Criteria

Display:

Results

Viewing 241 to 270 of 33425
2017-07-10
Technical Paper
2017-28-1972
ANIL P M, Cd Naiju
Abstract Direct Metal Deposition (DMD) is a rapid prototyping technique used to fabricate and repair metallic prototypes. It can be used in the production of complex geometries and unique parts. In functional automotive applications wear characteristics hold key importance. In the present study, an analysis on the influence of various parameters (coating thickness, load and temperature) on the wear characteristics of Direct Metal Deposited (DMD) Inconel 625 coating has been carried out using a Design of Experiments (DOE). ANOVA calculations were performed to find out which of these parameters showed significant influence on the wear properties. It was found that load was the most significant parameter influencing the wear characteristics .Similarly load was found to be most influencing parameter for co efficient of friction. The trend was found to follow when verified at 30 second, 3 minutes, 60 minutes and 120 minutes.
2017-07-10
Technical Paper
2017-28-1981
Sakthinathan Ganapathy, Anand Kumar Appancheal, Raja Velusamy
Abstract Heat energy produced in the combustion chamber of an IC engine cannot be completely converted into useful work due to heat transfer losses. This leads to a fall in the performance of the engine. To overcome this, pistons have been coated with different materials like molybdenum disulphide, chromium nitrides and other materials. These thermal barrier coatings have improved the performance of the engine by preventing heat loss. In this experiment, the performance and emission characteristics of a tungsten carbide coated piston was investigated. WC was coated on the piston surface by EB-PVD Process. The WC coated piston was tested in an MK20 engine using an eddy current dynamometer. The performance of uncoated and WC coated pistons were compared and analyzed. An increase in combustion chamber temperature was obtained while using WC coated piston, which was observed by increased exhaust gas temperature.
2017-07-10
Technical Paper
2017-28-1983
J Ronald Aseer, P Baskara Sethupathi, J. Chandradass, Renold Elsen
Abstract The utilization of unconventional machining methods such as electron beam machining, electrical discharge machinating, etc., have been increased in the manufacturing industry to create holes on the materials. In this paper, twist drill was used for drilling of Bahunia racemosa (BR)/ glass fiber composites and then the measurement of hole diameter error was analysed. The main objective was to establish a correlation between feed rate, cutting speed and drill tool with the induced hole diameter error in a composites. The drilling process was performed under various cutting speed, feed rates and different drilling tools with a point angle of 118°. A Coordinate measuring machine was used to examine the hole diameter error of drilling hole. Taguchi L9 (33) orthogonal array was used to determine the optimum levels of the parameters and analyze the effect of drilling parameters on hole diameter error.
2017-07-10
Technical Paper
2017-28-1948
John Samuel Kopppula, Thundil Karuppa Raj Rajagopal, Edison Gundabattini
Abstract The present work is concentrated to study the effect of varying inlet pressures on the dynamics of the suction valve obtained from a hermetic reciprocating compressor. The effect of valve functioning on the efficiency of a compressor is highly acceptable. Rather than the delivery valve, the suction valve has a significant impact on the compressor efficiency. The reed valve in a hermetic compressor is a cantilever type arrangement. The valve operates due to the pressure difference between the suction muffler and the cylinder. The numerical analysis which includes Fluid-structure interaction is used in the present study. The flow and structural domain employed in the present study are modelled with Solidworks 15.0. The fluid structure interaction analysis is a combination of ANSYS Fluent and ANSYS structural. These two are coupled with a system coupling in ANSYS Workbench 16.0. The numerical results obtained from the simulation are validated with the experimental data.
2017-06-29
Journal Article
2017-01-9000
Teresa Donateo, Antonio Ficarella
Abstract The design of a hybrid electric powertrain requires a complex optimization procedure because its performance will strongly depend on both the size of the components and the energy management strategy. The problem is particular critical in the aircraft field because of the strong constraints to be fulfilled (in particular in terms of weight and volume). The problem was addressed in the present investigation by linking an in-house simulation code for hybrid electric aircraft with a commercial many-objective optimization software. The design variables include the size of engine and electric motor, the specification of the battery (typology, nominal capacity, bus voltage), the cooling method of the motor and the battery management strategy. Several key performance indexes were suggested by the industrial partner. The four most important indexes were used as fitness functions: electric endurance, fuel consumption, take-off distance and powertrain volume.
