Criteria

Text:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 293
WIP Standard
2014-09-30
This SAE Aerospace Information Report (AIR) examines the need for and the application of a power train usage metric that can be used to more accurately determine the TBO for helicopter transmissions. It provides a formula for the translation of the recorded torque history into mechanical usage. It provides examples of this process and recommends a way forward. This document of the SAE HM-1 IVHM Committee is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits.
WIP Standard
2014-09-26
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: - Airborne contaminant gases, vapors, and aerosols. - Identified potential sources. - Comfort, health and safety issues. - Airborne chemical measurement. - Regulations and standards. - Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). - Airborne chemical control systems. It does not deal with airflow requirements.
WIP Standard
2014-08-20
This document describes the CAD model data available from SAE for the two-dimensional H-point template (HPM-1).
Standard
2014-07-07
This ARP provides insights on how to perform a cost benefit analysis (CBA) to determine the return on investment that would result from implementing an integrated Health Management (HM) system on an air vehicle. The word “integrated” refers to the combination or “roll up” of sub-systems health management tools to create a platform centric system. The document describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with HM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a HM system could provide. Prognostics is a capability within some HM systems that provides an estimation of remaining useful life (RUL) or time to failure and so Prognostic Health Management (PHM) is used where this predictive element exists.
Standard
2014-07-01
This SAE Aerospace Information Report (AIR) provides Nuclear, Biological and Chemical (NBC) protection considerations for environmental control system (ECS) design. It is intended to familiarize the ECS designer with the subject in order to know what information will be required to do an ECS design where NBC protection is a requirement. This is not intended to be a thorough discussion of NBC protection. Such a document would be large and would be classified. Topics of NBC protection that are more pertinent to the ECS designer are discussed in more detail. Those of peripheral interest, but of which the ECS designer should be aware are briefly discussed. Only radiological aspects of nuclear blast are discussed. The term CBR (Chemical, Biological, and Radiological) has been used to contrast with NBC to indicate that only the radiological aspects of a nuclear blast are being discussed. This is actually a more accurate term to describe the subject of this paper, but NBC has become more widely used in the aircraft industry.
Standard
2014-05-16
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C. Other flammability studies are also cited in the AIR document to substantiate the FAA findings.
WIP Standard
2014-05-05
The objective of this Minimum Operational Performance Specification is to specify the minimum performance of onboard inflight icing detection systems. Throughout the document, these devices are referred to as Flight Icing Detection Systems (FIDS). These systems are intended to either provide information which indicates the presence of ice accreted in flight on monitored surfaces or indicate the presence of icing conditions in the atmosphere. They may operate the airplane anti-ice/deice systems. Detection of ice accreted on the ground is not considered in this document but can be found in ED-104. This MOPS was written for the use of FIDS on airplanes only, as defined in paragraph 1.5. Use on other aircraft may require additional considerations. Chapter 1 of this document provides information required to understand the need for the equipment characteristics and tests defined in the remaining chapters. It describes typical equipment applications and operational objectives and is the basis for the performance criteria stated in Chapter 2 to Chapter 4.
Standard
2014-04-15
This standard establishes general requirements and descriptions of specific activities for performance of LORA during the life cycle of products or equipment. When these requirements and activities are performed in a logical and iterative nature, they comprise the LORA process.
WIP Standard
2014-04-14
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft. Information is provided to assist in; a. Defining technology maturity and application risk b. Cost benefit analysis (Value analysis) c. Selection of system components d. Selection of technology e.
WIP Standard
2014-03-31
This SAE Aerospace Standard (AS) provides a method for gas turbine engine performance computer programs to be written using FORTRAN COMMON blocks. If a "function-call application program interface" (API) is to be used, then ARP4868 and ARP5571 are recommended as alternatives to that described in this document. When it is agreed between the program user and supplier that a particular program shall be supplied in FORTRAN, this document shall be used in conjunction with AS681 for steady-state and transient programs. This document also describes how to take advantage of the FORTRAN CHARACTER storage to extend the information interface between the calling program and the engine subroutine.
