Criteria

Text:
Content:
Display:

Results

Viewing 121 to 150 of 641
2015-10-13
WIP Standard
AIR5509A
This document defines the process steps involved in collecting and processing engine test data for use in understanding engine behavior. It describes the use of an aero-thermal cycle model for reduction and analysis of those data. The analysis process may include the calculation of modifiers to match the model to measured data, and prediction of engine performance based on that analysis
CURRENT
2015-09-22
Standard
J968/2_201509
This part of SAE J968 specifies the flow measuring system, including the fixture, to be used for flow testing the single hole orifice plates used in an orifice plate type nozzle and holder assembly (described in SAE J968-1) which is intended for testing and setting diesel fuel injection pumps on test benches. The flow measuring system and fixture ensure accurate flow testing of the entire range of orifices from 0.4 to 0.8 mm diameter as specified in SAE J968-1. It is intended primarily for use by the manufacturers of single hole orifice plates.
CURRENT
2015-09-17
Standard
J1526_201509
This document describes a fuel-consumption test procedure that utilizes industry accepted data collection and statistical analysis methods to determine the difference in fuel consumption between vehicles with a gross vehicle weight of more than 10,000 pounds. This test procedure can be used for an evaluation of two or more different vehicles but is not to be used to evaluate a component change. Although on-road testing is allowed, track testing is the preferred method because it has the greatest opportunity to minimize weather and traffic influences on the variability of the results. All tests shall be conducted in accordance with the weather constraints described within this procedure and shall be supported by collected data and analysis. This document provides information that may be used in concert with SAE Recommended Practices J1264, J1252, J1321, and J2966 as well as additional current and future aerodynamic and vehicle performance SAE standards.
CURRENT
2015-09-14
Standard
AIR5771
This report covers engine tests performed in Altitude Test Facilities (ATFs) with the primary purpose of determining steady state thrust at simulated altitude flight conditions as part of the in-flight thrust determination process. As such it is complementary to AIR1703 and AIR5450, published by the SAE E-33 Technical Committee. The gross thrust determined using such tests may be used to generate other thrust-related parameters that are frequently applied in the assessment of propulsion system performance. For example: net thrust, specific thrust, and exhaust nozzle coefficients. The report provides a general description of ATFs including all the major features. These are: Test cell air supply system. This controls the inlet pressure and includes flow straightening, humidity and temperature conditioning. Air inlet duct and slip joint. Note that the report only covers the case where the inlet duct is connected to the engine, not free jet testing.
2015-09-03
WIP Standard
AIR6345
The guidelines addressed in this Aerospace Information Report (AIR) applies only to the simulation and subsequent data-reduction of inlet total-pressure distortion data from Computational Fluid Dynamic (CFD). The guidelines can be used as part of a turbine-engine inlet-flow-distortion methodology.
CURRENT
2015-08-27
Standard
J3049_201508
The “Model Architecture and Interfaces Recommended Practice for Ground Vehicle System and Subsystem Dynamical Simulation” defines the architectural structure of a ground vehicle system dynamical model by partitioning it into subsystem models and by defining subsystem interfaces required to enable plug-and-play operation of a dynamical simulation models. All types of ground vehicle were considered in the development of the architecture, such as, passenger cars, light and medium duty trucks, heavy duty tractor trailer trucks, and vehicles/equipment for military, farming, construction, and mining. Versatility of this architectural partitioning is demonstrated by showing how it can be applied to different vehicle configurations. Application examples of architecture are provided for a large number of the publicly known ground vehicle configurations in production, testing, or development.
CURRENT
2015-08-24
Standard
MAP749C
This SAE Aerospace Recommended Practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter performance and service life. ARP1827 is recommended for filter performance evaluation.
CURRENT
2015-08-11
Standard
J2994_201508
The SAE Recommended Practice specifies a standardize method and test procedure to measure low pressure differential (< 1bar) brake component brake fluid flow performance. The standard can be utilized for flow measurements across hydraulic brake components such as master cylinders, apply system to chassis controls piping, or other sources of flow restriction in the low pressure side of the hydraulic brake system. It covers materials, manufacturing processes, and general properties required to meet the wide range of service encountered in automotive application. This specification covers only low pressure differential fluid flow and does not include measurement recommended practice for High Pressure differential (> 1 bar) flows.
CURRENT
2015-07-15
Standard
J182_201507
This SAE Recommended Practice describes a procedure for locating the three-dimensional reference system on a motor vehicle as built.
CURRENT
2015-07-01
Standard
EIAIS116
This document is intended to be used by anyone wishing to understand and/or use CDIF. This document provides a definition of a single subject area of the CDIF Integrated Meta-model. It is suitable for: - those evaluating CDIF - those who wish to understand the principles and concepts of a CDIF transfer - those developing importers and exporters.
CURRENT
2015-07-01
Standard
EIAIS118
This document is intended to be used by anyone wishing to understand and/or use CDIF. This document provides a definition of a single subject area of the CDIF Integrated Meta-model. It is suitable for: -those evaluating CDIF -those who wish to understand the principles and concepts of a CDIF transfer -those developing importers and exporters.
CURRENT
2015-07-01
Standard
EIAIS103A
This document is the authoritative reference for the Library of Parameterized Modules (LPM) standard version 2 1 O. This specification defines the semantics of each module along with a complete description of the module's functionality as well as the syntaxfor instantiating LPM modules in an EDIF netlist. The intended audience for this document is CAE vendors, silicon vendors, and only secondarily, logic designers. It is assumed that the reader is familiar with logic design, design automation tools and silicon implementation options. What the reader should get out of this document is an understanding of the benefits of the LPM standard as well as the details required to implement an LPM interface.
CURRENT
2015-07-01
Standard
EIAIS112
