Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2514
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
The assembly of connecting rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of elasto-hydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for connecting rod bearing of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of connecting rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of connecting rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2450
Chao Xu, Fuyuan Yang, Jinyu Zhang
Power-split is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed. Meanwhile, two different methods to search the engine operation point has been proposed. And the simulation shows both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, in the C-WTVC (Chinese-World Transient Vehicle Cycle). Based on ECMS a design for generator motor and traction motor in power-split heavy duty truck has been processed. The fuel consumption has been indicted to decrease, with the motor power increasing.
2017-10-08
Technical Paper
2017-01-2301
Hongli Gao, Fujun Zhang, Wenwen Zeng, Tianpu Dong, Zhengkai Wang
Abstract The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C[1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentability needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2039
Michael Sielemann, Changsoo Lee, Victor-Marie LeBrun, Chiwoo Ahn, Arnaud Colleoni, Dongkyu Lee, JeongSeok Lee, Anh Nguyen, Katrin Proelss, Hyon Min Yoon
Abstract Thermal management on aircraft has been an important discipline for several decades. However, with the recent generations of high performance aircraft, thermal management has evolved more and more into a critical performance and capability constraint on the whole aircraft level. Fuel continues to be the most important heat sink on high performance aircraft, and consequently the requirements on thermal models of fuel systems are expanding. As the scope of modeling and simulation is widened in general, it is not meaningful to introduce a new isolated modeling and simulation capability. Instead, thermal models must be derived from existing model assets and eventually enable integration across several physical domains. This paper describes such an integrated approach based on the Modelica Fuel System Library and the 3DExperience Platform.
2017-09-19
Technical Paper
2017-01-2047
Tyler Vincent, Joseph Schetz, K. Lowe
Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for approximate methods, and that is the subject of this paper.
2017-09-19
Technical Paper
2017-01-2115
Gilberto Burgio, Leonardo Mangeruca, Alberto Ferrari, Marco Carloni, Virgilio Valdivia-Guerrero, Laura Albiol-Tendillo, Parithi Govindaraju, Marcel Gottschall, Olaf Oelsner, Sören Reglitz, Jann-Eve Stavesand, Andreas Himmler, Lionel Yapi
This paper presents a demonstrator implemented in the project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modelling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multiphysics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2017-09-19
Technical Paper
2017-01-2058
Francesco Noziglia, Paolo Rigato, Enrico Cestino, Giacomo Frulla, Alfredo Arias-Montano
Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity . The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-19
Technical Paper
2017-01-2059
Enrico Cestino, Giacomo Frulla, Renzo Duella, Paolo Piana, Francesco Pennella, Francesco Danzi
Future generations of civil aircrafts and unconventional unmanned configurations demand for innovative structural concepts to obtain the structural performance, and thus reduce the structural weight. For instance, one of the method to improve structural component is the material coupling used to alter static and dynamic aeroelastic stabilities. It is therefore useful to use an accurate and computationally efficient beam model during the preliminary design phase. In the present work, a numerical validation of equivalent homogeneous orthotropic material procedure, described in [1] and [2], is performed by the application of structural topology optimization technique [3] on a box beam made of isotropic material. The overall equivalent bending, torsional and coupled stiffness is derived by means of homogenization of the shell skin and of the stiffener plate stiffness. The optimum theoretical conditions of bending-torsion coupling was obtained when stiffeners were oriented at about 27°.
2017-09-17
Technical Paper
2017-01-2519
Sangbum Kim, Jae Seung Cheon, Inuk Park, Yongsik kwon
Abstract An Electrical Parking Brake (EPB) system is a device that operates to park the vehicle automatically with the push of a button instead of using conventional hand or foot levers which in some ways makes it the first by wire type of brake system. As such, it is being considered in some vehicle architectures as an automatic redundant backup for vacuum-less brake systems or autonomous cars. The EPB system is generally divided into cable puller and motor on caliper (MOC) types. Recently, the MOC type EPB is being more widely applied in the global market due to product competitiveness and cost effectiveness. The MOC type EPB is composed of the caliper body, torque member, pad assembly, nut assembly and actuator. Among them, the caliper body and torque member play a main role in the robustness of the EPB system and occupy more than 80% of the total weight.
2017-09-17
Journal Article
2017-01-2526
Robert G. Sutherlin
Abstract As material cleanliness and bearing lubrication have improved, wheel bearings are experiencing less raceway spalling failures from rotating fatigue. Warranty part reviews have shown that two of the larger failure modes for wheel bearings are contaminant ingress and Brinell damage from curb and pothole impacts. Warranty has also shown that larger wheels have higher rates of Brinell warranty. This paper discusses the Brinell failure mode for bearings. It reviews a vehicle test used to evaluate Brinell performance for wheel bearings. The paper also discusses a design of experiments to study the effects of factors such as wheel size, vehicle loading and vehicle position versus the bearing load from a vehicle side impact to the wheel. As the trend in vehicle styling is moving to larger wheels and low profile tires, understanding the impact load can help properly size wheel bearings.