2017-06-29
Journal Article
2017-01-9453
Tobias Hoernig
Abstract Within the scope of today’s product development in automotive engineering, the aim is to produce lighter and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two ways: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
2017-06-29
Journal Article
2017-01-9279
Davide Di Battista, Roberto Cipollone
Abstract The use of reciprocating internal combustion engines (ICE) dominates the sector of the on-road transportation, both for passengers and freight. CO2 reduction is the present technological driver, considering the major worldwide greenhouse reduction targets committed by most governments in the western world. In the near future (2020) these targets will require a significant reduction with respect to today’s goals, reinforcing the importance of reducing fuel consumption. In ICEs more than one third of the fuel energy used is rejected into the environment as thermal waste through exhaust gases. Therefore, a greater fuel economy could be achieved if this energy is recovered and converted into useful mechanical or electrical power on board. For long haul vehicles, which run for hundreds of thousands of miles per year at relatively steady conditions, this recovery appears especially worthy of attention.
2017-06-28
Journal Article
2017-01-9181
Zhongming Xu, Nengfa Tao, Minglei Du, Tao Liang, Xiaojun Xia
Abstract A coupled magnetic-thermal model is established to study the reason for the damage of the starter motor, which belongs to the idling start-stop system of a city bus. A finite element model of the real starter motor is built, and the internal magnetic flux density nephogram and magnetic line distribution chart of the motor are attained by simulation. Then a model in module Transient Thermal of ANSYS is established to calculate the stator and rotor loss, the winding loss and the mechanical loss. Three kinds of losses are coupled to the thermal field as heat sources in two different conditions. The thermal field and the components’ temperature distribution in the starting process are obtained, which are finally compared with the already-burned motor of the city bus in reality to predict the damage. The analysis method proposed is verified to be accurate and reliable through comparing the actual structure with the simulation results.
2017-06-28
Journal Article
2017-01-9182
Sheng Li, Cunfu Chen, Xingjun Hu, Jiexun Cao
Abstract The magnitude of door closing force is important in vehicle NVH characters, and in most case, it is not fully studied by computer aided engineering (CAE) in an early developing stage. The research took a heavy-duty truck as the study object and used Computational Fluid Dynamic (CFD) method with dynamic mesh to analyze the flow field of the cabin during door closing process. The change trend of pressure with time was obtained, and the influence of different factors was studied. The experiments were conducted to verify the results. Results show that the velocity of closing door and the size of relief holes have a significant influence on cabin interior pressure, and greater velocity leads to larger the pressure in cabin. The initial angle of the door affects interior pressure less comparing with the velocity of closing door. The interior pressure could be reduced effectively with the method of decreasing the velocity of closing door and increasing the size of relief holes.
2017-06-28
Journal Article
2017-01-9180
Johannes Wurm, Eetu Hurtig, Esa Väisänen, Joonas Mähönen, Christoph Hochenauer
Abstract The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
2017-06-26
White Paper
WP-0001
NASA has embarked on an ambitious program to integrate additive manufacturing techniques and to develop processes for the microgravity environment. The most recent example of this program is the successful launch and deployment of the first 3D printer on the International Space Station. In this one-year effort, students were required to meet a series of milestones to design, manufacture, and test their ideas in close cooperation with members of the NASA Exploration Augmentation Module (EAM) concept team.The participants in this project were tasked with thinking of new solutions using AM that would simultaneously be recyclable with minimal loss in mechanical properties but also have the capacity for high mechanical properties. Working in interdisciplinary teams, the participant teams investigated the use of recycled materials, characterization, testing, modeling, and tool development.
2017-06-22
Technical Paper
2017-36-0044
Felipe Heuer, Roberson Oliveira, Guilherme Reksiedler, Vilson R. Mognon, Thiago Greboge, Laerte C. da Rosa, Rafael R. de Carvalho, Giordano B. Wolaniuk, Ricardo M. Schmal
Abstract The focus of this study was to develop and validate a steering system assistance based on precise geolocation. The initial analysis was carried out using a mathematical model of a generic vehicle, to perform Matlab® simulations aiming to generate an algorithm capable of controlling the vehicle steering autonomously. Based on the results of those simulations it was possible to determinate that a RTK (Real Time Kinematic) would be a suitable technology for the geolocation system, meeting precision and control requirements. In order to validate the system in a real environment, a scale model RC car was equipped with a specific embedded electronic capable of recording the path driven and reproducing it autonomously. A HMI was developed making possible to visualize the vehicle during its operation. Coordinated with the vehicle, a remote cockpit with telemetry system emulates the steering wheel rotation.
2017-06-22
Technical Paper
2017-36-0045
Juliano Mologni, Jefferson Ribas, Cesareo Siqueira
Abstract We have seen recently in Brazil a significant number of medium and high voltage power cables falling on vehicles causing catastrophic accidents leading to serious injuries and deceases. It is advised that the car works as a shield so passengers inside the vehicle should not open doors and windows, but to the knowledge of the authors no work has presented a quantified study showing details like electromagnetic field intensity and 3D plots to really illustrate this situation. This work uses numerical simulation to replicate a scenario of a high power cable in direct contact with a vehicle and numerous positions of human body models inside and outside of the vehicle. Electromagnetic field is calculated showing the shielding effectiveness of the vehicle chassis. Also, current density are calculated to show the path of the current including the human body models.
