Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2526
2017-11-07
Technical Paper
2017-36-0431
Eloy Martins de Oliveira Junior, Marcelo Lopes de Oliveira e Souza
Abstract Internet of Things (IoT) for real-time applications are demanding more and more high performance, precision, accuracy, modularity, integration, dependability and other attributes in a complex and/or highly integrated environment. Such systems need to provide coordination among the integrated components (e.g. sensors, computer, controller and networks) for enabling the application to take real-time measurements and to translate into controllable, observable and smart actions with strict timing requirements. Therefore, coordination and synchronization are required to ensure the controllable, observable and smart actions of real-time IoT systems. This paper shows the design issues about the coordination and synchronization in the internet of things applied to real-time applications. We also show the current coordination and synchronization techniques and their design issues when applied to IoT systems.
2017-11-07
Technical Paper
2017-36-0281
Rafael Rodrigues da Silva, Evandro Leonardo Silva Teixeira, André Murilo de Almeida Pinto, Max Mauro Dias Santos
Abstract Automotive industry is looking for new design and product development practices to become more competitive. Challenges in current global market have often included sustainable development, environmental regulation and innovative solution to reach customer needs. Today, carmakers are striving to take competitive advantages over global marketplace. Model-Based-Design (MBD) seems to be a feasible answer to improve software development practices in automotive industry. Furthermore, it has been reported as a novel development approach to develop advanced driver assistance systems (ADAS). Among ADAS technologies often required to reduce driver fatigue is Electric Power Assisted Steering (EPAS). By using an auxiliary servomotor, it can reduce significantly driver effort in parking maneuvers. In this scenario, this paper aims to describe how MBD can be used to design EPAS control system.
2017-11-07
Technical Paper
2017-36-0226
Rafaela Radünz Lazzari, Lara Justine da Silva, Tarcísio Gelaim, Dalmedson Gaúcho R. de Freitas Filho
Abstract In order to improve the aerodynamic efficiency of a radio-controlled aircraft destined to the SAE BRASIL AeroDesign Competition, this paper's goal is to find an ideal position for a wingtip device known as endplate through computational simulation. Therefore, computational fluid dynamics simulations were performed on a wing, maintaining the same geometry and airfoil in all tests, with and without endplate, varying among four positions - up front, down front, up rear, and down rear. The simulations' results showed that positioning the endplate in the back generates the greatest drag force decrease among the tested configurations, being, therefore, the configuration chosen as more efficient.
2017-11-07
Technical Paper
2017-36-0335
Fábio de Castro Radicchi, Leonardo Mayer Reis, Bruno Vieira Silva, Ramon Molina Valle, Erwin Karl Franieck, Paulo César de Ferreira Gomes, Gustavo Santos Lopes
Abstract The analysis of the air motion inside the cylinders of an internal combustion engine constitutes a very important step during engines design. It is already known that its movement, normally decomposed in tumble and swirl motion, is totally related to the majority of phenomena which occur inside cylinder, like fuel evaporation, mixture formation or flame propagation. The use of mechanical devices in the intake system represents an interesting option in the attempt of optimizing the airflow and finding the best condition for maximum power and minimum specific fuel consumption. Devices like flow boxes, which control the airflow and change its main characteristics before entering the cylinder, by obstructing the air and changing its directions, are one possibility. Based on this idea, this paper presents a numerical analysis of the utilization of a flow box in the intake system of a spark ignition engine.
2017-11-07
Technical Paper
2017-36-0181
Juliano Vaz, Allan R. Machado, Rodrigo K. Martinuzzi, Mario E. S. Martins
Abstract Intake tuning and ram effect are widely known methods to increase engine performance. This paper details the design, manufacturing and results of an intake system with active duct length variation for a CBR600RR 2008 engine, equipped with a restrictor downstream of throttle body, in accordance due to Formula SAE competition rules. The engine was discretized in Gamma Technologies' GT-Power software bundle, and with the aid of the computational tool Design of Experiments (DoE), the lengths and diameters of the inlet ducts and beyond the plenum volume were determined in order to increase the engine torque in the range of 6000 to 12000 RPM. After the dimensioning process, the assembly was modeled in CAD, analyzing the packaging requirements determined by the regulation and a better adaptation of the system to the prototype, and then fabricated, including the plenum, restrictor and intake manifold.
