Criteria

Display:

Results

Viewing 151 to 180 of 33174
2017-03-28
Technical Paper
2017-01-1607
Munther Hermez, Badih Jawad, Liping Liu, Eli Oklejas
Abstract This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
2017-03-28
Technical Paper
2017-01-1611
Elankathiravan Mathivanan, David Gasior, Liping Liu, Kingman Yee, Yawen Li
Abstract In the present work, the effect of various nanofluids on automotive engine cooling was experimentally studied. Al2O3, TiC, SiC, MWNT (multi-walled nanotube), and SiO2 nanoparticles with average diameter ranging between 1 and 100 nm were mixed with distilled water to form nanofluids. An ultrasonic generator was used to generate uniform particle dispersion in the fluid. A compatibility test was carried out on all nanofluids and it was found that TiC, MWNT, and Si3N4 nanoparticles settled and separated from the fluid within 3 hours after preparation. The engine cooling performance testing setup consisted of an Aprilia SXV 450 engine, the nanofluid cooling loop, a radiator, a fan, etc. Thermocouples and resistance temperature detectors (RTD’s) were attached to the inlet and outlet of the radiator hose to monitor the temperature changes taking place in the cooling system. A flowmeter was attached to the inlet hose of the radiator to monitor the coolant flow rate.
2017-03-28
Technical Paper
2017-01-1321
Meisam Mehravaran, Yi Zhang
Abstract Degas bottles have been extensively used in vehicles in order to act as an air pillow on top of the cooling loop and provide space for expansion. One of the important characteristics of the bottle which defines if it will work in a certain loop is the so called “capacity” of the bottle which defines the flowrate that degas bottle would be able to pass through without any foaming. Considering the complex geometry of degas bottle and the foaming phenomena, predicting the behavior of coolant in the bottle passages is challenging which requires costly tests. Computational Fluid Dynamics (CFD) has been extensively used in simulating multi-phase flows in automotive components. In the current project, CFD has been used to simulate the behavior of flow in bottle chambers and to provide guidelines for the design team in order to increase the bottle performance/capacity. The CFD guidelines were in agreement with test results and lead to improving the degas bottle capacity.
2017-03-28
Technical Paper
2017-01-1320
Yucheng Liu
Abstract A cost effective, portable particulate management system was developed, prototyped, and evaluated for further application and commercialization, which could remove and dispose particulate matter suspended in air efficiently and safely. A prototype of the present system was built for experimental assessment and validation. The experimental data showed that the developed particulate management system can effectively clean the air by capturing the particles inside it. Effects of viscosity of filter medium on the performance of the developed system were also discussed. The present system is very flexible, whose size and shape can be scaled and changed to be fit for different applications. Its manufacturing cost is less than $10. Based on the experimental validation results, it was found that the present system can be further developed, commercialized, and applied for a variety of industries.
2017-03-28
Technical Paper
2017-01-1318
Prashant Khapane, Suresh Bhosale
Abstract Robustness to sand dune impact is one of the key requirements for Jaguar Land Rover products. Historically off road vehicles were built on a ladder sub frame; and the steel cross beam at the front provided robust protection for the cooling pack. With the move to monocoque construction, the cooling pack became vulnerable to low speed grounding damage. Unfortunately this vulnerability is not confirmed until later in the program when fully representative vehicles are available, which results in late engineering changes that are expensive, time consuming and stressful. Like all late changes it is rarely optimised for cost and weight. With no historic literature or procedure available, the challenge was to model the physics of sand media and also solve the complex multi-physics problem of impact of the whole vehicle with the sand dune.
2017-03-28
Technical Paper
2017-01-1324
Robert Jones, Baldur Steingrimsson, Faryar Etesami, Sung Yi
Abstract Modern mechanical design is heavily supplemented by computer-aided design and engineering (CAD/CAE) tools. The predominance of these tools have been developed to augment the analysis efforts during the detailed phase of the design process. Yet, many design oversights and inefficiencies are the result of inadequate vetting of engineering requirements, and vague accountability to those requirements during conceptual design. The Ecosystem for Engineering Design is developed herein as an immersive CAE tool for comprehensive design process support that facilitates the elimination of these sources of design inefficiency. In addition, the Ecosystem promotes rigid adherence to phase-appropriate design process activities increasing productivity. Many time-consuming administrative and information management tasks are automated to further increase designer efficiency.
