Criteria

Text:
Content:
Display:

Results

Viewing 31 to 60 of 692
2017-09-18
WIP Standard
J1574/1
The parameters measured according to this SAE Recommended Practice will generally be used in simulating directional control performance in the linear range. (The “linear range” is the steady-state lateral acceleration below which steering wheel angle can generally be considered to be linearly related to lateral acceleration.) But they may be used for certain other simulations (such as primary ride motions), vehicle and suspension characterization and comparison, suspension development and optimization, and processing of road test data. This document is intended to apply to passenger cars, light trucks, and on-highway recreational and commercial vehicles, both non-articulated and articulated. Measurement techniques are intended to apply to these vehicles, with alterations primarily in the scale of facilities required.
CURRENT
2017-09-15
Standard
AIR6189
This SAE Aerospace Information Report (AIR) provides descriptions of test procedures and established practices for the application, use, and administration of the conduct of icing testing for all types of turbine engines in conventional supercooled liquid (14 CFR Part 25 Appendix C) environmental conditions in ground test facilities (sea-level and altitude) for icing certification purposes.
CURRENT
2017-09-13
Standard
ARP5637A
The information in this document is intended to apply to commercial jet transport category airplanes that incorporate plastic (polycarbonate or acrylic) lenses on exterior light assemblies, or are being considered for such an application as opposed to glass lens designs. Exterior lighting applications include position light assemblies, anticollision light asemblies, and landing light assemblies. However, much of the material provided herein is general in nature and is directly applicable to many aircraft categories including, but not limited to, helicopters, general aviation aircraft, and military aircraft.
CURRENT
2017-09-13
Standard
J2597_201709
This SAE Recommended Practice defines a procedure for the use of computer generated saturation curves to determine peening intensity. Calculation of intensity within a tolerance band for each data set in Table 1 one is required for compliance with this practice.
CURRENT
2017-09-05
Standard
J2704_201709
This SAE Recommended Practice describes a test method for determining the vertical force and deflection properties of a non-rolling tire and the associated contact patch length and width. The method applies to any tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this Recommended Practice, forces applied to the pavement are not considered.
CURRENT
2017-09-05
Standard
J2718_201709
This SAE Recommended Practice describes application of two closely related test procedures, which together determine the linear range longitudinal and lateral stiffnesses of a statically loaded non-rotating tire. The procedures apply to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered.
CURRENT
2017-08-28
Standard
AS13004
This standard defines requirements for the identification, assessment, mitigation, and prevention of risk in the manufacturing process through the application of Process Flow Diagrams (PFDs), Process Failure Mode and Effects Analysis (PFMEA) and Control Plans throughout the life cycle of a product. This standard aligns and collaborates with the requirements of AS9100, AS9102, AS9103, and AS9145. The requirements specified in this standard apply in conjunction with and are not alternative to contractual and applicable statutory and regulatory requirements. In case of conflict between the requirements of this standard and applicable statutory or regulatory requirements, the latter shall take precedence.
2017-08-23
WIP Standard
AMS7100
This specification establishes the critical controls and requirements for the production of reliable, repeatable, reproducible aerospace parts by Fused Deposition Modeling (FDM) or other material extrusion production. This procedure will establish guidelines that FDM® System users shall follow to approve new machines, processes, materials, etc. Specifically, this specification covers the configuration of the machine, operating software, machine calibration, machine and build parameters, and testing methodology required to create certified additively manufactured aerospace parts. This specification also outlines the FDM system user responsibility for following the established guidelines and documentation requirements. The Stratasys Fortus® 900mc Plus Printer with ULTEMTM 9085 will be used as an example to demonstrate the control needed to create SAE certified aerospace parts manufactured using FDM systems.
