Display:

Results

Viewing 1 to 30 of 5586
2017-10-08
Technical Paper
2017-01-2408
Lei Zhou, Hongxing Zhang, Zhenfeng Zhao, Fujun Zhang
The Opposed Piston Two-Stroke (OPTS) engine has several advantages for power density, fuel tolerance, fuel efficiency and package space. A new type of balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. The effects of high altitude environment on engine performance and emissions are investigated by thermodynamic simulation. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicate that a suitable turbocharger for OPTS engine can achieve the purpose of improving the quality of scavenging, lowering the fuel consumption and recovering power at high altitude environment. Finally, an optimized OPTS engine model especially for UAV is proposed in this research.
2017-10-08
Journal Article
2017-01-2293
Jim Barker, Jacqueline Reid, Sarah Angel Smith, Colin Snape, David Scurr, Graham Langley, Krina Patel, Anastarsia Carter, Cris Lapthorn, Frank Pullen
Abstract Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
2017-09-19
Technical Paper
2017-01-2160
Ferdinand Spek, Maarten Weehuizen, Ilja Achterberg
In new aircraft programs, systems’ functionality is increasingly becoming integrated into modular avionics. Controllers may not be delivered by the systems supplier so this trend creates a new interface between systems and controllers. A functional software specification is therefore needed to facilitate the building of the software by the controller supplier. In the case of an ECS system controller, the hardware was obtained from different suppliers and a software functional specification was needed for the controller supplier. To be able to design and verify the system functionality, an integrated ECS simulation model was created which coupled the thermodynamics of the aircraft and ECS system to the controller actions. The model also included functionality to simulate sensor noise and component failures. The thermodynamic model was created in Matlab/Simulink and consisted of a combination of direct programming as well as data on a Flowmaster model for the bleed system.
2017-09-19
Technical Paper
2017-01-2159
Federico Cappuzzo, Olivier Broca, Jeremy Leboi
To answer the ever-increasing complexity of aircraft, it becomes of foremost importance to better and earlier assess the interactions among their systems and sub-systems. The study presents the Virtual Integrated Aircraft (VIA) methodology, which allows achieving the integration of aircraft systems with virtual means, complementing and preceding physical integration, which is usually completed at the end of the validation and integration phase. LMS Imagine.Lab platform provides the means for applying this methodology. A simulation architecture, integrating models from different platforms, is built and simulations are run on High Performance Computers (HPC) to cover multiple scenarios and therefore validate the selected architecture and pre-design in the early system development phases. Equipment, systems and subsystems are essential for the performance, safety, reliability and comfort.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C[1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentability needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2144
Michele Trancossi, Mohammad Hussain, Sharma Shivesh, Jose Pascoa
This paper is a preliminary step in the direction of the definition of a radically new wing concept that has been conceived to maximize the lift even at low speeds. It is expected to equip new aerial vehicle concepts that aim to compete against helicopters and tilt rotors. They are expected to achieve very good performance at very low speed (5 to 30 m /s) by mean of an innovative concept of morphing ducted-fan propelled wing that has been designed to maximize the lift force. This paper presents an effective bibliographic analysis of the problem that is a preliminary necessary step in the direction of the preliminary design of the wing and the vehicle.
2017-09-19
Technical Paper
2017-01-2044
Mithilesh Kumar Sahu, Tushar Choudhary, Sanjay Y
Aircraft engines powering propulsion of the aircraft is the key component of the system. In aircraft industry it is desirable that an aircraft engines should supply high speeds (for military fighters) with low maintenance (for civil airplanes). In this regard an integration of gas turbine engines with traditional propeller has been introduced and termed as turboprop engine. In present work, a gas turbine with cooled blading has been proposed to be the turboprop engine which has been exergoeconomically analysed to assess the performance and economics related to the proposed turboprop engine. Exergoeconomic analysis is a tool which combines thermodynamic analysis and economic principles to provide information that is helpful to predict thermodynamic performance and total cost of the engine (thermal system). The methodology includes energy, exergy and cost balance equations for component-wise modelling of whole system.
