Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 29212
Technical Paper
2014-05-20
Lei Zhang
Existing multi-axle steering system designs generally use the deterministic optimization method without considering the uncertainties during the design process; therefore an actual steering movement may deviate from the ideal movement calculated by some mathematical models. In order to make design results have less sensitive to the uncertainties in the design process, some uncertainties need be taken into account at the early design stage. This paper proposes a robust optimization design method for a double front axle steering system (DFASS) of heavy trucks based on Monte Carlo method. The DFASS consists of two trapezoidal steering mechanisms (TSM) and one rocker system, and the optimization objectives of DFASS include the minimum mean value and variance of the maximum turning angle error of the TSM and rocker system. In addition, the robust optimization model includes 13 design variables which are all geometry parameters of DFASS and represented by normal distribution. Through the orthogonal experiment, we obtain the important factors affecting optimization objectives and build the response surface models of optimization objective.
Technical Paper
2014-05-09
Francisco Soriano, Jesus Alvarez-Florez, Manuel Moreno-Eguilaz
This paper presents a novel methodology to develop and validate fuel consumption models of Refuse Collecting Vehicles (RCVs). The model development is based on the improvement of the classic approach. The validation methodology is based on recording vehicle drive cycles by the use of a low cost data acquisition system and post processing them by the use of GPS and map data. The corrected data are used to feed the mathematical energy models and the fuel consumption is estimated. In order to validate the proposed system, the fuel consumption estimated from these models is compared with real filling station refueling records. This comparison shows that these models are accurate to within 5%.
Technical Paper
2014-05-09
Byeong wook Jeon, Sang-Hwan Kim
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway). After each event, participants were asked to complete the rating of the four descriptive terms as well as a comprehensive rating on the gear-shifting event.
Technical Paper
2014-04-01
Yinyin Zhao, Song-Yul Choe
Abstract Models for lithium ion batteries based on electrochemical thermal principles approximate electrodes with spheres. Ion concentration in the spheres is described using Fick's second law with partial differential equations (PDE), which can be solved numerically. The model calculation time, especially the electrode ion concentration part, should be reduced as less as possible for real time control purposes. Several mathematical methods have been proposed to reduce the complexity of PDE in electrode particles which include polynomial approximation, proper orthogonal decomposition (POD), Padé approximation, Galerkin reformulation and etc. These methods are compared to each other with different input current density. Then, selected method is further integrated into a reduced order model (ROM) for a complete battery that considers Li ion concentration, potentials in electrode and electrolyte. Evaluation of simulation results reveal that the 3rd order Padé approximation serves as a better computationally efficient replacement for the diffusion equation in lithium ion battery model.
Technical Paper
2014-04-01
Saeed Asgari, Xiao Hu, Michael Tsuk, Shailendra Kaushik
The thermal behavior of a fluid-cooled battery can be modeled using computational fluid dynamics (CFD). Depending on the size and complexity of the battery module and the available computing hardware, the simulation can take days or weeks to run. This work introduces a reduced-order model that combines proper orthogonal decomposition, capturing the variation of the temperature field in the spatial domain, and linear time-invariant system techniques exploiting the linear relationship between the resulting proper orthogonal decomposition coefficients and the uniform heat source considered here as the input to the system. After completing an initial CFD run to establish the reduction, the reduced-order model runs much faster than the CFD model. This work will focus on thermal modeling of a single prismatic battery cell with one adjacent cooling channel. The extension to the multiple input multiple output case such as a battery module will be discussed in another paper.
Technical Paper
2014-04-01
Dragan Simic, Dominik Dvorak, Hannes Lacher, Helmut Kuehnelt, Elena Paffumi, Michele De Gennaro
Abstract This contribution deals with the modeling and validation of multi-physical battery-models, by using the programming language Modelica. The article presents a battery model which can be used to simulate the electric, thermal and aging behavior of a lithium-ion traction battery of an EV in different load conditions. The model is calibrated with experimental data of an electric vehicle tested on a chassis dynamometer. The calibration parameters, that are the open circuit voltage, the serial resistance and the resistance and capacitance of two serially connected RC-circuits, are used to configure the electric equivalent circuit model of the battery. The calibration process is based on a best-fit of the measured data from one test, while the validation is made by comparing measured and simulated battery voltages of a different battery load cycle. The comparison between simulations and experiments shows that this model is capable to accurately reproduce the real-world behavior of the battery, providing the scientific community with a novel approach for design and optimization purposes.