2017-08-23
WIP Standard
AMS7101
This specification establishes the certification requirements for materials to be used in Fused Deposition Modeling (FDM) or other material extrusion additive manufacturing production for aerospace components. This specification outlines the technical information, production guidelines and documentation requirements for FDM® material manufacturer. It will initially target several grades of PEI Copolymer (ULTEMTM 9085) and an enhance flow PEI (ULTEMTM 1010) materials as certified material examples.
CURRENT
2017-08-14
Standard
J1355_201708
This SAE Recommended Practice describes a laboratory test procedure for measuring the thickness of various resilient insulating padding materials that are used in the automotive industry. Such padding materials may include synthetic or non-synthetic materials, fibrous or cellular materials, high loft or compressed materials, single layer homogeneous or multilayer products, low and high surface density products. Some of these samples may be deformable and elastic, high loft thermal and acoustical fibrous materials, as well. The test method described herein has been developed to establish a means of a uniform procedure for measuring the thickness of different types of samples not only for application to all ground vehicles, but also may be applicable to other situations or conditions. The test method is designed to measure the thickness of flat samples and not formed parts. This test method does not purport to address all of the safety concerns, if any, associated with its use.
CURRENT
2017-08-14
Standard
J1806_201708
Although not limited to, these clutches are normally used on trucks considered as Medium-Duty (Class 6 and 7), as well as Heavy-Duty (Class 8).
2017-08-10
WIP Standard
ARP5151A
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, aircraft), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is to help a company establish and meet its own internal standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness. Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the Ongoing Safety Assessment Process.
CURRENT
2017-08-09
Standard
J701_201708
The information in this SAE Information Report is the result of studies by the Automobile Manufacturers Association, American Trucking Association, and Truck Trailer Manufacturers Association, to achieve interchangeability of equipment which will comply with the legal dimensional limitations for the majority of states and yet permit increased loading space within these dimensions. This in no way supersedes other information in the SAE Handbook on this subject. Some cases will require more care in application allowing splash shield clearance at trailer support interference points and positioning fifth wheel to allow trailer swing clearance on an 11% grade. All dimensions are given in inches. Table 1 and Figures 1 and 2 show basic requirements for interchangeability of truck tractor and semitrailer equipment. Figure 3 shows the interchangeability of the doubles converter dolly.
CURRENT
2017-08-09
Standard
J442_201708
This SAE standard defines requirements for equipment and supplies to be used in measuring shot peening arc height and other surface enhancement processes. Guidelines for use of these items can be found in SAE J443 and SAE J2597.
CURRENT
2017-08-09
Standard
AS1708G
2017-07-31
WIP Standard
AMS7005
This specification establishes process controls for the repeatable production of aerospace parts by High Deposition Rate (HDR). It is intended to be used for aerospace parts manufactured using Additive Manufacturing (AM) metal alloys, but usage is not limited to such applications.
CURRENT
2017-07-19
Standard
ARP798B
This SAE Aerospace Recommended Practice (ARP) covers the general requirements and test procedures recommended for use with white incandescent integrally lighted instruments. Its use should provide uniformity of illumination from instrument to instrument and legibility under daylight operation. An appendix is provided to familiarize the designer with some of the techniques used to obtain uniformity of color and illumination in various types of instruments.
CURRENT
2017-07-13
Standard
J1400_201707
This SAE Recommended Practice presents a test procedure for determining the airborne sound insulation performance of materials and composite layers of materials commonly found in mobility, industrial and commercial products under conditions of representative size and sound incidence so as to allow better correlation with in-use sound insulator performance. The frequency range of interest is typically 100 to 8000 Hz 1/3 octave-band center frequencies. This test method is designed for testing flat samples with uniform cross section, although in some applications the methodology can be extended to evaluate formed parts, pass-throughs, or other assemblies to determine their acoustical properties. For non-flat parts or assemblies where transmitted sound varies strongly across the test sample surface, a more appropriate methodology would be ASTM E90 (with a reverberant receiving chamber) or ASTM E2249 (intensity method with an anechoic or hemi-anechoic receiving chamber).