2017-09-19
Technical Paper
2017-01-2046
Pejman Akbari, Ian Agoos
The Wave Disk Engine (WDE) is a novel engine that has the potential for higher efficiency and power density of power-generation systems. A recent version of wave disk engine architecture known as the two-stage WDE has been studied to address existing challenges of an existing WDE. After describing the engine operation, a cold air-standard thermodynamic model supporting the physical phenomena occurring inside the device is introduced to evaluate performance of the engine. The developed model is general and does not depend on the shape of the wave rotor, it can be applied to radial and axial combustion wave rotors integrated with turbomachinery devices. The analysis starts with predicting internal waves propagating inside the channels of the engine and linking various flow states to each other using thermodynamics relationships. The goal is to find analytical expressions of work output and efficiency in terms of known pressure and temperature ratios.
2017-09-19
Technical Paper
2017-01-2125
Mohammad Barkat, Vivek Karan, Pradeep N
The exponential increase in the number of aircrafts and air travellers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
2017-09-19
Technical Paper
2017-01-2020
Michael Croegaert
Modern military aircraft platforms are using more and more power which results in an ever increasing power density (SWaP). This in turn, generates more heat that has to be dissipated from the instrument panel and cockpit of the aircraft. Complicating this further is that the use of structural composites which are not efficient conductors of heat and the mission requirements of small heat signatures. Therefore alternative means of extracting the heat from the avionics systems must be used. Liquid cooled systems have the advantage over air cooled systems of a much higher heat transfer rate and the fact that the heat can be transported a significant distance from the source. Liquid cooled avionics have their own challenges as well. The architecture of the components (cold plates, etc) used for extracting the heat from the electronics component must be optimized to perform consistently and reliably while maintaining the smallest footprint possible in the already crowded instrument panel.
2017-09-19
Technical Paper
2017-01-2034
Bailey Hall, Benjamin Palmer, Tyler Milburn, Luis Herrera, Bang Tsao, Joseph Weimer
Abstract Future aircraft will demand a significant amount of electrical power to drive primary flight control surfaces. The electrical system architecture needed to source these flight critical loads will have to be resilient, autonomous, and fast. Designing and ensuring that a power system architecture can meet the load requirements and provide power to the flight critical buses at all times is fundamental. In this paper, formal methods and linear temporal logic are used to develop a contactor control strategy to meet the given specifications. The resulting strategy is able to manage multiple contactors during different types of generator failures. In order to verify the feasibility of the control strategy, a real-time simulation platform is developed to simulate the electrical power system. The platform has the capability to test an external controller through Hardware in the Loop (HIL).
2017-09-19
Technical Paper
2017-01-2033
Minh-khoa. Lam, Christopher Buterhaugh, Luis Herrera, Bang Tsao
Abstract The amount of electrical power required for future aircraft is increasing significantly. In this paper, a comprehensive model of a drive shaft with multiple degrees of freedom was developed and integrated to detailed engine and electrical network models to study the impact of higher electrical loads. The overall system model is composed of the engine, shafts, gearbox, and the electric network. The Dynamic Dual Spool High Bypass JT9D engine was chosen for this study. The engine was modeled using NASA’s T-MATS (Toolbox for the Modeling and Analysis of Thermodynamic Systems) software. In the electrical side, one generator was connected to the Low Pressure (LP) shaft and the other to the High Pressure (HP) shaft. A modified model of the shafts between the engine and the accessory gearbox was created.
2017-09-19
Technical Paper
2017-01-2039
Michael Sielemann, Changsoo Lee, Victor-Marie LeBrun, Chiwoo Ahn, Arnaud Colleoni, Dongkyu Lee, JeongSeok Lee, Anh Nguyen, Katrin Proelss, Hyon Min Yoon
Abstract Thermal management on aircraft has been an important discipline for several decades. However, with the recent generations of high performance aircraft, thermal management has evolved more and more into a critical performance and capability constraint on the whole aircraft level. Fuel continues to be the most important heat sink on high performance aircraft, and consequently the requirements on thermal models of fuel systems are expanding. As the scope of modeling and simulation is widened in general, it is not meaningful to introduce a new isolated modeling and simulation capability. Instead, thermal models must be derived from existing model assets and eventually enable integration across several physical domains. This paper describes such an integrated approach based on the Modelica Fuel System Library and the 3DExperience Platform.