2017-03-28
Technical Paper
2017-01-1323
Jerry Lai, Youssef Ziada, Juhchin Yang
Abstract In the assembly of axles and wheel hubs, a nut is frequently used to fasten them as one unit. In order for the nut to hold the assembly in its final position, crimping is a widely-used method which prevents nut from loosening. A reliable crimping process not only prevents movement of the nut during axle operation but should also minimize the possibility of cracking the rim. If the nut cracks during assembly, it can start to rust and deteriorate. The service life span of the axle assembly hence shortens as a result. The quality of crimping operation is determined by the component designs, the process parameters, and the crimping tool geometry. It would be time-consuming and costly to evaluate these factors empirically; let alone the requirement of prototypes in the early stage of a new program. A dynamic finite element methodology which adopts the Arbitrary Lagrangian-Eulerian formulation from ABAQUS explicit solver is developed to simulate the complete crimping process.
2017-03-28
Technical Paper
2017-01-1326
Santhoji Katare, Ravichandran S, Gokul Ram, Giri Nammalwar
Abstract Model based computer-aided processes offer an economical and accelerated alternative to traditional build-and-test "Edisonian" approaches in engineering design. Typically, a CAE based design problem is formulated in two parts, viz. (1) the inverse design problem which involves identification of the appropriate geometry with desired properties, and (2) the forward problem which is the prediction of performance from the product geometry. Solution to the forward problem requires development of an accurate model correlated to physical data. This validated model could then be used for Virtual Verification of engineering systems efficiently and for solving the inverse problem. This paper demonstrates the rigorous process of model development, calibration, validation/verification, and use of the calibrated model in the design process with practical examples from automotive chassis and powertrain systems.
2017-03-28
Technical Paper
2017-01-1663
Alan Druschitz, Christopher Williams, Erin Connelly, Bob Wood
Abstract Binder jetting of sand molds and cores for metal casting provides a scalable and efficient means of producing metal components with complex geometric features made possible only by Additive Manufacturing. Topology optimization software that can mathematically determine the optimum placement of material for a given set of design requirements has been available for quite some time. However, the optimized designs are often not manufacturable using standard metal casting processes due to undercuts, backdraft and other issues. With the advent of binder-based 3D printing technology, sand molds and cores can be produced to make these optimized designs as metal castings.
2017-03-28
Technical Paper
2017-01-1667
Scott Piper, Mark Steffka, Vipul Patel
Abstract With the increasing content of electronics in automobiles and faster development times, it is essential that electronics hardware design and vehicle electrical architecture is done early and correctly. Today, the first designs are done in the electronic format with circuit and CAD design tools. Once the initial design is completed, several iterations are typically conducted in a “peer review” methodology to incorporate “best practices” before actual hardware is built. Among the many challenges facing electronics design and integration is electromagnetic compatibility (EMC). Success in EMC starts at the design phase with a relevant “lessons learned” data set that encompasses component technology content, schematic and printed circuit board (PCB) layout, and wiring using computer aided engineering (CAE) tools.
2017-03-28
Technical Paper
2017-01-1666
David Weiss, Orlando Rios
Abstract Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
2017-03-28
Technical Paper
2017-01-0961
Ray Host, Paul Ranspach, Bruce Anderson, Michael Collareno, George Tapos, Cornelius Henderson
Abstract In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
2017-03-28
Technical Paper
2017-01-0573
Mohammed Jaasim Mubarak ali, Francisco Hernandez Perez, R Vallinayagam, S Vedharaj, Bengt Johansson, Hong Im
Abstract Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions.
