Criteria

Display:

Results

Viewing 211 to 240 of 33097
2017-03-28
Technical Paper
2017-01-0730
Jose M Desantes, J. Javier Lopez, Jose M Garcia-Oliver, Dario Lopez-Pintor
Abstract In this work, a 5-zone model has been applied to replicate the in-cylinder conditions evolution of a Rapid Compression-Expansion Machine (RCEM) in order to improve the chemical kinetic analyses by obtaining more accurate simulation results. To do so, CFD simulations under motoring conditions have been performed in order to identify the proper number of zones and their relative volume, walls surface and temperature. Furthermore, experiments have been carried out in an RCEM with different Primary Reference Fuels (PRF) blends under homogeneous conditions to obtain a database of ignition delays and in-cylinder pressure and temperature evolution profiles. Such experiments have been replicated in CHEMKIN by imposing the heat losses and volume profiles of the experimental facility using a 0-D 1-zone model. Then, the 5-zone model has been analogously solved and both results have been compared to the experimental ones.
2017-03-28
Technical Paper
2017-01-0740
Yu Zhang, Yuanjiang Pei, Nayan Engineer, Kukwon Cho, David Cleary
Abstract The current study utilized 3-D computational fluid dynamics (CFD) combustion analysis to guide the development of a viable full load range combustion strategy in a light-duty gasoline compression ignition (GCI) engine. A higher reactivity gasoline that has a research octane number (RON) of 70 was used for the combustion strategy development. The engine has a geometric compression ratio of 14.5 with a piston bowl designed to accommodate different combustion strategies and injector spray patterns. Detailed combustion optimization was focused on 6 and 18 bar gross indicated mean effective pressure (IMEPg) at 1500 rpm through a Design of Experiments approach. Two different strategies were investigated: (a) a late triggering fuel injection with a wide spray angle (combustion strategy #1); and (b) an early triggering fuel injection with a narrow spray angle (combustion strategy #2).
2017-03-28
Technical Paper
2017-01-0826
Russell P. Fitzgerald, Christopher Gehrke, Kenth Svensson, Glen Martin
Abstract The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
2017-03-28
Technical Paper
2017-01-1324
Robert Jones, Baldur Steingrimsson, Faryar Etesami, Sung Yi
Abstract Modern mechanical design is heavily supplemented by computer-aided design and engineering (CAD/CAE) tools. The predominance of these tools have been developed to augment the analysis efforts during the detailed phase of the design process. Yet, many design oversights and inefficiencies are the result of inadequate vetting of engineering requirements, and vague accountability to those requirements during conceptual design. The Ecosystem for Engineering Design is developed herein as an immersive CAE tool for comprehensive design process support that facilitates the elimination of these sources of design inefficiency. In addition, the Ecosystem promotes rigid adherence to phase-appropriate design process activities increasing productivity. Many time-consuming administrative and information management tasks are automated to further increase designer efficiency.
2017-03-28
Technical Paper
2017-01-0254
Sudeep Chavare, Kevin Thomson, Nitin Sharma
Adopting parametric approach to optimize CAE models for various objectives is a common practice these days. Connection entities such as welds and adhesive play a very important role in overall performance matrix and hence adding them to the pool of design variables during an optimization exercise provides additional design space. This paper evaluates the possibility to use structural adhesives as patches rather than continuous lines. The method presented in this paper offers unique approach to parameterize adhesive lines. The paper discusses an optimization study with structural adhesives patches along with spot weld pitch as design variables. Body in White (BiW) and Trimmed Body in White (TBiW) models are used for analysis .The goal of the study is to reduce total length of structural adhesive as well as number of welds while maintaining baseline NVH performance as constraints.
2017-03-28
Technical Paper
2017-01-0255
Malli Kartheek Yalamanchili, Nitin Sharma, Kevin Thomson
The crashworthiness of body-in-white (BIW), plays a very vital role in the full vehicle crash performance. The structural integrity of BIW is controlled via strength of the spot welds and adhesives that are often considered as only entities to hold the parts together. However optimizing the welds and/or adhesives can not only reduce the number of connections but also improve the structural crashworthiness. This paper discusses the optimization of full vehicle structural performance and the length of adhesives in the BIW for the small overlap crash event. The variables included in the study were length of the adhesives and gage variables, defined in the front end structure of the vehicle. A parametric model was created using ANSA and iSight was used to generate design of experiments (DOE). Automated design generation using ANSA followed by automated script based post-processing was done. The optimization was done using metamodel generated for the crash event.
