Criteria

Text:
Display:

Results

Viewing 31 to 60 of 74
Training / Education Online Web Seminars
Any product is a collection of materials that have been manipulated into various shapes to form the components and joints used within the product. In fact, up to 70% of the cost to make a product is due to its materials. Therefore, getting the materials right will have a big impact on the success of a product.
Anytime
Training / Education On Demand On Demand Course
Finite Element Analysis (FEA) is a computer-aided engineering (CAE) tool used to analyze how a design reacts under real-world conditions. Useful in structural, vibration, and thermal analysis, FEA has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process.
Anytime
Training / Education On Demand On Demand Course
Weibull Analysis is the starting point for solving most issues related to product reliability, maintainability, supportability, quality, safety, test planning, and cost control. Weibull Analysis is popular worldwide as the best method for modeling and predicting variability and failure of designs, products, and systems. Instructor Wes Fulton will provide a solid overview of Weibull Solution Methods including an explanation of 16 additional Weibull Analysis capabilities, or Weibull Extensions.
Training / Education Classroom Seminars
Providing you have a basic understanding of mechanical drawings, this course teaches the terms, rules, symbols, and concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an in-depth explanation of geometric tolerancing symbols, their tolerance zones, applicable modifiers, common applications, and limitations. The class includes a comparison of GD&T to coordinate tolerancing; Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls.
Anytime
Training / Education On Demand Metallurgy Online Course
Quickly getting to the bottom of a metal failure is critical for preventing future failures, keeping customers happy, and keeping manufacturing lines running. This course will teach you how to perform failure analysis of fracture, corrosion, and manufacturing failures.
Training / Education Classroom Seminars
Providing you have a basic understanding of geometric dimensioning and tolerancing fundamentals, this course teaches the advanced concepts of GD&T as prescribed in the ASME Y14.5M-1994 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an in-depth explanation of advanced GD&T topics like composite tolerancing, tolerance analysis, datum selection, non-rigid part dimensioning, and many more key dimensioning topics, including the system approach for part dimensioning. Newly acquired learning is reinforced throughout the class with more than 250 practice problems.
Training / Education Classroom Seminars
Providing you have an understanding of GD&T fundamentals, this course teaches the thought processes involved in assigning GD&T to components. It will change the way many engineers think about part tolerancing. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, the course focuses on what constitutes good and poor drawing practices, common dimensioning methods used in industry, using GD&T to communicate system functions on component dimensions, and the logic of how to apply GD&T to components.
Training / Education Classroom Seminars
Providing you have a basic understanding of geometric dimensioning and tolerancing fundamentals, this course teaches an introduction to how to inspect GD&T requirements. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an explanation of the geometric symbols, rules, and concepts, the datum system, and how to inspect GD&T requirements using tools from the four categories of inspection tools (CMM; comparison instruments and fixed gages; hand tools and open set up; and production gaging systems). Newly acquired learning is reinforced throughout the class with numerous practice problems.
Training / Education Classroom Seminars
Providing you have a basic understanding of mechanical drawings, this course teaches the terms, rules, symbols, and concepts of GD&T as prescribed in the ASME Y14.5M-1994 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, the course offers an in-depth explanation of geometric symbols, including each symbol's requirements, tolerance zones, and limitations. It also includes a comparison of GD&T to coordinate tolerancing; an explanation of tolerance zones; Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls.
Training / Education Classroom Seminars
Providing you have a basic understanding of geometric dimensioning and tolerancing fundamentals, this course teaches the advanced concepts of GD&T as prescribed in the ASME Y14.5M-1994 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an in-depth explanation of advanced GD&T topics like composite tolerancing, tolerance analysis, datum selection, non-rigid part dimensioning, and many more key dimensioning topics, including the system approach for part dimensioning. Newly acquired learning is reinforced throughout the class with more than 150 practice problems.