Technical Paper
2014-04-01
Ming Chen, Dong Wang, Huiqiang Lee, Chao Jiang, Jun Xin
This paper describes the application of CAE tools in the design optimization of a DCT and driveline system of a passenger vehicle, with emphasis on NVH performance. The multi-body dynamics simulation tools are employed for driveline system analysis. The MBD model consists of the engine, transmission, clutch, drive shafts, tires and vehicle. The wheel slip effects are considered in the calculation of shuffle frequencies. In the analysis of gear whine, the transmission housing, gears and shafts are modeled by detailed 3-D finite element models, so that the mesh stiffness of the gears and the housing support stiffness are described more accurately. The calculated velocity spectra of the housing are presented. The prediction of gear rattle in the transmission is carried out. The loose gear acceleration index and the averaged impact power of free gears are calculated to assess the rattle generation potential and the level of rattle severity. The influence of the clutch spring rate and the gear backlash on rattle behavior is investigated.
Technical Paper
2014-04-01
Zhang Yan, Liu Zhien, Xiaomin Wang, Hao Zheng, Yu Xu
For fracture cracks that occurred in the tight coupling exhaust manifold durability test of a four-cylinder gasoline engine with EGR channel, causes and solutions for fracture failure were found with the help of CFD and FEA numerical simulations. Wall temperature and heat transfer coefficient of the exhaust manifold inside wall were first accurately obtained through the thermal-fluid coupling analysis, then thermal modal and thermoplastic analysis were acquired by using the finite element method, on account of the bolt pretightening force and the contact relationship between flange face and cylinder head. Results showed that the first-order natural frequency did not meet the design requirements, which was the main reason of fatigue fracture. However, when the first-order natural frequency was rising, the delta equivalent plastic strain was increasing quickly as well. Ultimately, to solve the problem, the semi-shell was strengthened and some dents of critical areas were added so as to absorb some energy, consequently, the plastic strain decreased in the process of thermal expansion and cooling contraction.
Technical Paper
2014-04-01
Liu Zhien, Xiaomin Wang, Zhang Yan, Xueni Li, Yu Xu
In order to predict the thermal fatigue life of the internal combustion engine exhaust manifold effectively, it was necessary to accurately obtain the unsteady heat transfer process between hot streams and exhaust manifold all the time. This paper began with the establishment of unsteady coupled heat transfer model by using serial coupling method of CFD and FEA numerical simulations, then the bidirectional thermal coupling analysis between fluid and structure was realized, as a result, the difficulty that the transient thermal boundary conditions were applied to the solid boundary was solved. What's more, the specific coupling mode, the physical quantities delivery method on the coupling interface and the surface mesh match were studied. On this basis, the differences between strong coupling method and portioned treatment for solving steady thermal stress numerical analysis were compared, and a more convenient and rapid method for solving static thermal stress was found. Finally, aiming at the thermal stress analysis of steady and unsteady temperature fields, the thermal fatigue life of the exhaust manifold was estimated in application of Manson-Coffin formula, giving a general qualitative analysis.
Technical Paper
2014-04-01
Sanjeev Kumar, Deepak Katyal, Amit Singh
Abstract Recent advancement in numerical solutions and advanced computational power has given a new dimension to the design and development of new products. The current paper focuses on the details of work done in order to improve the vehicle performance in Offset deformable Barrier (ODB) crash as per ECER-94. A Hybrid approach involving the Structural Crash CAE as well as Multi-body Simulation in MADYMO has been adopted. In first phase of the development, CAE results of Structural deformation as well as Occupant injury of the baseline model were correlated with physical test data. The second phase includes the improvement in intrusion and crash energy absorption by structural countermeasures in the vehicle body. In third phase parametric study has been carried out via Madymo simulation in order to decide on the factors which can be controlled in order to mitigate the Occupant injury. Recommendations of Madymo simulation have been confirmed by conducting Physical sled tests. Finally a cost and weight effective countermeasure package which involves the modification in Body structure and Restraint system has been developed in order to comply with the ECE R-94 offset crash regulation.