This document is intended to be used by anyone wishing to understand and/or use CDIF. This document provides a definition of a single subject area of the CDIF Integrated Meta-model. It is suitable for: - those evaluating CDIF - those who wish to understand the principles and concepts of a CDIF transfer - those developing importers and exporters.
CURRENT
2015-07-01
Standard
EIAIS115
This document is intended to be used by anyone wishing to understand and/or use CDIF. This document provides a definition of a single subject area of the CDIF Integrated Meta-model. It is suitable for: - those evaluating CDIF - those who wish to understand the principles and concepts of a CDIF transfer -those developing importers and exporters.
CURRENT
2015-07-01
Standard
EIAIS114
This document is intended to be used by anyone wishing to understand andor use CDIF. This document provides a definition of a single subject area of the CDIF Integrated Meta-model. It is suitable for: - those evaluating CDIF - those who wish to understand the principles and concepts of a CDIF transfer - those developing importers and exporters.
CURRENT
2015-07-01
Standard
EIA548
Scope is unavailable.
CURRENT
2015-06-30
Standard
J2944_201506
This Recommended Practice, Operational Definitions of Driving Performance Measures and Statistics, provides functional definitions of and guidance for performance measures and statistics concerned with driving on roadways. As a consequence, measurements and statistics will be calculated and reported in a consistent manner in SAE and ISO standards, journal articles proceedings papers, technical reports, and presentations so that the procedures and results can be more readily compared. Only measures and statistics pertaining to driver/vehicle responses that affect the lateral and longitudinal positioning of a road vehicle are currently provided in this document. Measures and statistics covering other aspects of driving performance may be included in future editions. For eye glance-related measures and statistics, see SAE J2396 (Society of Automotive Engineers, 2007) and ISO 15007-1 (International Standards Organization, 2002).
2015-06-16
WIP Standard
J3103
The test procedure included in this document are used to determine a benchmark SgRP for Class A vehicles where design intent information is unknown.
2015-05-05
WIP Standard
J3099
Presents the seating accommodation model used to determine seat track length for accommodation in design.
2015-04-28
WIP Standard
AIR6892
This SAE Aerospace Information Report (AIR) is applicable to rotorcraft structural health monitoring (SHM) applications, both commercial and military, where end users are seeking guidance on the definition, development, integration, qualification, and certification of SHM technologies to achieve enhanced safety and reduced maintenance burden based on the lessons learned from existing Health and Usage Monitoring Systems (HUMS). While guidance on SHM business case analysis would be useful to the community, such guidance is beyond the scope of this AIR. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure.” The suite of on-board sensors could include any presently installed aircraft sensors as well as new sensors to be defined in the future. Interrogation of the sensors could be done onboard during flight or using ground support equipment.
CURRENT
2015-04-21
Standard
ARP9034A
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
CURRENT
2015-04-21
Standard
J1759_201504
The Measurement of Coolant Hose task group conducted a round-robin study to determine the measuring capability of automotive suppliers and users to measure Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall) and wall thickness variation of hose using traditional measuring devices and techniques. Seven companies (five suppliers and two end users) participated in this testing. Based upon the round-robin study this information report will detail procedures, test measuring devices, results and recommendations.
CURRENT
2015-04-21
Standard
J2605_201504
The Hose Measurement Task Force conducted a round-robin study to determine the measuring capability of automotive suppliers and users to simultaneously measure the Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall), and Wall thickness Variation (WV) of hose using a laser-based, non-contact LOTIS QC-20 gauging device. Three (3) companies (all end users) participated in this testing with one of the three companies performing the GR&R calculations presented herein. Based upon the round-robin study this report will detail procedures, test measuring devices, results, and conclusions.
CURRENT
2015-03-30
Standard
USCAR43
This document describes the design and assembly force guidelines for conventional shipping caps, torque caps, and body plugs. All possible design and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department.
CURRENT
2015-03-09
Standard
ARP4148C
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use. Models used in this application may also be contained in deliverable computer programs covered by AS681.
CURRENT
2015-02-26
Standard
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
CURRENT
2015-02-05
Standard
AS13003
This standard defines the minimum requirements for conducting Measurement Systems Analysis (MSA) for variable and attribute assessment on characteristics as defined on the drawing or specification. It does not define the detailed analytical methods for each type of study as these can be found in existing published texts (see Section 2 for guidance).
CURRENT
2015-02-03
Standard
J1727_201502
This SAE Recommended Practice presents a series of standard calculations and numerical methods for processing safety test instrumentation data that has been acquired during impact tests with instruments installed in ATD’s (crash test dummies), vehicle structures, and laboratory fixtures. The output data from performing these calculations may have applications that include energy analysis, biomechanical analysis, regulation compliance, or other purposes. However, application of the output data from these calculations is outside the scope of this document. It is the intent of this document to present a basic set of calculations that are applicable to test labs that follow the practices set forth by SAE J211-1, SAE J211-2, SAE J2570, and SAE J1733. For the calculations that are described in other sources, the relevant documents are referenced.
2014-12-22
WIP Standard
AIR6508
This SAE Aerospace Information Report (AIR) provides a performance station designation system for unconventional propulsion cycles and their derivatives. The station numbering conventions presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The contents of this document will follow AS755 where applicable.
2014-11-23
WIP Standard
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a. Cabin heating (all occupied regions and windshield heating) b. Wing and empennage anti-icing c. Engine and accessory heating (when heater is installed as part of the aircraft) d. Aircraft de-icing
Viewing 121 to 150 of 641