2017-09-17
Journal Article
2017-01-2532
David B. Antanaitis, Michael Shenberger, Max Votteler
Abstract The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
2017-09-17
Journal Article
2017-01-2521
Stacey Scherer
Abstract Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
2017-09-04
Journal Article
2017-24-0072
Gabriele Di Blasio, Carlo Beatrice, Giacomo Belgiorno, Francesco Concetto Pesce, Alberto Vassallo
Abstract The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
2017-08-25
Technical Paper
2017-01-5006
Robert Henneberger, Peter Pfeffer, Marcel Greiner
The ride comfort and safety is largely determined by the tuning of the vehicle suspension dampers. A methodology is developed to identify the influence of road excitation and of the top mounts on the optimal damper setting. Therefore this paper deals with a simulation routine, which minimizes the development effort of body damping systems on automobiles by using an analytical computation method. For this, a partly linear model is examined and evaluated in order to optimize its properties regarding ride comfort and road holding using an extended quarter-car model and a Pareto-chart. The influence of the road excitation level, the top mount and engine mount stiffness on the optimum damper characteristic is shown. This provides the starting point and the range for the tuning sessions during the vehicle development process.
2017-08-17
Journal Article
2017-01-9683
Rui Ma, John B. Ferris, Alexander A. Reid, David J. Gorsich
Abstract Computationally efficient tire models are needed to meet the timing and accuracy demands of the iterative vehicle design process. Axisymmetric, circumferentially isotropic, planar, discretized models defined by their quasi-static constraint modes have been proposed that are parameterized by a single stiffness parameter and two shape parameters. These models predict the deformed shape independently from the overall tire stiffness and the forces acting on the tire, but the parameterization of these models is not well defined. This work develops an admissible domain of the shape parameters based on the deformation limitations of a physical tire, such that the tire stiffness properties cannot be negative, the deformed shape of the tire under quasi-static loading cannot be dominated by a single harmonic, and the low spatial frequency components must contribute more than higher frequency components to the overall tire shape.
2017-08-01
Journal Article
2017-01-9682
Mohsen Rahmani, Kamran Behdinan
Abstract Widely used in automotive industry, lightweight metallic structures are a key contributor to fuel efficiency and reduced emissions of vehicles. Lightweight structures are traditionally designed through employing the material distribution techniques sequentially. This approach often leads to non-optimal designs due to constricting the design space in each step of the design procedure. The current study presents a novel Multidisciplinary Design Optimization (MDO) framework developed to address this issue. Topology, topography, and gauge optimization techniques are employed in the development of design modules and Particle Swarm Optimization (PSO) algorithm is linked to the MDO framework to ensure efficient searching in large design spaces often encountered in automotive applications. The developed framework is then further tailored to the design of an automotive Cross-Car Beam (CCB) assembly.
2017-07-10
Technical Paper
2017-28-1923
Satish Mudavath, Ganesh Dharmar, Shyam Somani
Abstract Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
2017-07-10
Technical Paper
2017-28-1930
Anil Kumar Jaswal, Pradeep Chandrasekaran, Surendran Ramadoss
Abstract Indian Automobile Industry has started using Six Sigma for Vehicle Design and process improvement to compete with Global competition. This Paper describes how the Tools of Six Sigma shall be used as an Effective Tool for both redefining the Design and the Process Improvement. This Paper talks on the evolution of DMADV approach in Indian Automobile Industry compared to the related Trends in Other Manufacturing Sectors. The Author describes how the warranty failures in Commercial Segment Vehicle Category which was the selling talk for the Competition was addressed in Leading Indian Automobile OEM. As this Failure was adversely impacting customer satisfaction and no solution seemed forthcoming, top Management indicated to use a radically different approach to solve the problem within a years’ time.
2017-07-10
Technical Paper
2017-28-1935
Vellavedu Velumani Praveen, P Baskara Sethupathi
Abstract Formula SAE is a prestigious engineering design competition, where student team design, fabricate and test their formula style race car, with the guidelines of the FSAE rulebook, according to which the car is designed, for example the engine must be a four-stroke, Otto-cycle piston engine with a displacement no greater than 710cc. According to FSAE 2017 Rule Book [1], ARTICLE 3, IC3.2 and IC3.3 state that the maximum sound level should not exceed 110 dBC at an average piston speed of 15:25 m/s (for the KTM 390 engine, which has 60 mm stroke length, the noise level will be measured at 7500 RPM) and 103 dBC at Idle RPM. So, the active muffler which works as a normal reflective muffler till the 7500 RPM range, after which an electronic controlled throttle mechanism is used to reduce the backpressure (since after 7500 RPM the noise level doesn't matter in FSAE) by using tach signal from the engine to control the throttle (two position).
