine-to-engine variations. There are researches conducted on the influence of dimensional tolerances on engine performance, however, the impact of straightness, which is an important geometric tolerance, on lubrication is an unsolved issue. This study presents a systematic method to model the straightness and to analyze its effects on the friction loss. The bearing model is built based on elastohydrodynamic (EHD) theory. Meanwhile a novel modeling method to represent any form of straightness in three-dimensional space is proposed.
2017-03-28
Technical Paper
2017-01-1348
Barry (Baizhong) Lin, Ramachandra bhat, Shawn (Xianggang) Zhang, Taylor Sykes-Green, Nitin Sharma, Kevin Thomson
Abstract For a light duty truck, the frame is a structural system and it must go through a series of proving ground events to meet fatigue performance requirement. Nowadays, in order to meet stringent CAFE standards, auto manufacturers are seeking to keep the vehicle weight as light as possible. The weight reduction on the frame is a challenging task as it still needs to maintain the strength, safety, and durability fatigue performance. CAE fatigue simulation is widely used in frame design before the physical proving ground tests are performed. A typical frame durability fatigue analysis includes both the base metal fatigue analysis and seam weld fatigue analysis. Usually the gauges of the frame components are dictated by the seam weld fatigue performance so opportunities for weight reduction may exist in areas away from the welds. One method to reduce frame weight is to cut lightening holes in the areas that have little impact on the frame fatigue performance.
2017-03-28
Technical Paper
2017-01-1341
Alok Kumar, Sandeep Sharma
Abstract Public conveyance such as a bus is a major contributor to socio - economic development of any geography. The international market for passenger bus needed to be made viable in terms of passenger comfort, minimum operational costs of the fleet by reduced fuel consumption through light weighting and yet robust enough to meet stringent safety requirements. Optimized design of bus body superstructure plays vital role in overall performance and safety, which necessitates to evaluate bus structure accurately during initial phase of design. This paper presents a robust methodology in numerical simulation for enhancing the structural characteristics of a bus body with simultaneous reduction in the weight by multi-material optimization while supplemented with sensitivity and robustness analysis. This approach ensures significant reduction in vehicle curb weight with promising design stiffness.
2017-03-28
Technical Paper
2017-01-1314
Santhoji Katare, Dilip Reddy, Amar Ourchane, Giri Nammalwar
Abstract Virtual Verification (VV) of engineering designs is a critical enabler in the Product Development (PD) process to reduce the time-to-market in a cost efficient manner. Reliance on cost effective VV methods have significantly increased with increased pressure to meet customer expectations for new products at reduced PD budgets. Computer Aided Engineering (CAE) is one such VV method that affords an engineer to make decisions about the ability of the designs to meet the design criteria even before a prototype is built. The first step of the CAE process is meshing which is a time consuming, manual and laborious process. Also mesh development time and accuracy significantly varies with the (1) component (trim body, engine, suspension, brakes, etc.), (2) features predominantly occurring in the component (welds, ribs, fillets, etc.), meshing guidelines based on which the model needs to be developed (durability, safety, NVH, etc.), and the expertise of the meshing engineer involved.
2017-03-28
Technical Paper
2017-01-1594
Guirong Zhuo, Kun Xiong, Subin Zhang
Abstract Micro electric vehicle has gained increasingly popularity among the public due to its compact size and reasonable price in China in recent years. Since design factors that influence the power of electric vehicle drive-motor like maximum speed, acceleration time and so on are not fixed but varies in certain scopes. Therefore, to optimize the process of matching drive-motor’s power, qualitatively and quantitatively studies should be done to determine the optimal parameter combination and improve the design efficiency. In this paper, three basic operating conditions including driving at top speed, ascending and acceleration are considered in the matching process. And the Sobol’ method of global sensitivity analysis (GSA) is applied to evaluate the importance of design factors to the drive-motor’s power in each working mode.
2017-03-28
Technical Paper
2017-01-1602
Garett Scott Patria, James A. Mynderse
Abstract There is evidence to suggest that before military equipment ever experiences sustainment delays the equipment carries state patterns within its logistics and supply chain data history that could be leveraged for risk mitigation. Analysis of these patterns can also identify new research & development (R&D) and technology transition candidates that relate the seemingly disparate activities of R&D project management and Diminishing Manufacturing Sources and Material Shortages (DMSMS) management. Relating eligible R&D activities to the DMSMS risk identification phase helps stage potential sustainment risk mitigations ahead of time on the one hand, while creating additional demand and resources to mature prototypes on the other hand.
