Criteria

Text:
Content:
Display:

Results

Viewing 151 to 180 of 616
2014-05-27
WIP Standard
ARP6330
Methods will be developed to characterize In Flight Entertainment (IFE) component impact performance separate from seat design. These methods will address both initial seat head impact criterion (HIC) testing and subsequent IFE component changes. Methods will evaluate head blunt trauma, post-impact sharp edges, and egress impediment. Criteria development will involve defining test methods, test parameters, measurements, and acceptance criteria. Particular emphasis on evaluating IFE changes that require coordination and evaluation per SAE ARP 6448, Appendix B.
CURRENT
2014-05-16
Standard
AIR6160
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
CURRENT
2014-05-16
Standard
J1247_201405
This SAE Recommended Practice establishes a uniform procedure for a flat-road simulation of a mountain-fade test of the brake systems of light-duty trucks and multipurpose passenger vehicles up to and including 4500 kg (10 000 lb) GVW and all classes of passenger cars.
2014-05-05
WIP Standard
AS5498A
The objective of this Minimum Operational Performance Specification is to specify the minimum performance of onboard inflight icing detection systems. Throughout the document, these devices are referred to as Flight Icing Detection Systems (FIDS). These systems are intended to either provide information which indicates the presence of ice accreted in flight on monitored surfaces or indicate the presence of icing conditions in the atmosphere. They may operate the airplane anti-ice/deice systems. Detection of ice accreted on the ground is not considered in this document but can be found in ED-104. This MOPS was written for the use of FIDS on airplanes only, as defined in paragraph 1.5. Use on other aircraft may require additional considerations. Chapter 1 of this document provides information required to understand the need for the equipment characteristics and tests defined in the remaining chapters.
CURRENT
2014-04-16
Standard
J1113/26_201404
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
CURRENT
2014-04-15
Standard
AS1390
This standard establishes general requirements and descriptions of specific activities for performance of LORA during the life cycle of products or equipment. When these requirements and activities are performed in a logical and iterative nature, they comprise the LORA process.
2014-04-14
WIP Standard
AIR4174A
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft. Information is provided to assist in; a. Defining technology maturity and application risk b. Cost benefit analysis (Value analysis) c. Selection of system components d.
2014-03-06
WIP Standard
AIR6501
To provide a method that accounts for the attenuation due to line-of-sight blockage of aircraft noise by terrain features.
2014-03-06
WIP Standard
AIR6297
To provide a method for modeling the noise directivity behind start-of-takeoff roll based on empirical data from modern jet aircraft. This method would replace the method described in Section 3.3.1 of SAE-AIR-1845A "Procedure for the Calculation of Airplane Noise in the Vicinity of Airports."
CURRENT
2014-02-21
Standard
AS210
“Hot Day”, “Tropical Day”, “Standard Day”, “Polar Day”, and “Cold Day” are part of the lexicon of the aircraft industry. These terms are generally understood to refer to specific, generally accepted characteristics of atmospheric temperature versus pressure altitude. There are also other, less well-known days, defined by their frequency of occurrence, such as “1% Hot Day”, “10% Cold Day”, or “Highest Recorded Day”. These temperature characteristics have their origins in multiple sources, including U.S. military specifications which are no longer in force.
CURRENT
2014-02-21
Standard
ARP6109
This document is intended for use by manufacturers of aircraft, engines and Electronic Engine Controls [EECs] as a component change process and evaluation guideline. Its purpose is to provide an effective means of managing the modification of electronic hardware. The process defined in this document is based upon: an understanding of the electronic component market evolution, e.g., obsolescence; lessons learned from the effects caused by the introduction of electrical component changes in a service fleet environment; industry best practice; and an understanding of the applicable regulations.
CURRENT
2014-02-13
Standard
ARP755D
This SAE Aerospace Recommended Practice (ARP) provides performance station designation and nomenclature systems for aircraft propulsion systems and their derivatives. The systems presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents.
CURRENT
2014-02-10
Standard
GEIAHB0007B
CURRENT
2014-01-24
Standard
J2264_201401
This procedure covers vehicle operation and electric dynamometer load coefficient adjustment to simulate track road load within dynamometer inertia and road load simulation capabilities.
CURRENT
2014-01-07
Standard
ARP5029A
This SAE Aerospace Recommended Practice (ARP) provides the user with standardized guidelines for the measurement of effective intensity of strobe anticollision lights for aircraft in the laboratory, in maintenance facilities, and in the field. A common source of traceability for calibration of the measurement systems, compensation for known causes of variation in light output, and recommendations which minimize sources of errors and uncertainties are included in this document. Estimates of uncertainty and error sources for each class of measurement are discussed.
HISTORICAL
2014-01-03
Standard
AS755E
This SAE Aerospace Standard (AS) provides performance station designation and nomenclature systems for aircraft propulsion systems and their derivatives. The systems presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The list of symbols presented herein will be used for identification of input and output parameters. These symbols are not required to be used as internal parameter names within the engine subprogram.
CURRENT
2014-01-02
Standard
J2998_201401