Training / Education Classroom Seminars
Providing you have an understanding of tolerance stacks, this course teaches an introduction to statistical tolerance stacks, a crucial skill in today’s competitive workplace. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, the course includes a brief overview of several terms used in statistical stacks. It explains four methods for applying statistics to tolerance stacks and covers precautions about when and how to use statistics in stacks. Newly acquired learning is reinforced throughout the class with stacks that allow the student to practice applying statistical methods.
Training / Education Classroom Seminars
Providing you have a basic understanding of mechanical drawings, this course teaches the terms, rules, symbols, and concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an in-depth explanation of geometric tolerancing symbols, their tolerance zones, applicable modifiers, common applications, and limitations. The class includes a comparison of GD&T to coordinate tolerancing; Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls.
Training / Education Classroom Seminars
This seminar covers the five types of FMEAs with emphasis on constructing Design and Process FMEAs. Each column of the FMEA document will be clearly explained using an actual FMEA example. The course covers various methods for identifying failure modes, effects and causes with special attention given to severity, occurrence, and detection tables and how to develop effective recommended actions strategies. Throughout the class, participants will be involved in exercises/actual projects that demonstrate and incorporate direct application of learned principles.
Training / Education Classroom Seminars
This course provides a detailed description of tire failure modes, their potential causes, identification, and the sometimes subtle nuances that go along with determination of tire failure. In addition, proper inspection techniques of tires will be discussed and samples will be available to reinforce the concepts learned. The book, Tire Forensic Investigation, authored by the instructor, is included with the course materials. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 13 Continuing Education Units (CEUs).
Anytime
Training / Education On Demand Web Seminar RePlay
Failure Modes and Effects Analysis (FMEA) is an integral part of product design activity applicable to any type of product or service. It is a quantitative and quantitative step-by-step approach for identifying and analyzing all actual and potential points of failure in a design, product or service. A successful team-based FMEA activity can use their collective experience with similar products to dramatically improve not only product performance but also reduce manufacturing issues at both a component and system and processing level. This web seminar introduces the five basic types of FMEAs with emphasis on constructing a Design FMEA.
Training / Education Online Web Seminars
Failure Modes and Effects Analysis (FMEA) is an integral part of product design activity applicable to any type of product or service. It is a quantitative and quantitative step-by-step approach for identifying and analyzing all actual and potential points of failure in a design, product or service. A successful team-based FMEA activity can use their collective experience with similar products to dramatically improve not only product performance but also reduce manufacturing issues at both a component and system and processing level. This web seminar introduces the five basic types of FMEAs with emphasis on constructing a Design FMEA.
Anytime
Training / Education On Demand Web Seminar RePlay
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
Anytime
Training / Education On Demand Web Seminar RePlay
Driven by the need for lower emissions, better fuel economy and improved drive quality, optimized powertrain calibrations are required for the many different vehicle configurations on today's roadways. While powertrain components such as the internal combustion engine, transmission, and hybrid electric powertrain are somewhat familiar to the automotive industry, the control theory, calibrations and system interactions between these components are a relatively unfamiliar aspect.  
Anytime
Training / Education On Demand Web Seminar RePlay
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include, but are not limited to, identifying root causes to quality or production problems, identifying optimized design and process settings, achieving robust designs, and generating predictive math models that describe physical system behavior.
Training / Education Classroom Seminars
Most muffler design in the automotive industry is accomplished by using "cut-and-try" methods that rely on what has worked in the past and/or extensive full-scale testing on engines for validation. New computer software aimed at muffler design can shorten the design cycle and yield more effective results. This four hour seminar provides an introduction to the behavior of mufflers and silencers including a description of the two-port approach to muffler design. This seminar covers the acoustic simulation of muffler and silencer systems and the use of experimental methods to measure muffler performance.
Anytime
Training / Education On Demand Web Seminar RePlay
While the basics of position are covered in a standard Geometric Dimensioning & Tolerancing (GD&T) course, and sometimes a lone example of composite position is given, those discussions often overlook the variations allowed that enable more accurate control based on part function. This advanced web seminar will clarify the proper use of “double-decker” position controls in GD&T. There are two distinct types: composite position (one symbol) and two single-segment position controls (two symbols). These are commonly used to locate patterns of features (bolt circles, etc.), but they are rarely taught in any depth.