WIP Standard
2014-03-26
1.1 This SAE Aerospace Standard (AS) provides performance station designation and nomenclature systems for aircraft propulsion systems and their derivatives. 1.2 The parameter naming conventions presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. 1.3 The list of symbols presented herein will be used for identification of input and output parameters. These symbols are not required to be used as internal parameter names within the engine subprogram
WIP Standard
2014-03-26
This SAE Aerospace Standard (AS) provides performance station designation and nomenclature systems for aircraft propulsion systems and their derivatives. The systems presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The list of symbols presented herein will be used for identification of input and output parameters. These symbols are not required to be used as internal parameter names within the engine subprogram.
WIP Standard
2014-03-06
To provide a method that accounts for the attenuation due to line-of-sight blockage of aircraft noise by terrain features.
WIP Standard
2014-03-06
To provide a method for modeling the noise directivity behind start-of-takeoff roll based on empirical data from modern jet aircraft. This method would replace the method described in Section 3.3.1 of SAE-AIR-1845A "Procedure for the Calculation of Airplane Noise in the Vicinity of Airports."
WIP Standard
2014-02-24
"Hot Day ", "Tropical Day ", "Standard Day ", "Polar Day " and "Cold Day " are part of the lexicon of the aircraft industry. These terms are generally understood to refer to specific, generally accepted characteristics of atmospheric temperature versus pressure altitude. There are also other, less well-known days, defined by their frequency of occurrence, such as "1% Hot Day ", "10% Cold Day ", or "Highest Recorded Day ". These temperature characteristics have their origins in multiple sources, including U.S. military specifications which are no longer in force.
WIP Standard
2014-02-21
SAE ARP 5120 provides recommended best practices, procedures, and technology to guide the physical and functional development, integration, verification, and validation of highly reliable Engine Health Management System (EHMS) for gas turbine engines, including aircraft engines and Auxiliary Power Units (APUs). This ARP also serves as a concise reference of considerations, approaches, activities, and requirements for producing the end-to-end engine health monitoring system comprised of both on and off-board subsystems for the sensing, acquisition, analysis, detection, and data handling functions of an EHMS. These functions and related maintenance activities promote engine safety. These functions may also be used to effect continued operation or return to service decisions when demonstrated as compliant with the applicable airworthiness requirements defined by the responsible Aviation Authority. Where practical, this document delineates between military and commercial practices.
Standard
2014-02-21
“Hot Day”, “Tropical Day”, “Standard Day”, “Polar Day”, and “Cold Day” are part of the lexicon of the aircraft industry. These terms are generally understood to refer to specific, generally accepted characteristics of atmospheric temperature versus pressure altitude. There are also other, less well-known days, defined by their frequency of occurrence, such as “1% Hot Day”, “10% Cold Day”, or “Highest Recorded Day”. These temperature characteristics have their origins in multiple sources, including U.S. military specifications which are no longer in force.
Standard
2014-02-21
This document is intended for use by manufacturers of aircraft, engines and Electronic Engine Controls [EECs] as a component change process and evaluation guideline. Its purpose is to provide an effective means of managing the modification of electronic hardware.
Standard
2014-02-13
This SAE Aerospace Recommended Practice (ARP) provides performance station designation and nomenclature systems for aircraft propulsion systems and their derivatives. The systems presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents.
Standard
2014-02-10
This handbook is intended to provide additional information on the use and tailoring of the data in GEIA-STD-0007. The standard provides a new approach to Logistics Support Analysis Record (LSAR) (i.e., MIL-STD-1388-2B) data with emphasis on data transfer (e.g., XML Schemas) versus data storage (e.g., relational tables). GEIA-STD-0007 identifies the range of logistics product data that is generated during the development and acquisition of a system or end item. It does not prescribe the supportability analyses required to generate logistics product data. How the data is generated via analysis techniques/tools, how it is stored and processed, and how the data is used to generate specific logistics support products, is left to the performing activity. GEIA-STD-0007 is a data transfer standard implementing the logistics data concepts of GEIA-STD-927, Common Data Schema for Complex Systems. GEIA-STD-0007 provides a comprehensive list of data elements that can be generated as a result of the supportability analysis conducted during the design, development, and initial fielding of a system or end item.