2017-09-19
Technical Paper
2017-01-2108
Denis Buzdalov, Alexey Khoroshilov
Different modelling techniques intended to deal with complexity of modern IMA systems are widely used now. Models can be used to help developers to lay out relevant information structurally. They can also be used to perform different formal analyses on machine-readable models like schedulability analysis, network load checks, WCET for software parts, FTA and FMEA and etc. For some kinds of analyses, special models are created on different stages of development. We suppose that reuse of models for different aspects and development stages is generally a good thing. In some cases it allows to reduce costs on development process; also it allows to make preservation of consistency between models more automatic. We are aware that using the same model for different stages or aspects can cause additional cost in the model maintenance. In this paper we are trying to make a step to further (including practical) research on this topic.
2017-09-19
Technical Paper
2017-01-2158
Fernando Stancato, Luis Carlos dos Santos, Marcelo Pustelnik
Abstract A problem of interest of the aeronautical industry is the positioning of electronic equipment in racks and the associated ventilation system project to guarantee the equipment operational conditions. The relevance of the proper operation of electronic equipment increases considerably when high economical costs, performance reduction and safety are involved. The appropriate operational conditions of the electronic components happen when the working temperature of the equipment installed in the rack is inside a safety project temperature margin. Therefore, the analysis and modelling of heat transfer processes for aircraft rack design becomes mandatory. This paper presents a parametric study considering volumetric and superficial heat generation in electronic equipment within racks in an aircraft. Simulations were performed using the commercial CFD Fluent code and results were compared to experimental data.
2017-09-19
Technical Paper
2017-01-2072
Yilian Zhang, Qingzhen Bi, Nuodi Huang, Long Yu, Yuhan Wang
Interference-fit riveting is a critical fastening technique in the field of aerospace assembly. The fatigue and sealing performance of the rivet joint are determined by the interference-fit level of the rivet joint. As a result, it is of great importance to measure the interference-fit level accurately and effectively. Conventional interference-fit level measurement methods can be divided into direct measurement (destructive test on test-piece) and indirect measurement (off-line dimensional measurement of upset rivet head). Both methods cannot be utilized in automatic riveting. In this paper, an on-line non-destructive measurement method is developed to measure the interference-fit level. By taking full advantage of servo-driving riveting integrated with force measurement, the force-deformation data of the deformed rivet can be obtained in real time. The recognized feature points from the force-deformation data can reflect the height of the upset rivet head.
2017-09-19
Technical Paper
2017-01-2088
Long Yu, Qingzhen Bi PhD, Yilian Zhang, Yuhan Wang
A novel normal measurement device for robotic drilling and countersinking has been developed in this paper. This device is mainly composed of three contact displacement sensors and a spherically compliant clamp pad. The compliance of the clamp pad allows it to be perpendicular to the part when the Multi-Function End Effector (MFEE) drives it to clamp the part surface prior to drilling, while the displacement sensors are used to measure the movement of the clamp pad relative to the MFEE. Once the sensors’ position is calibrated, the rotation angle of the clamp pad can be calculated by the displacement of the sensors. Then, the normal adjustment of MFEE is obtained, and the adjustment process can be achieved by the Tool Center Point (TCP) function of robot. Thus, an innovative method based on laser tracker to identify the position of sensors is proposed.
2017-09-19
Technical Paper
2017-01-2107
Thorsten Kiehl, Jan Philip Speichert, Ethan Higgins, Ralf God
For an “end-to-end passenger experience that is secure, seamless and efficient” the International Air Transport Association (IATA) proposes Near Field Communication (NFC) and a single token concept to be enablers for future digital travel. NFC is a wireless technology commonly utilized in Portable Electronic Devices (PEDs) and contactless smart cards. It is characterized by the following two attributes: a tangible user interface and secured short range communication. While manufacturers are currently adapting PED settings to enable NFC in the flight mode, the integration and use of this technology in aircraft cabins still remains a challenge. There are no explicit qualification guidelines for electromagnetic compatibility (EMC) testing in an aircraft environment available and there is a lack of a detailed characterization of NFC equipped PEDs.
