Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 29212
Technical Paper
2014-05-20
Lei Zhang
Existing multi-axle steering system designs generally use the deterministic optimization method without considering the uncertainties during the design process; therefore an actual steering movement may deviate from the ideal movement calculated by some mathematical models. In order to make design results have less sensitive to the uncertainties in the design process, some uncertainties need be taken into account at the early design stage. This paper proposes a robust optimization design method for a double front axle steering system (DFASS) of heavy trucks based on Monte Carlo method. The DFASS consists of two trapezoidal steering mechanisms (TSM) and one rocker system, and the optimization objectives of DFASS include the minimum mean value and variance of the maximum turning angle error of the TSM and rocker system. In addition, the robust optimization model includes 13 design variables which are all geometry parameters of DFASS and represented by normal distribution. Through the orthogonal experiment, we obtain the important factors affecting optimization objectives and build the response surface models of optimization objective.
Technical Paper
2014-05-09
Francisco Soriano, Jesus Alvarez-Florez, Manuel Moreno-Eguilaz
This paper presents a novel methodology to develop and validate fuel consumption models of Refuse Collecting Vehicles (RCVs). The model development is based on the improvement of the classic approach. The validation methodology is based on recording vehicle drive cycles by the use of a low cost data acquisition system and post processing them by the use of GPS and map data. The corrected data are used to feed the mathematical energy models and the fuel consumption is estimated. In order to validate the proposed system, the fuel consumption estimated from these models is compared with real filling station refueling records. This comparison shows that these models are accurate to within 5%.
Technical Paper
2014-05-09
Byeong wook Jeon, Sang-Hwan Kim
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway). After each event, participants were asked to complete the rating of the four descriptive terms as well as a comprehensive rating on the gear-shifting event.
Technical Paper
2014-04-01
Shuming Chen, Dengfeng Wang
In this paper, the relationship was investigated between objective psychoacoustic parameters, A-weighted sound pressure level (SPL) and the results of the subjective evaluation by using grey relational analysis (GRA). The sounds were recorded with eight different passenger cars at four different running conditions. The sound quality indices were calculated, including loudness, sharpness, roughness, fluctuation, and A-weighted SPL. Subjective evaluation was performed by thirty subjects using rating scale method. GRA was compared with traditional correlation analysis, and the comparison shows that some hidden information which could not be found in the traditional correlation analysis was revealed. In order to know the further relationship between fluctuation and subjective evaluation, another subjective evaluation was performed by the same 30 subjects. The result demonstrates that the relationship revealed from GRA is correct. Furthermore, some measures were presented to improve the sound quality of vehicle interior noise.
Technical Paper
2014-04-01
Mengjia Cao, Idan Kovent, Jerry Ku
Abstract Hybrid electric vehicle (HEV) is one of the most highly pursued technologies for improving energy efficiency while reducing harmful emissions. Thermal modeling and control play an ever increasing role with HEV design and development for achieving the objective of improving efficiency, and as a result of additional thermal loading from electric powertrain components such as electric motor, motor controller and battery pack. Furthermore, the inherent dual powertrains require the design and analysis of not only the optimal operating temperatures but also control and energy management strategies to optimize the dynamic interactions among various components. This paper presents a complete development process and simulation results for an efficient modeling approach with integrated control strategy for the thermal management of plug-in HEV in parallel-through-the road (PTTR) architecture using a flexible-fuel engine running E85 and a battery pack as the energy storage system (ESS). While the main motivation for the work is to deliver a design for the Department of Energy's EcoCAR2 Plugging in to the Future Competition, yet the framework and methodologies should be useful for any typical hybrid powertrain thermal and control development.