Technical Paper
2014-04-01
Mina M.S. Kaldas, Aref M.A. Soliman
The integrated control between the vehicle chassis subsystems (suspension, brake, and steering) became one of the most important aspects for current developments to improve the dynamics of the vehicles. Therefore, the aim of this study is to investigate the influence of the preview control of the active suspension on the vehicle ride and braking performance. The vehicle performance was examined theoretically using a longitudinal half vehicle model with four degrees of freedom considering the rotational motion of the tires. The active suspension system model, tire-road interface model and braking system model are included in the vehicle model. In order to study the influence of the preview control on the vehicle ride and braking performance, an active suspension system control algorithm employing the lock-ahead preview information and the wheel-base time delay based on the optimal control theory is derived. On the other hand, the ABS control algorithm is designed based on the slip-control strategy.
Technical Paper
2014-04-01
Shuming Chen, Yawei Huang, Dengfeng Wang, Dengzhi Peng, Xuewei Song
This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
Technical Paper
2014-04-01
Austin Gurley
Abstract Selection of springs and dampers is one of the most important considerations when finalizing a race car suspension design. It is also one of most complex due to the dynamic interaction of the vehicle with the ground. Current tuning methods for spring and dampers' effect on vehicle ride can be based on simplified dynamic models of the vehicle, such as the quarter-car model. While efficient computationally, the traditional quarter-car model does not account for the non-linear variation in grip seen by a fluctuating contact-patch. Both amplitude and frequency of suspension oscillation contribute to loss of tire grip. The method can be improved by incorporation of a dynamic tire model, though resulting in non-linear effects. An improved ‘rolling quarter-car’ model is created, which includes the effect of dynamic tire forces in the analysis of improved grip. Using typical Formula SAE race car, characteristics as a test case, a linearized dynamic model is made. The effect of suspension parameters on the dynamic tire forces produced are surveyed.
Technical Paper
2014-04-01
David E. Verbitsky
Failure analysis (FA) management is insufficiently described by current standards and literature. Previously proposed three-step systemic FA methodology provides effective and efficient alternative to sporadic FA. Organization, methods and results of the first step of the systemic FA, failure mode analysis (FMA), during product/project life cycle, is described. FMA promptly address ∼80% of all problems and justify/supports further actions using conventional ready techniques and resources. Original subject matter tools (three FMA levels, joint FMA-FMECA-F5 technique, and P5 failure classification) substantiate, facilitate and illustrate FMA. Multiple examples demonstrate FMA strengths and limitations with uniquely broad range of products and applications. Particular attention is paid to rare combination of high quality, reliability and profitability.
Technical Paper
2014-04-01
Sanjeev Kumar, Rahul Bettakote, Pinak Deb
Abstract Offset crash compliance of a compact car is severe due to the compact layout and stringent fuel economy, weight and cost targets. Scope of the current work is to improve the structural crash performance of a compact car through CAE, in order to meet the offset frontal crash requirements as per ECE R94 Regulation. The project has been classified in three main phases. First phase includes the evaluation of baseline vehicle in CAE. In order to ensure the accuracy of CAE prediction, a methodology for predicting Spotweld rupture was implemented. Using this methodology, it is possible to find out the location and time of spotweld rupture as well as propagation of spotweld rupture in CAE. CAE results of spotweld rupture prediction showed good agreement with the physical test. In second phase, design iterations were carried out in order to meet the performance targets of structural deformation. At critical locations of spotweld rupture, spotwelds were reinforced by addition of arc welds tugs and bolts.