2017-09-19
Technical Paper
2017-01-2025
Eugenio Rodriguez
One of the most important activities associated with the Aerospace and Defense industry is maintenance. Maintainability procedures have a direct impact of safety and operational availability of the system. The processes or procedures used during maintenance activities, whether removing and replacing a component of a system, or even conducting troubleshooting, are generally discrete by design, and in most cases, a maintainer, or a field service representative (FSR), will follow a sequence of steps as part of a maintenance work package or work instruction. Depending on the system, those maintenance activities could be complex, requiring many steps to complete. In order to successfully accomplish complex tasks, generally, one of two possibilities need to exist, either the maintainer is well trained and experienced, or the maintenance work instructions are extremely detailed and precise; both of options can be time consuming and expensive to achieve.
2017-09-19
Technical Paper
2017-01-2017
Catherine Ninah, Brian Strevens, Cole Barcia, Isabelle Labbe, Michael Frenna, Austin Faulconer, Keon Habbaba, Katherine Loundy, Louis Schaefer, Alexa Frost, Andrew Foran, Robert Brown, Luis Rabelo
National Aeronautics and Space Administration (NASA) is preparing for a manned mission to Mars to test the sustainability of civilization on the planet Mars. Our research explores the requirements and feasibility of autonomously producing fuel on Mars for a return trip back to Earth. As a part of NASA’s initiative for a manned trip to Mars, our team’s work creates and analyzes the allocation of resources necessary in deploying a fuel station on this foreign soil. Previous research has addressed concerns with a number individual components of this mission such as power required for fuel station and tools; however, the interactions between these components and the effects they would have on the overall requirements for the fuel station are still a mystery to NASA. By creating a baseline discrete-event simulation model in a simulation software called Simio, the research team has been able to replicate the fuel production process on Mars.
2017-09-19
Journal Article
2017-01-2018
Won Il Jung, Larry Lowe, Luis Rabelo, Gene Lee, Ojeong Kwon
Operator training using a real weapon in a real-world environment is risky, expensive, time-consuming, and restricted to the given environment. The simulator, or a virtual simulation, is usually employed to solve these limitations. As the operator is trained to maximize weapon effectiveness, the effectiveness-focused training can be completed. However, the training was completed in limited scenarios without guidelines to optimize the weapon effectiveness for an individual operator, thus the training will not be effective with a bias. For overcoming this problem, we suggest a methodology on guiding effectiveness-focused training of the weapon operator using big data and Virtual and Constructive (VC) simulations. Big data, which includes structured, unstructured, and semi-structured types, are generated by VC simulations under a variety of scenarios.
2017-09-19
Technical Paper
2017-01-2019
Rakshath G Poojary, Mohammed Ali Jouhar, Abubakar K
Human Powered Helicopter which uses man power to operate. The main aim of this paper is to design commercially available vehicle for an Adventure Sporting under 5-6 lakh Indian Rupees. This structural design is extremely lightweight and strong. The product is designed in such a way that it can be easily assembled and dismantled for transportability and storage. We developed an aero-structural optimization scheme for rotor design, including an aerodynamic model with included ground effect prediction, finite-element analysis and integrated composite failure analysis, and a detailed weight estimation scheme. This was solely build on computer CAD models. This design includes the use of gear box to increase the output. The Aerodynamic analysis was done using CFD and BET (blade element theory-Bhramwell) in MATLAB.
2017-09-19
Technical Paper
2017-01-2021
Numair Mazgaonkar, Andrew Stankovich
For large aerospace assemblies in finite element (FE) analysis problems, contact interaction between the surrounding bodies has to be established to simulate the load transferred between the components, like aircraft engine carrying bracket assemblies, spigots assemblies etc., and understand the effects of interaction between respective parts. In some cases, depending upon geometry of the assembly, the region of study may not be contact area but the stresses acting within the parts themselves. If there is no geometric or material non-linearity in such problems, a new contact formulation method known as Fast Contact can be used in these contact regions. In this method, contact non-linearity could be introduced to simulate the problem but friction between the contacting parts should not be present. Currently, there is a scope for applying this method for solving FE problems in the aerospace and rail industry.