2017-07-10
Technical Paper
2017-28-1938
Shyam Sunder Manivannan, Gopkumar Kuttikrishnan, Rajesh Siva, Janarthanan C, G A Ramadass
Abstract The hybrid robot will be a battery operated four wheel drive vehicle with a rigid chassis for all terrain operation. The vehicle will be suited for various payloads based on applications with geological, atmospheric sensors and buried object identification at a depth of 8 to 100 m., etc. The vehicle will be remotely controlled through a RF signal, allows it to maneuver up to 5 km. The novelty of the design, is its capability for all terrain and ease of trafficability based on skid steering, self-alignment of sensors and vehicle traction in spite of possible inverted conditions and the vehicle can travel from land, snow, water and vice versa. The vehicle could be deployed for surveying coastline of water bodies, borderlines and also be extensively used in polar region for studying glacier aging and as advance vehicle for the convoys and polar mapping.
2017-07-10
Technical Paper
2017-28-1960
Satish Chandra Mudavath, Ganesh Dharmar, Mohanraj Balakrishnan
Abstract In automotive industry, design of vehicle to end customer with proper ergonomics and balancing the design is always a challenge, for which an accurate prediction of postures are needed. Several studies have used Digital Human Models (DHM) to examine specific movements related to ingress and egress by translating complex tasks, like vehicle egress through DHMs. This requires an in-depth analysis of users to ensure such models reflect the range of abilities inherent to the population. Designers are increasingly using digital mock-ups of the built environment using DHMs as a means to reduce costs and speed-up the “time-to-market” of products. DHMs can help to improve the ergonomics of a product but must be representative of actual users.
2017-06-29
Journal Article
2017-01-9453
Tobias Hoernig
Abstract Within the scope of today’s product development in automotive engineering, the aim is to produce lighter and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two ways: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
2017-06-05
Technical Paper
2017-01-1791
David Neihguk, Shreyas Fulkar
Abstract Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
2017-06-05
Technical Paper
2017-01-1751
Nicolas Schaefer, Bart Bergen, Tomas Keppens, Wim Desmet
Abstract The continuous pursuit for lighter, more affordable and more silent cars, has pushed OEMs into optimizing the design of car components. The different panels surrounding the car interior cavity such as firewall, door or floor panels are of key importance to the NV performance. The design of the sound packages for high-frequency airborne input is well established. However, the design for the mid-frequency range is more difficult, because of the complex inputs involved, the lack of representative performance metrics and its high computational cost. In order to make early decisions for package design, performance maps based on the different design parameters are desired for mid-frequencies. This paper presents a framework to retrieve the response surface, from a numerical design space of finite-element frequency sweeps. This response surface describes the performance of a sound package against the different design variables.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-06-05
Technical Paper
2017-01-1861
Ismail Benhayoun, Frédéric Bonin, Antoine Milliet de Faverges, Julien Masson
Abstract NVH (Noise Vibration & Harshness) is one of the main focus areas during the development of products such as passenger cars or trucks. Physical test methods have traditionally been used to assess NVH, but the necessity for reducing cost and creating a robust solution early in the design process has driven the increased usage of simulation tools. Development of well-defined methods and tools for NVH analysis allows today’s OEMs to have a virtual engineering based development cycle from concept to test. However, a subset of NVH problems including squeak and rattle (S&R) have not been generally focused upon. In a vehicle, S&R is a recurring problem for interior plastic parts such as an instrument panel or door trim. Since 2012, Altair has been developing S&R Director (SnRD), which is a solution that identifies and combats S&R issues by embedding the Evaluation-Line (E-Line) methodology [1] [2].
2017-06-05
Technical Paper
2017-01-1844
Jiawei Liu, Yangfan Liu, J. Stuart Bolton
Abstract In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
2017-06-05
Technical Paper
2017-01-1840
Thierry Bourdon, Rainer Weber, Johann Massinger
Abstract Virtual NVH Engineering is going to be reviewed in this paper for the development of FIE (fuel injection equipment) components. Some examples based on high pressure pumps and SCR air cooling injectors will illustrate the explanation. The use of a 3D FEM vibro-acoustic model is essential to support virtual NVH Engineering. Therefore, a review of techniques to study components is done first. Model correlation is also an important topic which will be discussed and which makes any NVH engineer confident in using a model instead of real HW. It is quite challenging to establish these models, as they must mimic the entire physical phenomenon of real structure borne hardware sound in the whole audible frequency range. Limitations of models are also identified and allow answering one true question: Should we stay considering only each component separately or as an assembly of parts of a larger system in the development process?
Viewing 1 to 30 of 2514

Filter