2017-11-05
Technical Paper
2017-32-0082
Pierre Duret, Stéphane Venturi, Antonio Sciarretta, Nigel Foxhall, Walter Hinterberger
The main purpose of this paper will be to investigate if a small snowmobile gasoline Direct Injected (DI) two-stroke engine has the potential to be adapted for two other types of applications: as a range extender (REX) for electric vehicles and for a motorcycle application. For the REX application, the main requested specifications (NVH, lightweight, compactness, minimum production cost and easy maintenance), correspond well to the main features of DI 2-stroke engines. The potential of a modified production engine operating in part load ultra-low NOx Controlled Auto Ignition (CAI) to meet the Euro 6 emissions standards on the NEDC cycle has already been demonstrated in a previous paper. In the first part of this new paper, we will investigate which solutions can be used to maintain this potential with even stricter legislations based on Euro 6d, WLTP cycle and Real Driving Emissions (RDE).
2017-11-05
Technical Paper
2017-32-0124
Ashutosh Jahagirdar, Ravindra Kharul, Nitin Bhone, Ashok Kulkarni
Anti-Hop Clutches are popular for bikes above 400 cc. They offer the advantage of better driving stability in lower gears and during down shifting. The currently used designs of such clutches are having different constructions with complex geometry parts and almost 30% more number of parts (compared to standard clutch) are used in some designs to achieve the desired 'Driving Assist' and 'Coasting Slip' effect. The production process used, demands for specialized tools for manufacturing the complex geometry of parts and the price of the clutch assembly is more than double as compared to standard, equivalent design of multi plate wet clutches. These type of clutches are commonly known as - Anti Hop Clutch or Slipper Clutch or Assist and Slip clutches. To achieve same performance benefits with simpler design, less number of parts with a Flexibility to alter the Assist and Slip effect to suit the application, Endurance Technologies Ltd. developed a new concept.
2017-11-05
Technical Paper
2017-32-0110
Daisuke Kagawa, Tomoaki Kodama, Yasuhiro Honda
The main purpose of Student Formula Japan competition (hereafter called “SFJ”) is to let students learn the basic ability necessary for engineers through design, fabrication and test projects. In this study the authors decided to adopt Honda BC-PC37E which was an engine for motor cycles. Then the engine have strength enough for the light weight, downsizing design. As the course of the competition consists of short straights and many corners for running within equal to or less than middle speed range, the engine must have excellent acceleration performance to reduce the lap times in the corners. The effective engine performance is necessary for the flat torque in all of engine speed range, especially in low engine speed range. As the regulation allows that a turbocharger is fitted to an engine, its introduction is effective for getting high torque in the low engine speed range.
2017-10-31
White Paper
WP-0003
Actuators are the key to sophisticated machines that can perform complex tasks previously done by humans.
2017-10-13
Technical Paper
2017-01-5018
Subhash Hanmant Bhosale, Manohar Goud Kalal, Ashish Kumar Sahu
Abstract In today’s cost-competitive automotive market, use of finite element simulations and optimization tools has become crucial to deliver durable and reliable products. Simulation driven design is the key to reduce number of physical prototypes, design iterations, cost and time to market. However, simulation driven design optimization tools have struggled to find global acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing know-how decision making processes. In this study, systematic multi-phase approach for optimization driven design is presented. Approach includes three optimization phases. In first phase, topology optimization is performed on concept BIW design volume to identify critical load paths. Architectural inputs from topology are used to design base CAD.