2017-09-19
Journal Article
2017-01-2024
Natasha L. Schatzman, Narayanan Komerath, Ethan A. Romander
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
2017-09-19
Technical Paper
2017-01-2022
Katherine Loundy, Louis Schaefer, Andrew Foran, Catherine Ninah, Khristopher Bandong, Robert Brown, Hunter Heston, John-Paul Steed, William Young, Mark Heinrich, Luis Rabelo
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an un-manned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
2017-09-19
Technical Paper
2017-01-2028
Steven Nolan, Patrick Norman, Graeme Burt, Catherine Jones
Turbo-electric distributed propulsion (TeDP) for aircraft allows for the complete redesign of the airframe so that greater overall fuel and emissions benefits can be achieved. Whilst conventional electrical power systems may be used for smaller aircraft, much larger aircraft are likely to require the use of superconducting electrical power systems to enable the required whole system power density and efficiency levels to be achieved. The TeDP concept requires an effective electrical fault management and protection system. However, the fault response of a superconducting TeDP power system and its components has not been well studied to date, limiting the effective capture of associated protection requirements. For example, with superconducting systems it is the possible that a hotspot is formed on one of the components, such as a cable. This can result in one subsection, rather than all, of a cable quenching.
2017-09-19
Technical Paper
2017-01-2029
Thibaut BILLARD, Cedric Abadie, Bouazza Taghia
The present paper reports non-electrically intrusive partial discharge investigations on aeronautic and electric vehicle motors fed by SiC inverter drive under variable environmental conditions. A representative test procedure and experimental set-up based on operating aeronautic conditions are essential to ensure the accuracy and reliability of partial discharge test on aircraft systems to make informed decisions on insulation system design choice. The aim of this paper is to demonstrate the feasibility of partial discharge test of the insulation system on a different type of motor under such conditions, both electrically and environmentally. To do so, the paper will start by detailing the innovative experimental set-up to be used in the study. It mainly consists in a high-voltage (1000V) inverter drive using SiC components to provide fast rise time surges.
2017-09-19
Technical Paper
2017-01-2047
Tyler Vincent, Joseph Schetz, K. Lowe
Analysis and design of total temperature probes for accurate measurements in hot, high-speed flows remains a topic of great interest in aerospace propulsion and a number of other engineering areas. Despite an extensive prior literature on the subject, prediction of error sources from convection, conduction and radiation is still an area of great concern. For hot-flow conditions, the probe is normally mounted in a cooled support, leading to substantial axial conduction along the length of the probe. Also, radiation plays a very important role in most hot, high-speed conditions. One can apply detailed computational methods for simultaneous convection, conduction and radiation heat transfer, but such approaches are not suitable for rapid, routine analysis and design studies. So, there is still a place for approximate methods, and that is the subject of this paper.
2017-09-19
Technical Paper
2017-01-2052
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver PhD
Aircraft seating systems are evaluated utilizing a variety of impact conditions and selected injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropometric dummies such as those outlined in 14 CFR part 25. An example would be a dummy seated in an upright position held with a two point belt decelerated from an impact speed and allowed to engage components that are in front of the dummy. Examples of head contact surfaces would include video monitors, a wide range of seat back materials, and airbags from which the HIC and other injury measures can be calculated. Other injury measures, such as Nij, are also of interest and can be measured with the Hybrid III dummy as well. A minimum deceleration pulse is defined as part of the regulations for a frontal impact. In this study the effect of variations in decelerations that meet the requirements is considered.
2017-09-19
Technical Paper
2017-01-2115
Gilberto Burgio, Leonardo Mangeruca, Alberto Ferrari, Marco Carloni, Virgilio Valdivia-Guerrero, Laura Albiol-Tendillo, Parithi Govindaraju, Marcel Gottschall, Olaf Oelsner, Sören Reglitz, Jann-Eve Stavesand, Andreas Himmler, Lionel Yapi
This paper presents a demonstrator implemented in the project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modelling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multiphysics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
Viewing 1 to 30 of 5586

Filter