Anytime
Training / Education On Demand Web Seminar RePlay
While the topic of profile is covered in a basic Geometric Dimensioning & Tolerancing (GD&T) course, those discussions often ignore the variations allowed with these symbols that enable them to be used in complex ways. This advanced web seminar will clarify the proper use of the profile tolerances in GD&T and uncover the nuances of these two symbols. Since profile of a surface is arguably the most powerful GD&T symbol, its full potential will be explored. It can be used to control size, form, orientation, and location and its relationship to datums can be varied.
Anytime
Training / Education On Demand Web Seminar RePlay
While the basics of datums are covered in a standard Geometric Dimensioning & Tolerancing (GD&T) course, those discussions often overlook the variations that enable datums to be used in complex ways. This advanced course will detail the proper use of datums, showing their full potential to make your drawings as effective as possible. Most people who use GD&T are familiar with traditional datums derived from flat surfaces, and have adequate knowledge of the principle of establishing 3-2-1 contact points.
Training / Education Online Web Seminars
While the topic of profile is covered in a basic Geometric Dimensioning & Tolerancing (GD&T) course, those discussions often ignore the variations allowed with these symbols that enable them to be used in complex ways. This advanced web seminar will clarify the proper use of the profile tolerances in GD&T and uncover the nuances of these two symbols. Since profile of a surface is arguably the most powerful GD&T symbol, its full potential will be explored. It can be used to control size, form, orientation, and location and its relationship to datums can be varied.
Training / Education Online Web Seminars
While the basics of datums are covered in a standard Geometric Dimensioning & Tolerancing (GD&T) course, those discussions often overlook the variations that enable datums to be used in complex ways. This advanced course will detail the proper use of datums, showing their full potential to make your drawings as effective as possible. Most people who use GD&T are familiar with traditional datums derived from flat surfaces, and have adequate knowledge of the principle of establishing 3-2-1 contact points.
Training / Education Online Web Seminars
While the basics of position are covered in a standard Geometric Dimensioning & Tolerancing (GD&T) course, and sometimes a lone example of composite position is given, those discussions often overlook the variations allowed that enable more accurate control based on part function. This advanced web seminar will clarify the proper use of “double-decker” position controls in GD&T. There are two distinct types: composite position (one symbol) and two single-segment position controls (two symbols). These are commonly used to locate patterns of features (bolt circles, etc.), but they are rarely taught in any depth.
Training / Education Classroom Seminars
Engineers are taught to create designs that meet customer specifications. When creating these designs, the focus is usually on the nominal values rather than variation. Robustness refers to creating designs that are insensitive to variability in the inputs. Much of the literature on robustness is dedicated to experimental techniques, particularly Taguchi techniques, which advocate using experiments with replications to estimate variation. This course presents mathematical formulas based on derivatives to determine system variation based on input variation and knowledge of the engineering function.
Training / Education Classroom Seminars
This four-hour short course intends to present an overview of electrically powered flight control actuation systems, covering commercial applications. The scope covers issues related to the mechanical design of actuators themselves, with limited reference to their control electronics. Additionally, this course will provide participants an understanding of the design considerations behind these actuation systems.
Training / Education Classroom Seminars
Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality.
Anytime
Training / Education On Demand Web Seminar RePlay
Analysis of tolerance stacks varies widely. This web seminar introduces the basic tools to create a common methodology for tolerance stack-ups, and ensure seamless documentation. Participants will create 1-D tolerance stacks for parts and assemblies that use geometric dimensioning and tolerancing using a tolerance stack spreadsheet. This simple, manual spreadsheet method produces an easily interpreted and checked documentation trail, and is easily adaptable to common electronic spreadsheet programs. Multiple examples will be provided to assist engineers in applying tolerance stack-up fundamentals to Y14.5 issues.
Viewing 31 to 60 of 74