2017-03-28
Technical Paper
2017-01-0580
Zainal Abidin, Kevin Hoag, Nicholas Badain
Abstract The promising D-EGR gasoline engine results achieved in the test cell, and then in a vehicle demonstration have led to exploration of further possible applications. A study has been conducted to explore the use of D-EGR gasoline engines as a lower cost replacement for medium duty diesel engines in trucks and construction equipment. However, medium duty diesel engines have larger displacement, and tend to require high torque at lower engine speeds than their automobile counterparts. Transmission and final drive gearing can be utilized to operate the engine at higher speeds, but this penalizes life-to-overhaul. It is therefore important to ensure that D-EGR combustion system performance can be maintained with a larger cylinder bore, and with high specific output at relatively low engine speeds.
2017-03-28
Technical Paper
2017-01-0579
Stephane Chevillard, Olivier Colin, Julien Bohbot, Mingjie Wang, Eric Pomraning, P. K. Senecal
Abstract Nowadays Spark Ignition (SI) engine developments focus on downsizing, in order to increase the engine load level and consequently its efficiency. As a side effect, knock occurrence is strongly increased. The current strategy to avoid knock is to reduce the spark advance which limits the potential of downsizing in terms of consumption reduction. Reducing the engine propensity to knock is therefore a first order subject for car manufacturers. Engineers need competitive tools to tackle such a complex phenomenon. In this paper the 3D RANS simulations ability to satisfactorily represent knock tendencies is demonstrated. ECFM (Extended Coherent Flame Model) has been recently implemented by IFPEN in CONVERGE and coupled with TKI (Tabulated Kinetics Ignition) to represent Auto-Ignition in SI engine. These models have been applied on a single cylinder engine configuration dedicated to abnormal combustion study.
2017-03-28
Technical Paper
2017-01-0633
Kurt Stuart, Terry Yan, James Mathias
Abstract In this paper, the air-standard cycle analysis is performed for a 5-stroke engine to obtain the indicated thermal efficiency and power output over a range of operating points and design characteristics, including engine RPM, compression ratio, overall expansion ratio, expansion cylinder clearance volume, and transfer port volume. The results are compared with those of a baseline 4-stroke engine. This analysis is accomplished by an air-standard thermodynamic model for both engines with heat release function with heat transfer and mass loss for both the combustion cylinder and the expansion cylinder. The results indicate increased thermal efficiency and power output over the baseline 4-stroke engine, depending on the engine RPM and overall expansion ratios.
2017-03-28
Technical Paper
2017-01-0436
Tianjun Zhu, Bin Li
Abstract A new extended planar model for multi-axle articulated vehicle with nonlinear tire model is presented. This nonlinear multi-axle articulated vehicle model is specifically intended for improving the model performance in operating regimes where tire lateral force is near the point of saturation, and it has the potential to extend the specific axles model to any representative configuration of articulated vehicle model. At the same time, the extended nonlinear vehicle model can reduce the model's sensitivity to the tire cornering coefficients. Firstly, a nonlinear tire model is used in conjunction with the 6-axle planar articulated vehicle model to extend the ranges of the original linear model into the nonlinear regimes of operation. Secondly, the performance analysis of proposed nonlinear vehicle model is verified through the double lane change maneuver on different road adhesion coefficients using TruckSim software.
2017-03-28
Technical Paper
2017-01-0435
Koundinya Narasimha Kota, Bharath Sivanandham
Abstract Active roll control system offers better solution in improving the vehicle comfort and handling. There are various ways of active roll control system actuation like electrical, hydraulic and electro-hydraulic combination systems etc. For the current work, dual hydraulic actuator based active roll control mechanism is used. In this paper we have used integrated Model-In-Loop (MIL) based simulation approach to validate the active roll control system. Dual linear hydraulic actuators models and control logic for improving the roll dynamics of the vehicle is built using Matlab/Simulink. The desired car characteristics maneuver and road profiles are modeled in IPG Car maker(a Model in Loop based tool). Simulink model is integrated with Car Maker model for validating the performance in extreme cornering maneuvers, such as double steer step, slalom 18m, fishhook.
2017-03-28
Technical Paper
2017-01-0438
Zhenhai Gao, Tianjun Sun, Lei He
Abstract A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance.