Technical Paper
2014-04-01
SoDuk Lee, Jeff Cherry, Byungho Lee, Joseph McDonald, Michael Safoutin
Abstract A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pack cooler, and a temperature controlled chamber. For e-machine testing and HEV power pack component testing, a variety of different battery packs are needed to power these devices to simulate in-vehicle conditions. For in-house e-machine testing and development, it is cost prohibitive to purchase a variety of battery packs, and also very time-consuming to interpret the battery management systems, CAN signals, and other interfaces for different vehicle manufacturers. Therefore, there is a need to accurately emulate battery pack voltage, power, current, State of Charge (SOC), etc. for testing e-machines as well as performing real-time HIL (Hardware-In-Loop) vehicle simulations by having the ability to instantly select a cell chemistry along with battery pack configuration such as cell capacity, number of cells in series/parallel, coolant type, etc.
Technical Paper
2014-04-01
Joydeep Banerjee, John McPhee, Paul Goossens, Thanh-Son Dao
Abstract The analysis of nickel metal hydride (Ni-MH) battery performance is very important for automotive researchers and manufacturers. The performance of a battery can be described as a direct consequence of various chemical and physical phenomena taking place inside the container. In this paper, a physics-based model of a Ni-MH battery will be presented. To analyze its performance, the efficiency of the battery is chosen as the performance measure, which is defined as the ratio of the energy output from the battery and the energy input to the battery while charging. Parametric sensitivity analysis will be used to generate sensitivity information for the state variables of the model. The generated information will be used to showcase how sensitivity information can be used to identify unique model behavior and how it can be used to optimize the capacity of the battery. The results will be validated using a finite difference formulation.
Technical Paper
2014-04-01
Chao Chen, Martin Mohr, Franz Diwoky
Abstract This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper
2014-04-01
Shola Slough, Paul Goossens, Christine Schwarz, Thanh-Son Dao
Abstract As the demand for electric motors and drives grows, designers and manufacturers are faced with the challenge of understanding the effects of often non-deterministic duty cycles on their products. Too often, flaws in the design that can lead to failure only come to light when a prototype is built, or worse, after the product has been launched, leading to delays in product releases or costly recalls. To help mitigate these risks, designers are increasingly turning to simulation technologies that not only allow the engineer to implement the electric drives and motors but also all the various engineering factors, such as mechanical loads, vibrations and thermal effects, together in a single “virtual prototype” to get a clearer idea of how the whole system will behave over multiple duty cycles. Furthermore, if the resulting model can be fully parameterized it is then possible to perform sensitivity studies to determine which parameters will have the greatest influence on the overall behavior and therefore focus on them to understand effect of parameter variation through the lifetime of the product.
Technical Paper
2014-04-01
Oguz H. Dagci, Ram Chandrasekaran
Abstract This paper outlines the characterization of a Li-Ion Iron Phosphate battery pack with nominal voltage of 700V as well as the modeling of this pack as an equivalent electrical circuit (EEC) for the purpose of vehicle simulations. For a higher level of fidelity and accuracy, the equivalent circuit is initially modeled as an R-2RC circuit which consists of a voltage source with one resistor (R) and two resistor-capacitor (RC) branches. In this modeling effort, first, several open circuit voltage (OCV) determination methods in the literature are benchmarked and state-of-charge (SOC) dependent OCV curve which is used in the voltage source of the EEC model is derived. Then, two methods of parameter estimation of the EEC are developed for both step current and dynamic current profiles. The first estimation method is applicable to discharge or charge step currents and relies mostly on the relaxation portion of the battery response and involves some manual calibration. The second estimation method utilizes online parameter estimation techniques and learns the EEC parameters automatically by processing the battery response to some special designed dynamic current profiles.
Technical Paper
2014-04-01
Yinyin Zhao, Song-Yul Choe
Abstract Models for lithium ion batteries based on electrochemical thermal principles approximate electrodes with spheres. Ion concentration in the spheres is described using Fick's second law with partial differential equations (PDE), which can be solved numerically. The model calculation time, especially the electrode ion concentration part, should be reduced as less as possible for real time control purposes. Several mathematical methods have been proposed to reduce the complexity of PDE in electrode particles which include polynomial approximation, proper orthogonal decomposition (POD), Padé approximation, Galerkin reformulation and etc. These methods are compared to each other with different input current density. Then, selected method is further integrated into a reduced order model (ROM) for a complete battery that considers Li ion concentration, potentials in electrode and electrolyte. Evaluation of simulation results reveal that the 3rd order Padé approximation serves as a better computationally efficient replacement for the diffusion equation in lithium ion battery model.