Technical Paper
2014-04-01
Jill M. Spelina, James C. Peyton Jones, Jesse Frey
This paper collates and summarizes recent advances in knock analysis, simulation and control. The statistical properties of knock intensity and knock events are reviewed showing in particular that knock intensity behaves as an independent random process, and that knock events conform to a binomial distribution. These properties have a significant impact on knock control and simulation. Traditional and recently proposed cumulative-summation-based and Likelihood-based knock control strategies are reviewed and illustrated in this context. Efficient tools for simulating both specific instances of the closed loop time response, and the evolution of the distribution of these responses based on a Markov-like approach, are also briefly reviewed. Finally, it is shown how an optimization of the knock threshold and an associated retuning of the controller parameters can result in significantly improved closed loop performance without any other modification of the control algorithm.
Technical Paper
2014-04-01
Kambiz Jahani, Sajjad Beigmoradi
The efficiency of the vehicle cooling system strongly depends on the air flow through the radiator core. The flow through the radiator core in turn depends on other panels that are in the vicinity of the radiator. In this study, the effect of geometrical change at vehicle front-end including the whole bonnet, grille and bumper area is investigated by means of Computational Fluid Dynamics (CFD). Numerical modeling is carried out by means of CAE tools. Simulations are performed for maximum power and maximum torque conditions, monitoring the mass flow rate through the radiator core and velocity contribution over the radiator face. To the velocity field of the airflow, the heat exchangers are represented as porous media and fan module is modeled utilizing Multiple Reference Frame (MRF) approach. The validity of the developed simulation capability is tested by successful comparison with the available experimental data for the base model at the given operating conditions. On studying the model with complete new front-end style, local modifications are applied incorporating adding airguide, flap and anti-recycler in order to enhance the flow distribution in the vicinity of radiator and increase the mass flow rate passing through it.
Technical Paper
2014-04-01
Sanjeev Kumar, Pinak Deb
Abstract The side impact accident is one of the very severe crash modes for the struck side occupants. According to NHTSA fatality reports, side impact accounts for over 25% of the fatalities in the US. Similar fatality estimates have been reported in the EU region. Side crash compliance of a compact car is more severe because of the less space available between the occupant and the vehicle structure, stringent fuel economy, weight and cost targets. The current work focuses on the development of Side body structure of a compact car through Computer Aided Tools (CAE), for meeting the Side crash requirements as per ECE R95 Regulation. A modified design philosophy has been adopted for controlling the intrusion of upper and lower portion of B-pillar in order to mitigate the injury to Euro SIDII dummy. At first, initial CAE evaluation of baseline vehicle was conducted. Further design iterations were carried out to optimize the stiffness of B-pillar for meeting the performance targets of B-pillar intrusion and velocity.
Technical Paper
2014-04-01
Felix Regin A, Abhinav Agarwal, Niraj Kumar Mishra
Abstract Increased engine thermal load, front end styling and compact vehicle requirements have led to significant challenges for vehicle front end designer to provide innovative thermal management solutions. The front end cooling module design which consists of condenser, radiator, fan and intercooler is an important part of design as it ensures adequate heat removal capacity of radiator over a wide range of operating conditions to prevent overheating of engine. The present study describes the optimization of cooling air flow opening in the front end using CFD methodology of a typical passenger car. The predicted vehicle system resistance curve and coolant inlet temperature to the radiator are used for the selection of cooling modules and to further optimize the front end cooling opening area. This leds to the successful optimization of the front end, selection of cooling modules with significant cost savings by reducing prototype testing and design cycle time.
Technical Paper
2014-04-01
Meng Huang
A disc-pad system is established to study impacts of surface topography on brake squeal from the perspective of statistical analysis. Firstly, surface topographies of brake disc and pad are precisely measured on the scale of micron and are statistically analyzed with a three-dimensional evaluation system. Secondly, the finite element model of brake disc and pad without surface topographies is created and verified through component free modal tests. Thereby the valid brake squeal model for complex modal analysis is built with ABAQUS. An effective method is developed to apply interface topographies to the smooth contact model, which consequently establishes sixty brake squeal models with topographies. Thirdly, impacts of surface topography on brake squeal are studied through comparison and statistical analysis of prediction results with and without topographies. The analysis manifest that topography amplitudes and evaluation index deviations of brake pad far exceed those of the disc, indicating the surface of brake pad is relatively much rougher.