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-06-17
Journal Article
2017-01-9077
Zaimin Zhong, Junjie Li, Shuihua Zhou, Yingkun Zhou, Shang Jiang
Abstract Description of PMSM torque in high accuracy is critical and previous work for its further research. However, the traditional linear torque model fails to describe its non-ideal characteristics of practical working. This paper presents a generalized torque model of PMSM based on flux linkage reconstruction. In synchronous rotating space coordinates, flux linkage were reconstructed through Fourier series expansion and bivariate polynomial. Based on this model, a precise PMSM torque ripple description and corresponding suppression method were developed. Current feed-forward compensation and the rotor field oriented control were applied in torque ripple suppression. Simulation and experimental results both show that the model not only accurately describes the nonlinear variation of PMSM torque in different working conditions, but also can be used to suppress PMSM torque ripple effectively.
2017-06-17
Journal Article
2017-01-9078
Dong Gao, MiaoHua Huang, Jiangang Xie
In order to solve the environmental pollution and energy crisis, Electric Vehicles (EVs) have been developed rapidly. Lithium-ion (Li-ion) battery is the key power supply equipment for EVs, and the scientific and accurate prediction of its Remaining Useful Life (RUL) has become a hot topic in the field of new energy research. The internal resistance and capacity are often used to characterize the Li-ion battery State of Health (SOH) from which RUL is obtained. However, in practical applications, it is difficult to obtain internal resistance and capacity information by using the non-intrusive measurement method. Therefore, it is necessary to extract the measurable parameters to characterize the degradation of Li-ion battery. At present, the methods of extracting health indicators based on measurable parameters have gained preliminary results, but most of them are derived from the Li-ion battery discharging data.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-06-05
Journal Article
2017-01-1774
Fabio Luis Marques dos Santos, Tristan Enault, Jan Deleener, Tom Van Houcke
Abstract The increasing pressure on fuel economy has brought car manufacturers to implement solutions that improve vehicle efficiency, such as downsized engines, cylinder deactivation and advanced torque lock-up strategies. However, these solutions have a major drawback in terms of noise and vibration comfort. Downsized engines and lock-up strategies lead to the use of the engine at lower RPMs, and the reduced number of cylinders generates higher torque irregularities. Since the torque generated by the engine is transferred through flexible elements (clutch, torsional damper, gearbox, transmission, tire), these also impact the energy that is transferred to the vehicle body and perceived by the driver. This phenomenon leads to low frequency behavior, for instance booming noise and vibration. This paper presents a combined test and CAE modelling approach (1D/3D) to reverse engineer a vehicle equipped with a CPVA (centrifugal pendulum vibration absorber).
2017-06-05
Technical Paper
2017-01-1754
Kyoung-Jin Chang, Seonghyeon Kim, Dong Chul Park, So Youn Moon, Sunghwan Park, Myung Hwan Yun
Abstract This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
2017-06-05
Technical Paper
2017-01-1764
Himanshu Amol Dande, Tongan Wang, John Maxon, Joffrey Bouriez
Abstract The demand for quieter interior cabin spaces among business jet customers has created an increased need for more accurate prediction tools. In this paper, the authors will discuss a collaborative effort between Jet Aviation and Gulfstream Aerospace Corporation to develop a Statistical Energy Analysis (SEA) model of a large commercial business jet. To have an accurate prediction, it is critical to accurately model the structural and acoustic subsystems, critical noise transmission paths, and dominant noise sources for the aircraft. The geometry in the SEA model was developed using 3D CAD models of major airframe and interior cabin components. The noise transmission path was characterized through extensive testing of various aircraft components in the Gulfstream Acoustic Test Facility. Material definitions developed from these tests became input parameters in the SEA model.
2017-06-05
Technical Paper
2017-01-1794
William Seldon, Jamie Hamilton, Jared Cromas, Daniel Schimmel
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
2017-06-05
Technical Paper
2017-01-1792
Magnus Knutsson, Erik Kjellson, Rodney Glover, Hans Boden
Abstract Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
2017-06-05
Technical Paper
2017-01-1802
Dong chul Lee, Insoo Jung, Jaemin Jin, Stephan Brandl, Mehdi Mehrgou
Abstract In the automotive industry, various simulation-based analysis methods have been suggested and applied to reduce the time and cost required to develop the engine structure to improve the NVH performance of powertrain. This simulation is helpful to set the engine design concept in the initial phase of the powertrain development schedules. However, when using the conventional simulation method with a uniformed force, the simulation results sometimes show different results than the test results. Therefore, in this paper, we propose a method for predicting the radiated noise level of a diesel engine using actual combustion excitation force. Based on the analytical radiated noise development target, we identify the major components of the engine that are beyond this development target by in the frequency range. The components of the problem found in this way are reflected in the engine design of the early development stage to shorten the development time.