2017-03-28
Technical Paper
2017-01-0600
Simon Petrovich, Kambiz Ebrahimi, Antonios Pezouvanis
This paper surveys publications on automotive powertrain control, relating to modern GTDI (Gasoline Turbocharged Direct Injection) engines. The requirements for gasoline engines are optimising the airpath but future legislation mandates not only a finely controlled airpath but also some level of electrification. Fundamentals of controls modelling are revisited and advancements are highlighted. In particular, a modern GTDI airpath is presented based on basic building blocks (volumes, turbocharger, throttle, valves and variable cam timing or VCT) with an example of a system interaction, based on boost pressure and lambda control. Further, an advanced airpath could be considered with applications to downsizing and fuel economy. A further electrification step is reviewed which involves interactions with the airpath and mandates a robust energy management strategy. Examples are taken of energy recovery and e-machine placement.
2017-03-28
Journal Article
2017-01-1463
Xianping Du, Feng Zhu, Clifford C. Chou
Abstract A new design methodology based on data mining theory has been proposed and used in the vehicle crashworthiness design. The method allows exploring the big dataset of crash simulations to discover the underlying complicated relationships between response and design variables, and derive design rules based on the structural response to make decisions towards the component design. An S-shaped beam is used as an example to demonstrate the performance of this method. A large amount of simulations are conducted and the results form a big dataset. The dataset is then mined to build a decision tree. Based on the decision tree, the interrelationship among the geometric design variables are revealed, and then the design rules are derived to produce the design cases with good energy absorbing capacity. The accuracy of this method is verified by comparing the data mining model prediction and simulation data.
2017-03-28
Journal Article
2017-01-1450
Daniel Perez-Rapela, Jason Forman, Haeyoung Jeon, Jeff Crandall
Abstract Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
2017-03-28
Journal Article
2017-01-0052
Andre Kohn, Rolf Schneider, Antonio Vilela, Udo Dannebaum, Andreas Herkersdorf
Abstract A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
2017-03-28
Journal Article
2017-01-0221
Junqi Yang, Zhenfei Zhan, Ling Zheng, Gang Guo, Changsheng Wang
Abstract Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
2017-03-28
Technical Paper
2017-01-0963
Hoon Cho, Thomas Brewbaker, Devesh Upadhyay, Brien Fulton, Michiel Van Nieuwstadt
Abstract Many excellent papers have been written about the subject of estimating engine-out NOx on diesel engines based on real-time available data. The claimed accuracy of these models is typically around 6-10% on validation data sets with known inputs. This reported accuracy typically ignores input uncertainties, thus arriving at an optimistic estimate of the model accuracy in a real-time application. In our paper we analyze the effect of input uncertainty on the accuracy of engine-out NOx estimates via a numerical Monte Carlo simulation and show that this effect can be significant. Even though our model is based on an in-cylinder pressure sensor, this sensor is limited in its capability to reduce the effect of other measured inputs on the model.
2017-03-28
Technical Paper
2017-01-1051
Hassan Nehme, Abdelkrim Zouani
Abstract EcoBoost engines constitute one of the strategies used by Ford Motor Company to deliver engines with improved fuel economy and performance. However, turbochargers exhibit many inherent NVH challenges that need to be addressed in order to deliver refined engines that meet customer’s expectation. One of these challenges is the turbocharger 1st order synchronous noise due to the interaction between the manufacturing tolerances of the rotating components and the dynamic behavior of the rotor. This paper discusses an MBD/FEA/BEM based method to predict the nonlinear dynamic behavior of the rotor semi floating bearing, its impact on the bearing loads and the resulting powerplant noise due to the interaction with the turbocharger imbalance level.
2017-03-28
Technical Paper
2017-01-1060
Sergei Aliukov, Andrei Keller, Alexander Alyukov
Abstract The inertial continuously variable transmissions are mechanical transmissions that are based on the principle of inertia. These transmissions have a lot of advantages. Usually, the design of the inertial continuously variable transmissions consists of inertia pulsed mechanism with unbalanced inertial elements and two overrunning clutches. Dynamics of the transmissions is described by systems of substantial nonlinear differential equations. In general, precise methods of solution for such equations do not exist. Therefore, in practice, approximate analytical and numerical methods must be employed. The main analytical methods employ successive approximation, a small parameter, or power series expansion. Each approach has its advantages and disadvantages. Therefore, we need to compare them in order to select the best method for dynamic study of such kind of transmissions.