Technical Paper
2014-04-01
Saeed Asgari, Xiao Hu, Michael Tsuk, Shailendra Kaushik
The thermal behavior of a fluid-cooled battery can be modeled using computational fluid dynamics (CFD). Depending on the size and complexity of the battery module and the available computing hardware, the simulation can take days or weeks to run. This work introduces a reduced-order model that combines proper orthogonal decomposition, capturing the variation of the temperature field in the spatial domain, and linear time-invariant system techniques exploiting the linear relationship between the resulting proper orthogonal decomposition coefficients and the uniform heat source considered here as the input to the system. After completing an initial CFD run to establish the reduction, the reduced-order model runs much faster than the CFD model. This work will focus on thermal modeling of a single prismatic battery cell with one adjacent cooling channel. The extension to the multiple input multiple output case such as a battery module will be discussed in another paper.
Technical Paper
2014-04-01
Xiao Hu, Scott Stanton
Abstract Due to growing interest in hybrid and electric vehicles, li-ion battery modeling is receiving a lot of attention from designers and researchers. This paper presents a complete model for a li-ion battery pack. It starts from the Newman electrochemistry model to create the battery performance curves. Such information is then used for cell level battery equivalent circuit model (ECM) parameter identification. 28 cell ECMs are connected to create the module ECM. Four module ECMs are connected through a busbar model to create the pack ECM. The busbar model is a reduced order model (ROM) extracted from electromagnetic finite element analysis (FEA) results, taking into account the parasitic effects. Battery thermal performance is simulated first by computational fluid dynamics (CFD). Then, a thermal linear and time-invariant (LTI) ROM is created out of CFD solution. The thermal LTI ROM is then two-way coupled with the battery pack ECM to form a complete battery pack model. Thanks to the ROM technology, such a battery pack model can finish a complete charge discharge cycle within seconds of simulation time.
Technical Paper
2014-04-01
Adam Ing, Ramin Masoudi, John McPhee, Thanh-Son Dao
Abstract Due to rising fuel prices and environmental concerns, Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) have been gaining market share as fuel-efficient, environmentally friendly alternatives. Lithium-ion batteries are commonly used in EV and HEV applications because of their high power and energy densities. During controls development of HEVs and EVs, hardware-in-the-loop simulations involving real-time battery models are commonly used to simulate a battery response in place of a real battery. One physics-based model which solves in real-time is the reduced-order battery model developed by Dao et al. [1], which is based on the isothermal model by Newman [2] incorporating concentrated solution theory and porous electrode theory [3]. The battery models must be accurate for effective control; however, if the battery parameters are unknown or change due to degradation, a method for estimating the battery parameters to update the model is required. A set of manufacturer recommended battery parameters were evaluated using a numerical sensitivity analysis to evaluate their identifiability.
Technical Paper
2014-04-01
Dragan Simic, Dominik Dvorak, Hannes Lacher, Helmut Kuehnelt, Elena Paffumi, Michele De Gennaro
Abstract This contribution deals with the modeling and validation of multi-physical battery-models, by using the programming language Modelica. The article presents a battery model which can be used to simulate the electric, thermal and aging behavior of a lithium-ion traction battery of an EV in different load conditions. The model is calibrated with experimental data of an electric vehicle tested on a chassis dynamometer. The calibration parameters, that are the open circuit voltage, the serial resistance and the resistance and capacitance of two serially connected RC-circuits, are used to configure the electric equivalent circuit model of the battery. The calibration process is based on a best-fit of the measured data from one test, while the validation is made by comparing measured and simulated battery voltages of a different battery load cycle. The comparison between simulations and experiments shows that this model is capable to accurately reproduce the real-world behavior of the battery, providing the scientific community with a novel approach for design and optimization purposes.