Technical Paper
2014-04-01
Mohit Kohli, S Nataraja Moorthy, Manchi Venkateswara Rao, Prasath Raghavendran
Abstract The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators. The exact location and nature of acoustic cavity resonance needs to be found as accurately as possible to bring out the best from a resonator.
Technical Paper
2014-04-01
Karthikeyan N, Anish Gokhale, Narendra Bansode
Abstract The Continuous Variable Transmission (CVT) in scooters is used to transmit the power from the engine to the wheels. The CVT transmission consists of a drive pulley and a driven pulley connected to each other through a belt. The centrifugal clutch is attached to the rear pulley which transmits the power to the wheel. The engagement and disengagement of the clutch generates heat and friction heat is generated between the belt and pulley, thereby requiring continuous external cooling for its safe operation. A centrifugal fan is employed for cooling of the CVT belt. Since the cooling fan takes air from atmosphere, there is always a possibility of dust from the atmosphere entering the system, which might cause wear of pulley and belt, thereby decreasing the performance of the transmission system. The objective of the work is to analyze the dust ingress pattern in to CVT housing. The work aims at simulating the possible conditions for dust entry into the CVT housing for a complete scooter and the study of different design proposals to minimize the dust entry without compromising the cooling requirement of CVT.
Technical Paper
2014-04-01
Simon Huber, Thomas Indinger, Nikolaus Adams, Thomas Schuetz
The optimization of the flow field around new vehicle concepts is driven by aerodynamic and thermal demands. Even though aerodynamics and thermodynamics interact, the corresponding design processes are still decoupled. Objective of this study is to include a thermal model into the aerodynamic design process. Thus, thermal concepts can be evaluated at a considerably earlier design stage of new vehicles, resulting in earlier market entry. In a first step, an incompressible CFD code is extended with a passive scalar transport equation for temperature. The next step also accounts for buoyancy effects. The simulated development of the thermal boundary layer is validated on a hot flat plate without pressure gradient. Subsequently, the solvers are validated for a heated block with ground clearance: The flow pattern in the wake and integral heat transfer coefficients are compared to wind tunnel simulations. The main section of this report covers the validation on a full-scale production car. A specially developed heated electronic component dummy mounted to the underbody of the car introduces heat into the flow field.
Technical Paper
2014-04-01
Wei Yang, Xuemao Zhou, Jing Peng, Bo Li, Long Wu, Heinz Friz
Abstract The Wuling Rongguang is a small van which uses a mid-engine layout where the engine is located underneath the floor panel in-between front and rear wheels. A particular challenge for this kind of layout is the protection of the engine against soiling. Typical protective measures consist of large mudguards in combination with an engine cover. While needed for soiling protection, these parts can have a strongly adverse effect on aerodynamic drag. This paper describes process and the results of the aerodynamic optimization of the underbody of the Wuling Rongguang. Because design changes had to be evaluated for aerodynamics performance as well as for their effect on the soiling, a digital approach was used which allowed to do the soiling analysis as a post processing to the flow simulation. As a first step, a baseline model was built and analyzed. This included the development of a soiling model taking into account wheel spray and splashing effects. The soiling model used available best practices where available and was also calibrated against some road test results to ensure a proper reproduction of the soiling effect.
Technical Paper
2014-04-01
Tetsuhiro Kawamura, Atsushi Ogawa
Abstract The change in the aerodynamic lift force (henceforth CL) by heave motion is discussed in this paper in order to clarify the effect of aerodynamic characteristics on the vehicle dynamic performance. We considered that phenomenon in actual car running at 160km/h and 1Hz heave frequency. Using a towing tank to change its water from the air to the working fluid to more easily observe this phenomenon. That makes possible to observe the same phenomenon with reduced velocity and small models under same Strouhal number condition. This method can be reducing vehicle speed to 3m/s (1/15 actual) and frequency to 0.2Hz (1/5 actual) in case using 40% scaled model. The results of these tests showed that unsteady CL is proportional to heave motion. These results showed the proportional relationship between unsteady CL and heave motion. The formularization of unsteady CL made it possible to introduce shape coefficients to vehicle dynamics simulations as functions of heave velocity. This makes it possible to consider the effect of unsteady CL on dynamic performance at the initial stages of the development process.