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
Abstract The assembly of con rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of thermoelastohydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for con rod big end bearings of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of con rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of con rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2301
Hongli Gao, Fujun Zhang, Wenwen Zeng, Tianpu Dong, Zhengkai Wang
Abstract The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
2017-10-08
Technical Paper
2017-01-2450
Chao Xu, Fuyuan Yang, Jinyu Zhang
Abstract Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
2017-09-19
Technical Paper
2017-01-2039
Michael Sielemann, Changsoo Lee, Victor-Marie LeBrun, Chiwoo Ahn, Arnaud Colleoni, Dongkyu Lee, JeongSeok Lee, Anh Nguyen, Katrin Proelss, Hyon Min Yoon
Abstract Thermal management on aircraft has been an important discipline for several decades. However, with the recent generations of high performance aircraft, thermal management has evolved more and more into a critical performance and capability constraint on the whole aircraft level. Fuel continues to be the most important heat sink on high performance aircraft, and consequently the requirements on thermal models of fuel systems are expanding. As the scope of modeling and simulation is widened in general, it is not meaningful to introduce a new isolated modeling and simulation capability. Instead, thermal models must be derived from existing model assets and eventually enable integration across several physical domains. This paper describes such an integrated approach based on the Modelica Fuel System Library and the 3DExperience Platform.
2017-09-19
Technical Paper
2017-01-2047
Tyler Vincent, Joseph Schetz, K. Lowe
Abstract Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for low-order approximate methods, and that is the subject of this paper.
2017-09-19
Technical Paper
2017-01-2130
Yucheng Liu, Thomas Sippel, Ge He
Abstract Oven and flame tests were designed and conducted to evaluate the heat resistance of a ceramic coating material, Cerakote C-7700Q, and evaluate its viability to replace the intumescent coating as one painting material for helicopter engine cowlings. The test results showed that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. This study explained why serious appearance defects occurred in the inner skin of the engine cowling when the aircraft is hovering and suggested that one most time- and cost-effective solution is to repaint the current engine cowlings with a new three coating system of Cerakote, surface protection HS7072-622, and intumescent paint as a fireproof lacquer.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
Abstract The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C [1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentation needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2115
Gilberto Burgio, Leonardo Mangeruca, Alberto Ferrari, Marco Carloni, Virgilio Valdivia-Guerrero, Laura Albiol-Tendillo, Parithi Govindaraju, Marcel Gottschall, Olaf Oelsner, Sören Reglitz, Jann-Eve Stavesand, Andreas Himmler, Lionel Yapi
Abstract Multi-physics interactions between structural, electrical, thermal, or hydraulic components and the high level of system integration, characteristic of new aircraft designs, is increasing the complexity of both design and verification processes. Therefore the availability of tools, supporting integrated modelling, simulation, optimization and testing across all stages of aircraft design remains a critical challenge. This paper presents some results of the project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). It is a collaborative task being developed under the European Union Clean Sky 2 Program, which is a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The first levels of integration of different models and tools proposed in the MISSION framework will be presented, along with simulation results.
2017-09-19
Technical Paper
2017-01-2118
Prashant S Vadgaonkar, Diptar banik
Abstract Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
2017-09-19
Technical Paper
2017-01-2059
Enrico Cestino, Giacomo Frulla, Renzo Duella, Paolo Piana, Francesco Pennella, Francesco Danzi
Abstract Future generations of civil aircrafts and unconventional unmanned configurations demand for innovative structural concepts to improve the structural performance, and thus reduce the structural weight, but also to allow possible material couplings to be made. Static and dynamic aeroelastic stability can be altered by these couplings. It is therefore necessary to use an accurate and computationally efficient beam model during the preliminary design phase. A stiffened box, made of isotropic material, but with the stiffeners oriented so that they originate the expected bending/torsion coupling, is considered in the present work. The overall equivalent bending, torsional and coupled stiffness is derived by means of homogenization of the shell skin and of the stiffener plate stiffness. A new equivalent homogeneous orthotropic material is determined and introduced into the equivalent plate configuration.
2017-09-19
Technical Paper
2017-01-2058
Francesco Noziglia, Paolo Rigato, Enrico Cestino, Giacomo Frulla, Alfredo Arias-Montano
Abstract Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
Abstract In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-17
Technical Paper
2017-01-2519
Sangbum Kim, Jae Seung Cheon, Inuk Park, Yongsik kwon
Abstract An Electrical Parking Brake (EPB) system is a device that operates to park the vehicle automatically with the push of a button instead of using conventional hand or foot levers which in some ways makes it the first by wire type of brake system. As such, it is being considered in some vehicle architectures as an automatic redundant backup for vacuum-less brake systems or autonomous cars. The EPB system is generally divided into cable puller and motor on caliper (MOC) types. Recently, the MOC type EPB is being more widely applied in the global market due to product competitiveness and cost effectiveness. The MOC type EPB is composed of the caliper body, torque member, pad assembly, nut assembly and actuator. Among them, the caliper body and torque member play a main role in the robustness of the EPB system and occupy more than 80% of the total weight.