The Model Description Documentation Recommended Practice for Ground Vehicle System and Subsystem Simulation defines the recommended information content to be included for documenting dynamical models used for simulation of ground vehicle systems. It describes the information that should be compiled to describe a model for the following user applications or use cases: (1) exchange, promotion, and selection; (2) creation requests; (3) development process management; (4) compatibility evaluation, (5) testing-in-the-loop simulations with hardware and/or software; (6) simulation applications; and (7) development and maintenance. For each use case, a Model Description Documentation (MDD) template is provided in the appendices to facilitate model documentation. In addition, an example of a completed model documentation template is provided in the appendices.
2013-12-19
WIP Standard
ARP6290
This SAE Aerospace Recommended Practice (ARP) provides best practices and guidance for creating an architecture for integrated vehicle health management systems. Where possible, this document will also provide references to tools to conduct architectural trades. Finally, this document will provide use cases to expose considerations and stakeholders to be included in these trades and utilization of an IVHM system (which may lead to new functional or non-functional requirements).
CURRENT
2013-12-02
Standard
ARP4752B
This SAE Aerospace Recommended Practice (ARP) provides guidance for the design and installation of a commercial aircraft hydraulic system to meet the applicable requirements, including the applicable airworthiness regulations that affect the hydraulic system design. This ARP also provides information and guidelines on the many factors that arise in the design process to provide cost effectiveness, reliability, maintainability and accepted design and installation practices.
2013-10-18
WIP Standard
ARP5571C
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
CURRENT
2013-10-04
Standard
ARP5571B
This document provides recommendations for several aspects of air-breathing gas turbine engine performance modeling using object-oriented programming systems. Nomenclature, application program interface, and user interface are addressed with the emphasis on nomenclature. The Numerical Propulsion System Simulation (NPSS) modeling environment is frequently used in this document as an archetype. Many of the recommendations for standards are derived from NPSS standards. NPSS was chosen because it is an available product. The practices recommended herein may be applied to other object-oriented systems. While this document applies broadly to any gas turbine engine, the great majority of engine performance computer programs have historically been written for aircraft propulsion systems. Aircraft and propulsion terminology and examples appear throughout.
CURRENT
2013-09-19
Standard
ARP6461
This document is applicable to civil aerospace airframe structural applications where stakeholders are seeking guidance on the definition, development and certification of Structural Health Monitoring (SHM) technologies for aircraft health management applications. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future.
CURRENT
2013-08-29
Standard
ARP4874A
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the format and content of documents defining the interface between electronic propulsion control systems and aircraft systems. The scope includes civilian aircraft powered by turbofan, turboprop, and turboshaft engines equipped with electronic engine controls.
CURRENT
2013-08-10
Standard
ARP5534
This document presents a practical method for calculating atmospheric absorption for wide-band sounds analyzed with one-third octave-band filters, called the SAE Method. The SAE Method utilizes pure-tone attenuation algorithms originally published in ISO 9613-1 and ANSI S1.26-1995 to calculate path-length attenuation at mid-band frequencies. The equations introduced in this standard transform the pure-tone, mid-band attenuation to one-third octave-band attenuation. The purpose of this guidance document is to extend the useful attenuation range of the Approximate Method outlined in ANSI S1.26-1995, and to replace ARP866A. Calculation of sound attenuation caused by mechanisms other than atmospheric absorption such as divergence, refraction, scattering due to turbulence, ground reflections, or non-linear propagation effects, is outside the scope of this document.
2013-07-19
WIP Standard
ARP1307C
Test procedures are described for measuring noise at specific receiver locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Procedures are also described for measuring noise level and directivity at noise source locations to facilitate the understanding and interpretation of the data. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. This document makes no provision for predicting APU or component noise from basic engine characteristics or design parameters, nor for measuring noise of more than one aircraft operating at the same time. No attempt is made to suggest acceptable levels of noise or suitable subjective criteria for judging acceptability. ICAO Annex 16 Volume I Attachment C provides guidance on recommended maximum noise levels.
CURRENT
2013-07-09
Standard
AIR5925A
The report shows how the methodology of measurement uncertainty can usefully be applied to test programs in order to optimize resources and save money. In doing so, it stresses the importance of integrating the generation of the Defined Measurement Process into more conventional project management techniques to create a Test Plan that allows accurate estimation of resources and trouble-free execution of the actual test. Finally, the report describes the need for post-test review and the importance of recycling lessons learned for the next project.
CURRENT
2013-06-18
Standard
CPGM1_14LTGCAD
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2013-06-18
Standard
CPGM1_14LTGMAL
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2013-06-18
Standard
CPGM2_14LTGMAL
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2013-06-18
Standard
CPGM2_14LTGCAD
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Viewing 151 to 180 of 616