Technical Paper
2014-04-01
Idan Kovent, Jerry Ku
Abstract The Wayne State University EcoCAR2 team provided its members with Modeling and Simulation training course for the second summer of the competition. EcoCAR2 is a three-year Advanced Vehicle Technology Competition (AVTC) sponsored by General Motors and the Department of Energy. The course lasted three months and included 45 hours of formal lectures and class hands-on work and an estimated one hundred and fifty hours in home assignments that directly contributed to the team's deliverables. The course described here is unique. The design and class examples were extracted from an in-house complete vehicle simulation and control code to ensure hands-on, interactive training based on real-world problems. The course investigated the physics behind every major powertrain component of a hybrid electric vehicle and the different ways to model the components into a full vehicle simulation. Different engineering approaches were discussed to improve performance and fuel consumption while addressing the different tradeoffs.
Technical Paper
2014-04-01
Wang Jun, Qingnian Wang, Pengyu Wang, Biao Han
Abstract The traditional vehicle design methods of hybrid electric vehicles are based on the rule-based control strategy, which often adopt the trial and error methods and the model-based numerical optimization methods. But these methods require a large number of repeated tests and a longer-term development cycle. In this paper, approximately the global optimization algorithm was used in control parameters designing through rational design of the penalty weights of objective function. But the optimized parameters apply only to vehicles that operating in the special drive cycle to get better fuel economy. Therefore, a drive cycle recognition algorithm was proposed to identify types of drive cycles in real-time, then an off-line genetic algorithm was adopted to acquire the optimization of control parameters under the various drive cycles, through drive cycle recognition results to choose the best control parameters. The simulation results demonstrate that adaptive energy strategy can improves the fuel-economy of hybrid electric vehicle and guarantees the vehicle power performance, driving performance.
Technical Paper
2014-04-01
Sandeep Karande, Michael Olson, Bipul Saha
Abstract Computer simulation is commonly used to determine the impact of hybrid vehicle technology on fuel economy and performance. One input required for this approach is a drive cycle that represents the desired vehicle speed at each time step in the simulation. Due to computational hardware limitations, simulated drive cycle durations are required to be shorter than those actually driven by real vehicles. Hence there is a need to develop a representative drive cycle of smaller time duration. For example, it is desirable to develop a one hour drive cycle that can give the same fuel economy and performance results as a drive cycle spanning many weeks. Specifically for the design of hybrid systems, it is desired that certain characteristics of micro-trips within the full length cycle are well replicated in the representative cycle. Taking these requirements into account, a new methodology was developed and tested. This paper explains this methodology and the final results obtained.
Technical Paper
2014-04-01
Eric Wood, Evan Burton, Adam Duran, Jeffrey Gonder
Abstract Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation in the design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large-scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high-fidelity elevation profiles to GPS speed traces and performing a large simulation study. Employing a large, real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models. Aggregate results of this study suggest that road grade could be responsible for 1% to 3% of fuel use in light-duty automobiles.
Technical Paper
2014-04-01
Siddhesh Sakhalkar, Parveen Dhillon, Soovadeep Bakshi, Pranay Kumar, Puneet Singh Arora
Abstract This paper presents a mathematical model of an electric driveline consisting of one battery pack, two independent Permanent Magnet DC (PMDC) motors and motor-controllers and two fixed-ratio planetary gearboxes, all located inside the rear frame of the vehicle. The proposed analysis has been performed with the objective of: (i) Determination of acceleration run time for a straight patch of 75 meters; (ii) Determination of lap times and energy consumption for endurance track of 23 laps. A model of a PMDC motor and motor controller has been developed based on response analysis by conducting experiments on a jig setup. The motor controllers are compared for two control modes- Speed mode and Torque mode. A simplified race car model for longitudinal vehicle dynamics is derived from forces acting on the car including the effect of losses due to drag forces, rolling resistance, transmission inefficiency and inertial losses due to rotary elements. The effect of reduction ratio on acceleration run times and endurance lap times and energy consumption is compared and an optimum gear ratio is finalized considering acceleration performance and mass and inertia of resulting gearbox.