CURRENT
2017-07-10
Standard
AIR5565
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available.
CURRENT
2017-07-06
Standard
AIR6297
This document describes a method to calculate noise level adjustments at locations behind an airplane (described by an angular offset or directivity) at the start of takeoff roll (SOTR). This method is derived from empirical data from jet aircraft (circa 2004), most of which are configured with wing-mounted engines with high by-pass ratios (Lau, et al., 2012). Methods are also described which apply to modern turboprop aricraft. Calculations of other propagation-related adjustments required for aircraft noise prediction models are described in AIR1845A, ARP5534, ARP866A, and AIR5662.
CURRENT
2017-06-28
Standard
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
CURRENT
2017-06-09
Standard
ARP4912C
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down.
CURRENT
2017-06-09
Standard
J2899_201706
This SAE Recommended Practice applies to S-CAM, Wedge, and Disc air brake actuators where the stroke can be measured without disassembly from the brake.
CURRENT
2017-06-09
Standard
J2999_201706
This SAE Standard provides a method for determining the Effective Projected Luminous Lens Area (EPLLA) of a lamp function using design analysis. This standard was created to clarify and address how to determine EPLLA with traditional and new technologies.
CURRENT
2017-06-07
Standard
J2494/2_201706
This SAE Standard covers general dimensional specifications for non-metallic body reusable push to connect tube fittings for use in the piping of air brake systems on automotive vehicles. This type of fitting is intended for use with nylon tubing per SAE J844. It is not intended to restrict or preclude other designs of a tube fitting for use with SAE J844. Performance requirements for SAE J844 are covered in SAE J1131. See SAE J2494-3 for the performance requirements of Reusable (push-to-connect) fittings intended for use in Automotive Air Brake Systems and U.S. Department of Transportation FMVSS 571.106.
CURRENT
2017-06-01
Standard
J1390_201706
Three levels of fan structural analysis are included in this practice: Initial Structural Integrity In-vehicle Testing Durability (Laboratory) Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
2017-05-31
WIP Standard
ARP5794A
This specification covers the general requirements for aircraft tank mounted, centrifugal type, fuel booster pumps, used for engine fuel feed and/or fuel transfer.
CURRENT
2017-05-26
Standard
J2396_201705
This SAE Recommended Practice defines key terms used in the description and analysis of video based driver eye glance behavior, as well as guidance in the analysis of that data. The information provided in this practiced is intended to provide consistency for terms, definitions, and analysis techniques. This practice is to be used in laboratory, driving simulator, and on-road evaluations of how people drive, with particular emphasis on evaluating Driver Vehicle Interfaces (DVIs; e.g., in-vehicle multimedia systems, controls and displays). In terms of how such data are reduced, this version only concerns manual video-based techniques. However, even in its current form, the practice should be useful for describing the performance of automated sensors (eye trackers) and automated reduction (computer vision).
CURRENT
2017-05-18
Standard
J3052_201705
This recommended practice provides a method, test set-up, and test conditions for brake hydraulic component flow rate measurement for high differential pressure (>5 bar) flow conditions. It is intended for hydraulic brake components which affect the brake fluid flow characteristics in a hydraulic brake circuit, that are part of a circuit for which the flow characteristics are important to system operation, and that are exposed to high operating pressure differentials (in the 5 to 100 bar range). Typical applications may include measurement of flow through chassis controls valve bodies, orifices in the brake system such as in flow bolts, junction blocks, and master cylinders, and through brake pipe configurations.
CURRENT
2017-05-09
Standard
ARP1231B
This document establishes general gland design criteria for static and dynamic O-ring seal applications used in fluid systems and at fluid pressures common to the aerospace industry. Detailed discussion of design criteria and tables of recommended gland dimensions are contained in the documents listed in Table 1. SI unit conversions for U.S. customary units have been provided for reference purposes.
Viewing 31 to 60 of 692