Technical Paper
2014-04-01
Daniel Wood, Martin A. Passmore, Anna-Kristina Perry
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model. This geometry is selected as a particularly powerful test case for the development and validation of numerical tools because the flow exhibits a realistic impingement and A pillar regime, significant three dimensional structures and the backlight/boot-deck exhibits a local separation and reattachment.
Technical Paper
2014-04-01
Jianlei Wang, William Bartow, Andres Moreyra, Gregory Woyczynski, Alexis Lefebvre, Edward Carrington, Gecheng Zha
1 This paper introduces and proves a novel automotive mirror base drag reduction method using passive jet flow control. The new concept is to open an inlet at the front part of the mirror, introduces the airflow via a converging duct, and ejects the jet surrounding the mirror surface at an angle toward the center of the mirror. The jet harnesses the energy from the free stream by jet mixing with the main flow via large coherent structures, entrains the main flow to energize the base flow, reduces the wake size and turbulence fluctuation, and ultimately significantly decreases the drag. Above phenomena are proved by wind tunnel testing with PIV and drag force measurement and CFD large eddy simulation (LES) calculation. Two jet mirrors with different inlet areas are studied. The jet mirror tunnel 1 has a smaller inlet area, and the jet mirror tunnel 2 has a 4.7 times larger inlet area. The wind tunnel testing is only done for the baseline and jet mirror tunnel 1. LES is used to study all the three mirror configurations.
Technical Paper
2014-04-01
Andrew D'Hooge, Robert Palin, Luke Rebbeck, Joaquin Gargoloff, Bradley Duncan
The focus of evaluating yaw characteristics in automotive aerodynamics has been primarily with regards to the effects of crosswind on vehicle handling. However, changes to drag that the vehicle experiences due to prevalent on-road crosswind can also be significant, even at low yaw angles. Using wind tunnel testing, it is possible to quickly determine the static yaw performance of the vehicle by rotating the vehicle on a turntable to different yaw angles during a single wind tunnel run. However, this kind of testing does not account for dynamic crosswind effects or non-uniform crosswind such as with natural on-road turbulence. Alternatively, numerical simulations using computational fluid dynamics (CFD) can be used to evaluate yaw performance. In this paper, Exa's PowerFLOW is used to examine two alternative methods of simulating aerodynamic performance in the presence of realistic on-road crosswind for the Tesla Model S sedan. These methods provide reduced computational cost compared to simulating a full range of static yaw angles.
Technical Paper
2014-04-01
Christopher Craig, Martin A. Passmore
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages. An initial wind tunnel investigation of the potential flow interactions between the driver's helmet and rear wing using a multi-hole pressure probe is reported and the data used in a two-dimensional CFD calculation to provide an accurate prediction of the likely down-force from the wing package.
Technical Paper
2014-04-01
Emmanuel Guilmineau
This paper focuses on the numerical simulations of flow around a realistic generic car model called the DrivAer body. This new open-source model is based on the geometries of two medium sized cars, the Audi A4 and the BMW 3 series, and possesses more representative car features as the well-known generic Ahmed body. In this paper, only the fastback geometry is investigated. The flow solver used is ISIS-CFD developed by CNRS and Ecole Centrale de Nantes. This solver is based on a finite-volume method, and two turbulence modelizations are used: the Explicit Algebraic Reynolds Stress Model (EARSM) and a Detached Eddy Simulation (DES). Two meshes are used. For one, the walls are described with a wall function and the mesh contains 19 million cells. This mesh is called “Mesh 1”. For the second mesh, a low-Reynolds number turbulence model for the walls is used. In this case, the mesh contains 39 million cells, and is called “Mesh 2”. For the simulation with the EARSM model, the drag coefficient is well predicted while the lift coefficient is over-predicted with however a value lower with the “Mesh 2”.
Viewing 1 to 30 of 29212