2017-09-17
Journal Article
2017-01-2521
Stacey Scherer
Abstract Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
2017-09-17
Journal Article
2017-01-2532
David B. Antanaitis, Michael Shenberger, Max Votteler
Abstract The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
2017-09-17
Journal Article
2017-01-2526
Robert G. Sutherlin
Abstract As material cleanliness and bearing lubrication have improved, wheel bearings are experiencing less raceway spalling failures from rotating fatigue. Warranty part reviews have shown that two of the larger failure modes for wheel bearings are contaminant ingress and Brinell damage from curb and pothole impacts. Warranty has also shown that larger wheels have higher rates of Brinell warranty. This paper discusses the Brinell failure mode for bearings. It reviews a vehicle test used to evaluate Brinell performance for wheel bearings. The paper also discusses a design of experiments to study the effects of factors such as wheel size, vehicle loading and vehicle position versus the bearing load from a vehicle side impact to the wheel. As the trend in vehicle styling is moving to larger wheels and low profile tires, understanding the impact load can help properly size wheel bearings.
2017-09-04
Journal Article
2017-24-0072
Gabriele Di Blasio, Carlo Beatrice, Giacomo Belgiorno, Francesco Concetto Pesce, Alberto Vassallo
Abstract The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
2017-08-25
Technical Paper
2017-01-7001
Johannes Haff, Mattias Jönsson, Sigfried Loose, Claus Wagner
Abstract The improved performance of heavy-duty vehicles as transport carriers is essential for economic reasons and to fulfil new emission standards in Europe. A key parameter is the aerodynamic vehicle drag. An enormous potential still exists for fuel saving and reducing exhaust emission by aerodynamic optimisation. Engineering methods are required for developments in vehicle aerodynamics. To assess the reliability of the most common experimental testing and numerical simulation methods in the industrial design process is the objective of this article. Road tests have been performed to provide realistic results, which are compared to the results obtained by scale-model wind tunnel experiments and time-averaged computational fluid dynamics (CFD). These engineering methods are evaluated regarding their deployment in the industrial development process. The investigations focus on the separated flow region behind the vehicle rear end.
2017-08-17
Journal Article
2017-01-9683
Rui Ma, John B. Ferris, Alexander A. Reid, David J. Gorsich
Abstract Computationally efficient tire models are needed to meet the timing and accuracy demands of the iterative vehicle design process. Axisymmetric, circumferentially isotropic, planar, discretized models defined by their quasi-static constraint modes have been proposed that are parameterized by a single stiffness parameter and two shape parameters. These models predict the deformed shape independently from the overall tire stiffness and the forces acting on the tire, but the parameterization of these models is not well defined. This work develops an admissible domain of the shape parameters based on the deformation limitations of a physical tire, such that the tire stiffness properties cannot be negative, the deformed shape of the tire under quasi-static loading cannot be dominated by a single harmonic, and the low spatial frequency components must contribute more than higher frequency components to the overall tire shape.
2017-08-01
Journal Article
2017-01-9682
Mohsen Rahmani, Kamran Behdinan
Abstract Widely used in automotive industry, lightweight metallic structures are a key contributor to fuel efficiency and reduced emissions of vehicles. Lightweight structures are traditionally designed through employing the material distribution techniques sequentially. This approach often leads to non-optimal designs due to constricting the design space in each step of the design procedure. The current study presents a novel Multidisciplinary Design Optimization (MDO) framework developed to address this issue. Topology, topography, and gauge optimization techniques are employed in the development of design modules and Particle Swarm Optimization (PSO) algorithm is linked to the MDO framework to ensure efficient searching in large design spaces often encountered in automotive applications. The developed framework is then further tailored to the design of an automotive Cross-Car Beam (CCB) assembly.
Viewing 1 to 30 of 2526

Filter