2017-03-28
Technical Paper
2017-01-1061
Jiachen Zhai, Ma Conggan
Abstract Electric vehicle driving permanent magnet synchronous motor has a wide speed range and load changes, with abundant harmonic currents, and its eccentric form is complex, which all result in poor sound quality and abnormal noise problems becoming increasingly prominent. To make a systematic and thorough study of the centralized drive permanent magnet synchronous motor (PMSM) is significant to ameliorate the sound quality and solve noise problems. MATLAB-based modeling technology, SPSS software, and the establishment of sound quality evaluation model for the centralized drive PMSM has a crucial reference value on the research and development of the electric vehicle driving permanent magnet synchronous motor. As for the sound quality of centralized drive PMSM, firstly, in order to get objective parameter values, evaluation models of objective parameters based on psychological acoustics should be established after the collection of the sound samples.
2017-03-28
Technical Paper
2017-01-1136
Jack S.P. Liu, Natalie Remisoski, Javed Iqbal, Robert Egenolf
Automotive vehicles equipped with Cardan joints may experience low frequency vehicle launch shudder vibration (5-30Hz) and high frequency driveline moan vibration (80-200Hz) under working angles and speeds. The Cardan joint introduces a 2nd order driveshaft speed variation and a 4th order joint articulation torque (JAT) causing the vehicle shudder and moan NVH issues. Research on the Cardan joint induced low frequency vehicle shudder using a Multi-Body System (MBS) method has been attempted. A comprehensive MBS method to predict Cardan joint induced high frequency driveline moan vibration is yet to be developed. This paper presents a hybrid MBS and Finite Element Analysis (FEA) approach to predict Cardan joint induced high frequency driveshaft moan vibration. The CAE method considers the elastically coupled driveshaft bending and engine block vibration due to Cardan joint excitation.
2017-03-28
Technical Paper
2017-01-1262
David Baker, Zachary Asher, Thomas Bradley
Abstract The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
2017-03-28
Technical Paper
2017-01-1223
Ji Zhang, Mengjing Shen, Xi Zhao
Abstract There are many electronic devices in electric vehicle (EV), making its electromagnetic compatibility (EMC) serious. Motor drive system is the main interference source of EV, whose electromagnetic interference (EMI) is much worse than conventional vehicle. In this paper, the motor drive system of EV was mainly researched, and a co-simulation method was proposed: control system and motor model were established with Matlab, and the equivalent circuit model of inverter and the cable model were established with Saber. By this way, a complete motor drive system model for conductive EMI was obtained. This modeling method can not only accurately establish the EMI sources and coupling paths, but can simulate the control strategy and operating conditions.
2017-03-28
Technical Paper
2017-01-1263
Dennis Kibalama, Andrew Huster, Arjun Khanna, Aditya Modak, Margaret Yatsko, Gregory Jankord, Shawn Midlam-Mohler
Abstract The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
2017-03-28
Technical Paper
2017-01-1284
Khushal Ahmad, Monis Alam
Abstract With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
2017-03-28
Technical Paper
2017-01-1292
Saiful Bari, Idris Saad
Abstract Diesel engine can be run with biodiesel which has the potential to supplement the receding supply of crude oil. As biodiesel possess similar physiochemical properties to diesel, most diesel engines can run with biodiesel with minimum modifications. However, the viscosity of biodiesel is higher, and the calorific value is lower than diesel. Therefore, when biodiesel is used in diesel engines, it is usually blended with diesel at different proportions. Use of 100% biodiesel in diesel engines shows inferior performance of having lower power and torque. Improving in-cylinder airflow characteristic to break down higher viscous biodiesel and to improve air-fuel mixing are the aims of this research. Therefore, guide vanes in the intake runner were used in this research to improve the performance of diesel engine run with biodiesel.
2017-03-28
Technical Paper
2017-01-1291
Ashraya Gupta, Harshil Kathpalia, Harshit Aggarwal, Naveen Kumar
Abstract The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
2017-03-28
Technical Paper
2017-01-1310
Harihar T. Kulkarni, Yu Wang, James Alanoly
Abstract The perceived quality of automotive closures (flushness and margin) is strongly affected by flanging and hemming of the outer panels and assembly respectively. To improve the quality of closures, the traditional hardware approach needs significant amount of time and costly die re-cuts and trials with prototype panels. Thus, such approach may delay the vehicle program and increase the overall investment cost. The proposed CAE methodology provides upfront design guidance to dies and panels, reduces time and increases cost savings associated with flanging and hemming while improving overall quality of the closures. In this proposed approach, as a first step, analytical formulae and design of experiments (DOE) are followed to estimate magnitude of design parameters of panels and dies as the upfront design guidance.