Technical Paper
2014-04-01
Wei Zhang, Xuexun Guo
Abstract This work analyzes the transmission efficiency of vehicle driveline including the gearbox, universal transmission and differential. Based on the structure of transmission, mathematic models are built to analyze transmission's characteristics. However, an experiment reveals the limitation of this method. Then, the paper statistically analyzes the experimental data and mainly analyzes the influencing factors. Then Neural Network is used to build the efficiency model. A method called “filling data and gradually extrapolating” is used when building neural network model. Finally, the neural network model is used in the simulation of fuel consumption. The conclusion is Neural Network model can imitate the transmission efficiency of vehicle driveline efficiently, but its internal structure is not clear so other modeling methods are needed to be found.
Technical Paper
2014-04-01
Ming Chen, Dong Wang, Huiqiang Lee, Chao Jiang, Jun Xin
This paper describes the application of CAE tools in the design optimization of a DCT and driveline system of a passenger vehicle, with emphasis on NVH performance. The multi-body dynamics simulation tools are employed for driveline system analysis. The MBD model consists of the engine, transmission, clutch, drive shafts, tires and vehicle. The wheel slip effects are considered in the calculation of shuffle frequencies. In the analysis of gear whine, the transmission housing, gears and shafts are modeled by detailed 3-D finite element models, so that the mesh stiffness of the gears and the housing support stiffness are described more accurately. The calculated velocity spectra of the housing are presented. The prediction of gear rattle in the transmission is carried out. The loose gear acceleration index and the averaged impact power of free gears are calculated to assess the rattle generation potential and the level of rattle severity. The influence of the clutch spring rate and the gear backlash on rattle behavior is investigated.
Technical Paper
2014-04-01
Sharon Leach, Mark Jennings
Abstract A new performance simulation capability has been developed for powersplit HEVs to enable analytical assessment of new engine technologies in the context of HEV system operation and to analyze/understand important system dynamics and control interactions affecting HEV performance. This new capability allows direct simulation with closed-loop controls and the driver, is compatible with Ford standard HEV system simulation capabilities and enables simulation with multiple levels of model fidelity and feature content across the vehicle system. The combined plant Vehicle Model Architecture (VMA) in Simulink was used for the infrastructure. The simulation capability includes a Dymola model of the powersplit transaxle, a Vehicle System Control (VSC) model implemented in Simulink, a high fidelity 2L Atkinson GT-Power engine model, and a simplified representation of the engine controls in Simulink. Also, the simulation capability interfaces to Ford standard vehicle data sets for HEVs through a Matlab interface.
Technical Paper
2014-04-01
Rami Abousleiman, Osamah Rawashdeh
Abstract Growing concerns about the environment, energy dependency, and unstable fuel prices have increased the market share of electric vehicles. This has led to an increased demand for energy efficient routing algorithms that are optimized for electric vehicles. Traditional routing algorithms are focused on finding the shortest distance or the least time route between two points. These approaches have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power and capacity limits, as well as vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present a simulated solution to the energy efficient routing for electric vehicles using Particle Swarm Optimization. Simulation results show improvements in the energy consumption of the electric vehicle when applied to a start-to-destination routing problem.
Technical Paper
2014-04-01
Daeheung Lee, Aymeric Rousseau, Eric Rask
Abstract This paper presents the vehicle model development and validation process for the Ford Focus battery electric vehicles (BEVs) using Autonomie and test results from Advanced Powertrain Research Facility in Argonne National Laboratory. The parameters or characteristic values for the important components such as the electric machine and battery pack system are estimated through analyzing the test data of the multi cycle test (MCT) procedure under the standard ambient condition. A novel process was used to import vehicle test data into Autonomie. Through this process, a complete vehicle model of the Ford Focus BEV is developed and validated under ambient temperature for different drive cycles (UDDS, HWFET, US06 and Steady-State). The simulation results of the developed vehicle model show coincident results with the test data within 0.5% ∼ 4% discrepancies for electrical consumption. A mathematical calculation function for validation is also applied to quantify the correlation between the simulation and test data, and most of the key signals show good comparison between simulation and test data.