2017-06-05
Technical Paper
2017-01-1782
Jobin Puthuparampil, Henry Pong, Pierre Sullivan
Abstract Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Abstract In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
2017-06-05
Technical Paper
2017-01-1788
Kishore Chand Ulli, Upender Rao Gade
Abstract Automotive window buffeting is a source of vehicle occupant’s discomfort and annoyance. Original equipment manufacturers (OEM) are using both experimental and numerical methods to address this issue. With major advances in computational power and numerical modelling, it is now possible to model complex aero acoustic problems using numerical tools like CFD. Although the direct turbulence model LES is preferred to simulate aero-acoustic problems, it is computationally expensive for many industrial applications. Hybrid turbulence models can be used to model aero acoustic problems for industrial applications. In this paper, the numerical modelling of side window buffeting in a generic passenger car is presented. The numerical modelling is performed with the hybrid turbulence model Scale Adaptive Simulation (SAS) using a commercial CFD code.
2017-06-05
Technical Paper
2017-01-1842
Akin Oktav, Cetin Yilmaz, Gunay Anlas
Abstract To prevent trunk lid slam noise, reactive openings are used in the trunk cavities of passenger vehicles. In sedans, the trunk cavity and the cabin cavity are coupled acoustically through the discontinuities on the parcel shelf and/or the rear seat. In such a case, these openings behave as necks of a Helmholtz resonator, which in turn change the acoustic response of the system. In this study, the Helmholtz resonator effect of the trunk cavity is discussed analytically through a simplified cavity model. A case study, where the acoustic response of a sedan is analyzed through a computational model considering the resonator effect is also given. Sound pressure levels show that instant pressure drops and damping effects observed in the acoustic response can be explained with the resonator effect. Results obtained from the computational model of the sedan are verified with the track test measurements.
2017-06-05
Technical Paper
2017-01-1880
Guojian Zhou, Xiujie Tian, Keda Zhu, Wei Huang, Richard E. Wentzel, Melvyn J. Care, Kaixuan Mao, Jiu Hui Wu
Abstract A flexible rebound-type acoustic metamaterial with high sound transmission loss (STL) at low frequency is proposed, which is composed of a flexible, light-weight membrane material and a sheet material - Ethylene Vinyl Acetate Copolymer (EVA) with uneven distributed circular holes. STL was analyzed by using both computer aided engineering (CAE) calculations and experimental verifications, which depict good results in the consistency between each other. An obvious sound insulation peak exists in the low frequency band, and the STL peak mechanism is the rebound-effect of the membrane surface, which is proved through finite element analysis (FEA) under single frequency excitation. Then the variation of the STL peak is studied by changing the structure parameters and material parameters of the metamaterial, providing a method to design the metamaterial with high sound insulation in a specified frequency range.
2017-06-05
Technical Paper
2017-01-1878
Kevin Verdiere, Raymond Panneton, Noureddine Atalla, Saïd Elkoun
Abstract A poroelastic characterization of open-cell porous materials using an impedance tube is proposed in this paper. Commonly, porous materials are modeled using Biot’s theory. However, this theory requires several parameters which can be difficult to obtain by different methods (direct, indirect or inverse measurements). The proposed method retrieves all the Biot’s parameters with one absorption measurement in an impedance tube for isotropic poroelastic materials following the Johnson-Champoux-Allard’s model (for the fluid phase). The sample is a cylinder bonded to the rigid termination of the tube with a diameter smaller than the tube’s one. In that case, a lateral air gap is voluntary induced to prevent lateral clamping. Using this setup, the absorption curve exhibits a characteristic elastic resonance (quarter wavelength resonance) and the repeatability is ensured by controlling boundary and mounting conditions.
2017-06-05
Journal Article
2017-01-1876
Weiyun Liu, David W. Herrin, Emanuele Bianchini
Abstract Microperforated panel absorbers are best considered as the combination of the perforate and the backing cavity. They are sometimes likened to Helmholtz resonators. This analogy is true in the sense that they are most effective at the resonant frequencies of the panel-cavity combination when the particle velocity is high in the perforations. However, unlike traditional Helmholtz resonators, microperforated absorbers are broader band and the attenuation mechanism is dissipative rather than reactive. It is well known that the cavity depth governs the frequency bands of high absorption. The work presented here focuses on the development, modeling and testing of novel configurations of backing constructions and materials. These configurations are aimed at both dialing in the absorption properties at specific frequencies of interest and creating broadband sound absorbers. In this work, several backing cavity strategies are considered and evaluated.
Viewing 241 to 270 of 33425