2017-03-28
Technical Paper
2017-01-1312
Divakar N. Sundaram, Shashi Maire, Satheesh Peruru, Satyajeet Shinde, Vetrivel Velayudham
Abstract Computer Aided Engineering (CAE) has been widely utilized as an essential component of the product development phase in the automotive industry. Every successful automotive company has established its own design and development approach in order to build competitive, better and safer cars, in a more cost-effective manner. In an ever demanding automotive sector, every key player wants its products to be hitting the roads at shorter intervals but also develop them to be highly competitive. Ford product development processes define the multiple phases of the product development progression and timeline. For each of the phases, Vehicle CAE models are built to assess Vehicle NVH / Durability/ Safety/ Thermal & Aero and other performances. The design level of the input data and the data availability timings, to build the Vehicle CAE models, play a significant role in determining the quality and timing of the product development progression.
2017-03-28
Technical Paper
2017-01-1343
Manoranjan Sahoo, Ruan (Jason) Liangfei, Hari Nadh Gudula, Raghuraman Taruvai, Sathish Kumar S
Abstract An automobile door is a complex module, which consists of various fixed and movable subassemblies and components. Parameters such as safety, vehicle dynamics, aesthetic and strength are critical while designing the door assembly. Apart from the above, the design of door trim should minimize BSR (buzz squeak and rattle) at vehicle running conditions. Stiffness is one of the key engineering requirements which if not optimized will result in higher BSR levels and failure of the door trim components. In this study, more importance is given to optimize the stiffness of door trim. As per DVP (design verification and planning) standards of the OEMs, the range of deflection for the plastic trim parts is defined considering the conditions, comfort level and location of use. If stiffness is higher than the requirement, the door trim plastic parts are harder and will violate the quality and safety norms.
2017-03-28
Journal Article
2017-01-1432
Tadasuke Katsuhara, Yoshiki Takahira, Shigeki Hayashi, Yuichi Kitagawa, Tsuyoshi Yasuki
Abstract This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
2017-03-28
Technical Paper
2017-01-1483
Jia Mi, Lin Xu, Sijing Guo, Mohamed A. A. Abdelkareem, Lingshuai Meng
Abstract Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
2017-03-28
Technical Paper
2017-01-1444
Mitali Chakrabarti, Alfredo Perez Montiel, Israel Corrilo, Jing He, Angelo Patti, James Gebbie, Loren Lohmeyer, Bernd Dienhart, Klaus Schuermanns
CO2 is an alternative to replace the conventional refrigerant (R134a) for the air-conditioning system, due to the high Global Warming Potential (GWP) of R134a. There are concerns with the use of CO2 as a refrigerant due to health risks associated with exposure to CO2, if the concentration of CO2 is over the acceptable threshold. For applications with CO2 as the refrigerant, the risk of CO2 exposure is increased due to the possibility of CO2 leakage into the cabin through the duct system; this CO2 is in addition to the CO2 generated from the respiration of the occupants. The initiation of the leak could be due to a crash event or a malfunction of the refrigerant system. In an automobile, where the interior cabin is a closed volume (with minimal venting), the increase in concentration can be detrimental to the customer but is hard to detect.
2017-03-28
Technical Paper
2017-01-1429
Sung Rae kim, Inju Lee, Hyung joo Kim
Abstract This paper aims to evaluate the biofidelity of a human body FE model with abdominal obesity in terms of submarining behavior prediction, during a frontal crash event. In our previous study, a subject-specific FE model scaled from the 50th percentile Global Human Body Model Consortium (GHBMC) human model to the average physique of three female post mortem human subjects (PMHSs) with abdominal obesity was developed and tested its biofidelity under lap belt loading conditions ([1]). In this study frontal crash sled simulations of the scaled human model have been performed, and the biofidelity of the model has been evaluated. Crash conditions were given from the previous study ([2]), and included five low-speed and three high-speed sled tests with and without anti-submarining device.
2017-03-28
Technical Paper
2017-01-1345
Ramachandra bhat, Nitin Sharma, Clifford Rivard, Kevin Thomson
During development of new vehicles, CAE driven optimizations are helpful in achieving the optimal designs. In body-on-frame vehicles, reducing weight of the frame without any down gage involves inducing cutouts or lightening holes with no effect on fatigue life. The cutouts are stress risers that by design are detrimental to fatigue life and ability to identify their locations that maintain the durability performance becomes more critical. This paper describes one of the methods used to reduce the weight of the vehicle without any down gage and still maintaining the durability performance for truck frame. In this method, load paths are being analyzed for each component and then the stress envelops are generated in fatigue code using complete proving ground loading events. A subsequent step includes tuning those cutouts to meet the durability strength and stiffness requirements.
Viewing 211 to 240 of 33097