2017-03-28
Technical Paper
2017-01-1601
Max Mauro Santos, Celso Mendes, Taysa Banik, Felipe Franco, João Neme, Wanderley Prado, Fernando Cerri, Lauro Nunes
Abstract This paper outlines the modeling process in SysML (Systems Modeling Language) in context of MBSE (Model Based Software Engineering) as well as the MBD (Model-Based Design) in Simulink and we compare the models to get useful information into software. For this goal, we propose the use of an RM/SM tool (Requirements Management and Systems Modeling) (3SL Cradle) and Matlab/Simulink to model the system, do the system validations, and finally embed the generated code. For automotive systems, the development process is visualized through the V-Model, which leads to the right choice of components, the integration of the system and the project realization. The first step in V-Model handles the requirements management for the development, i.e., the requirements for a project will be collected in respect to the stakeholder’s needs and system limitations.
2017-03-28
Technical Paper
2017-01-1600
James Mansour, Badih Jawad, Liping Liu, Vernon Fernandez, Sabah Abro, Jeff Tibbenham
Abstract A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
2017-03-28
Technical Paper
2017-01-1604
Christina Michael, Badih Jawad, Liping Liu, Vernon Fernandez, Sabah Abro, Craig Zinser, Dave Guidos
Abstract The objective of this research is to develop a component based enhanced production process after End of Line (EOL) testing. This process will add more quality validation evaluations, but will not require any disassembling of the parts or damage to them. It will help the suppliers to avoid scrap and rework parts as well as General Motors (GM) to reduce warranty and recalls. An Enhanced Production Process was implemented in March, 2016 at a supplier in Mexico. The Enhanced Audit Station implementation is to ensure that the supplier is satisfying the Production Part Approval Process (PPAP) requirements. The most important four components are: Touch Appearance Lighting and Color (TALC), Appearance Approval Report (AAR), Dimensional Checks, and Function Testing. Through statistics, a pilot study was conducted to correlate the selected variables to reduce warranty.
2017-03-28
Technical Paper
2017-01-1603
Ashish Naidu, Peter Brittle, Xiaoyu Ma, Brian Rutter
Abstract Automotive product engineering is highly complex. Understanding the implications and opportunities of introducing new technology needs to be identified as early as possible in the vehicle design process. These earlier design considerations have the potential to deliver right-first-time designs and maximize integration opportunities, resulting in efficient, effective, competitive and holistic design solutions. Integrating new technology into existing vehicle architectures can preclude and restrain the opportunity for engineers to invent, discover and deliver new design solutions. To avoid this potential loss of opportunity, it is necessary to trace back to vehicle-level assumptions and attributes to confirm the technology delivers the desired output. The vehicle and system analysis enables engineers to consider all vehicle attributes and how their sub-system can enhance other vehicle systems.
2017-03-28
Technical Paper
2017-01-1606
Sergey P. Gladyshev, Pavel Gladyshev, Irina Okrainskaya
Abstract In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.
2017-03-28
Technical Paper
2017-01-1610
Mike Kheirallah, Badih Jawad, Liping Liu
Abstract Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
2017-03-28
Technical Paper
2017-01-1607
Munther Hermez, Badih Jawad, Liping Liu, Eli Oklejas
Abstract This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
2017-03-28
Technical Paper
2017-01-1609
Saleh Morjan, Badih Jawad, Liping Liu
Abstract In this experimental work, a flow field test system embedded with different vortex generators was installed to investigate the impact of vortex generation on heat transfer of air flow in a horizontal channel, and the flow structure was evaluated using a particle image velocimetry (PIV) system. Three different configurations of vortex generators were fitted vertically on a flat plate, at attack angles of 15o, 30o, and 45o, and tested at four different incoming air velocities. An axial fan was used to supply the flow of air through the test section. The effects of Reynolds number, attack angle, and the shape of vortex generators were examined in this work. The experimental results showed that, the presence of vortex generators had considerable effect on temperature distribution, pressure drop, and heat transfer augmentation in the channel flow.
2017-03-28
Technical Paper
2017-01-1611
Elankathiravan Mathivanan, David Gasior, Liping Liu, Kingman Yee, Yawen Li
Abstract In the present work, the effect of various nanofluids on automotive engine cooling was experimentally studied. Al2O3, TiC, SiC, MWNT (multi-walled nanotube), and SiO2 nanoparticles with average diameter ranging between 1 and 100 nm were mixed with distilled water to form nanofluids. An ultrasonic generator was used to generate uniform particle dispersion in the fluid. A compatibility test was carried out on all nanofluids and it was found that TiC, MWNT, and Si3N4 nanoparticles settled and separated from the fluid within 3 hours after preparation. The engine cooling performance testing setup consisted of an Aprilia SXV 450 engine, the nanofluid cooling loop, a radiator, a fan, etc. Thermocouples and resistance temperature detectors (RTD’s) were attached to the inlet and outlet of the radiator hose to monitor the temperature changes taking place in the cooling system. A flowmeter was attached to the inlet hose of the radiator to monitor the coolant flow rate.
Viewing 1 to 30 of 2493

Filter