WIP Standard
2014-01-10
This SAE Aerospace Recommended Practice (ARP) provides guidance for substantiating the airworthiness of aircraft engine components. Generally these components are associated with the engine control system, the system or systems that allow the engine to provide thrust or power as demanded by the pilot of the aircraft while also ensuring the engine operates within acceptable operating limits. But these components may also include hardware and systems associated with engine lubrication, engine or aircraft hydraulic or electrical systems, aircraft environmental control systems, thrust reverser control, or similar aircraft or engine propulsion system functions. This paper develops the concept of using a 26 item matrix of environmental conditions for evaluating aircraft engine component airworthiness. This approach is compatible with current practices used in the industry and has been accepted by engine certification authorities as part of engine certification programs.
Standard
2014-01-03
This SAE Aerospace Standard (AS) provides performance station designation and nomenclature systems for aircraft propulsion systems and their derivatives. The systems presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The list of symbols presented herein will be used for identification of input and output parameters. These symbols are not required to be used as internal parameter names within the engine subprogram.
WIP Standard
2013-12-19
This SAE Aerospace Recommended Practice (ARP) provides best practices and guidance for creating an architecture for integrated vehicle health management systems. Where possible, this document will also provide references to tools to conduct architectural trades. Finally, this document will provide use cases to expose considerations and stakeholders to be included in these trades and utilization of an IVHM system (which may lead to new functional or non-functional requirements).
Standard
2013-12-02
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design and installation of a commercial aircraft hydraulic system to meet the applicable requirements, including the applicable airworthiness regulations that affect the hydraulic system design. This ARP also provides information and guidelines on the many factors that arise in the design process to provide cost effectiveness, reliability, maintainability and accepted design and installation practices.
WIP Standard
2013-10-19
The SAE Aerospace Standard document AS681 is the parent document of this SAE Aerospace Recommended Practice (ARP). AS681 applies to Engine programs written to conform to this document. This ARP specifies a set of functions and their expected behaviors that constitute a function based Application Program Interface (API) for gas turbine engine customer programs. The functions specified in this API are delivered by the Supplier as part of the Engine model. This document defines generic language independent functions and specific appendices for implementations in C and Fortran. The function based API specified in this ARP represents an alternative to the Fortran COMMON block structure, as specified in AS4191, historically used to communicate with an engine program. The customer may request emulation of the AS4191 interface if desired. This document does not specify how the parameter names in the Engine program are constructed, how program capabilities might be expanded or altered, or how error messages are constructed.
WIP Standard
2013-10-18
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
Standard
2013-10-04
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
Standard
2013-09-19
This document is applicable to civil aerospace airframe structural applications where stakeholders are seeking guidance on the definition, development and certification of Structural Health Monitoring (SHM) technologies for aircraft health management applications. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future.
Standard
2013-08-29
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the format and content of documents defining the interface between electronic propulsion control systems and aircraft systems. The scope includes civilian aircraft powered by turbofan, turboprop, and turboshaft engines equipped with electronic engine controls.
Standard
2013-08-10
This document presents a practical method for calculating atmospheric absorption for wide-band sounds analyzed with one-third octave-band filters, called the SAE Method. The SAE Method utilizes pure-tone attenuation algorithms originally published in ISO 9613-1 and ANSI S1.26-1995 to calculate path-length attenuation at mid-band frequencies. The equations introduced in this standard transform the pure-tone, mid-band attenuation to one-third octave-band attenuation.
Viewing 1 to 30 of 293

Filter

  • Aerospace
    293
  • Standard
    293