Technical Paper
2014-04-01
Harsh Vinjamoor, Chinmaya Patil, Vasilios Tsourapas, Mihai Dorobantu
Abstract New regulations, rising fuel costs and environmental concerns are driving significant improvement in heavy duty truck aerodynamics and rolling resistance that fundamentally change the power needs of heavy duty trucks. Furthermore, exhaust energy recovery technology is evolving and driving a change in the power management strategies. Together with advances in hybrid technology, these changes open the potential for a cost-effective line haul hybrid line of trucks. This paper will present a simulation study that was performed in order to evaluate the potential fuel economy benefits of a heavy duty powertrain for commercial vehicles. The architecture includes hybrid electric components paired with a waste heat recovery system. The electric energy can be used to reduce engine load during peak power requests. The sources for the electric energy are both braking energy regeneration as well as conversion of waste heat to electricity via a high speed generator. We carry out a preliminary analysis to study the effect of aerodynamic drag reduction on the increase in available regeneration energy.
Technical Paper
2014-04-01
Bashar Alzuwayer, Mahmoud Abdelhamid, Pierluigi Pisu, Pietro Giovenco, Paul Venhovens
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset. Finally the simulator has been tested for different driving cycles and the results which include fuel consumption, battery state of charge and the vehicle drivability performance are shown.
Technical Paper
2014-04-01
Zhang Yan, Liu Zhien, Xiaomin Wang, Hao Zheng, Yu Xu
For fracture cracks that occurred in the tight coupling exhaust manifold durability test of a four-cylinder gasoline engine with EGR channel, causes and solutions for fracture failure were found with the help of CFD and FEA numerical simulations. Wall temperature and heat transfer coefficient of the exhaust manifold inside wall were first accurately obtained through the thermal-fluid coupling analysis, then thermal modal and thermoplastic analysis were acquired by using the finite element method, on account of the bolt pretightening force and the contact relationship between flange face and cylinder head. Results showed that the first-order natural frequency did not meet the design requirements, which was the main reason of fatigue fracture. However, when the first-order natural frequency was rising, the delta equivalent plastic strain was increasing quickly as well. Ultimately, to solve the problem, the semi-shell was strengthened and some dents of critical areas were added so as to absorb some energy, consequently, the plastic strain decreased in the process of thermal expansion and cooling contraction.
Technical Paper
2014-04-01
Daniela Siano, Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza
Abstract The present paper reports 1D and 3D CFD analyses of the air-filter box of a turbocharged VVA engine, aiming to predict and improve the gas-dynamic noise emissions through a partial re-design of the device. First of all, the gas-dynamic noise at the intake mouth is measured during a dedicated experimental campaign. The developed 1D and 3D models are then validated at full load operation, based on experimental data. In particular, 1D model provides a preliminary evaluation of the radiated noise and simultaneously gives reliable boundary conditions for the unsteady 3D CFD simulations. The latter indeed allow to better take into account the geometrical details of the air-filter and guarantee a more accurate gas-dynamic noise prediction. 3D CFD analyses put in evidence that sound emission mainly occur within a frequency range of 350 to 450 Hz. Starting from the above result, the original air-box design is modified through the installation of a single Helmholtz resonator, taking into account layout constraints and the influence on engine performance, as well.
Technical Paper
2014-04-01
Manivasagam Shanmugam, Raghavendra Kharatmal, Shirish Satpute
Abstract This paper describes the rapid design and development of thin walled powertrain components which act as external cover for engine subsystem assemblies. Computer Aided Engineering plays a major role in reducing the overall product development lead time. An approach by using ‘Simulation Driven Design and Development’ helps the developers to bring the necessary confidence about the components' required functionality during the design stage itself. During the design stage, typical inputs available for the development of these components are the broad dimensions obtained from the packaging considerations. The designer is required to develop the concepts targeting least noise radiation from component surfaces due to various excitations. Based on cost considerations, the designer can even opt for plastic materials instead of steel. The current paper considers two major noise radiation members namely valve cover and timing gear cover for rapid product development. A conventional modal analysis followed by harmonic response studies provides the basis for the iterations towards designing these members.
Viewing 1 to 30 of 29212