2017-03-28
Technical Paper
2017-01-0439
Joydeep Chatterjee, Yuva Kishore Vaddi, Chetan Prakash Jain
Abstract In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
2017-03-28
Technical Paper
2017-01-0431
Xianyao Ping, Gangfeng Tan, Benlong Liu, Shengguang Xiong, Yuyang Cao
Abstract The heavy-duty vehicles have large transportation capacity. Gross mass and center of gravity position of the heavy-duty vehicles vary with the cargo mass and the driving condition, which affect driving safety and handling stability. Gross mass and center of gravity position of the vehicles are usually measured on fixed test platform, and the vehicles are stationary or pass the platform slowly in the measurement process. Most dynamic weighing system could not measure the center of gravity position of the vehicles. On-board mass and center of gravity of motor vehicles measurement system mainly based on the tire pressure information could measure gross mass and center of gravity position accurately in the driving process. The measurement errors of the sensors are effectively decreased by filtering collected sensor data. The relationship between the tire pressure and the tire load is built when the vehicle is stationary.
2017-03-28
Technical Paper
2017-01-0429
Michael Holland, Jonathan Gibb, Kacper Bierzanowski, Stuart Rowell, Bo Gao, Chen Lv, Dongpu Cao
Abstract This paper outlines the procedure used to assess the performance of a Lane Keeping Assistance System (LKAS) in a virtual test environment using the newly developed Euro NCAP Lane Support Systems (LSS) Test Protocol, version 1.0, November 2015 [1]. A tool has also been developed to automate the testing and analysis of this test. The Euro NCAP LSS Test defines ten test paths for left lane departures and ten for right lane departures that must be followed by the vehicle before the LKAS activates. Each path must be followed to within a specific tolerance. The vehicle control inputs required to follow the test path are calculated. These tests are then run concurrently in the virtual environment by combining two different software packages. Important vehicle variables are recorded and processed, and a pass/fail status is assigned to each test based on these values automatically.
2017-03-28
Technical Paper
2017-01-0430
Bangji Zhang, Kaidong Tian, Wen Hu, Jie Zhang, Nong Zhang
Abstract This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
2017-03-28
Technical Paper
2017-01-0468
Raj S. Roychoudhury
Abstract A new weld design to form plastic hollow articles is conceived. Its design is T-shaped such that the joint loading under pressure is no longer in peel but in tension, vertically to the weld surface. This weld design can be easily achieved, overcoming the limitation of die lock in injection molding and by the hot plate weld design adopted for this welding. Test samples were built to evaluate the new weld design concept and hot plates designed to help perform this weld joint. Pull test on the conventional L-shaped and the new T- shaped welded samples show an improvement of about 50% weld strength for the new T-shaped weld design. Hence a weld joint stronger than the parent material, in forming plastic hollow articles, is possible.
2017-03-28
Technical Paper
2017-01-0445
Muthukumar Arunachalam, Arunkumar S, PraveenKumar Sampath, Abdul Haiyum, Yash Khakhar
Abstract In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
2017-03-28
Technical Paper
2017-01-0449
Yinzhi He, Bin Wang, Zhe Shen, Zhigang Yang, Gunnar Heilmann, Tao Zhang, Guoxu Dong
Abstract Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
2017-03-28
Technical Paper
2017-01-0512
Andrea Matrisciano, Tim Franken, Cathleen Perlman, Anders Borg, Harry Lehtiniemi, Fabian Mauss
Abstract A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions.
2017-03-28
Technical Paper
2017-01-0054
Daniel Kaestner, Antoine Miné, André Schmidt, Heinz Hille, Laurent Mauborgne, Stephan Wilhelm, Xavier Rival, Jérôme Feret, Patrick Cousot, Christian Ferdinand
Abstract Safety-critical embedded software has to satisfy stringent quality requirements. All contemporary safety standards require evidence that no data races and no critical run-time errors occur, such as invalid pointer accesses, buffer overflows, or arithmetic overflows. Such errors can cause software crashes, invalidate separation mechanisms in mixed-criticality software, and are a frequent cause of errors in concurrent and multi-core applications. The static analyzer Astrée has been extended to soundly and automatically analyze concurrent software. This novel extension employs a scalable abstraction which covers all possible thread interleavings, and reports all potential run-time errors, data races, deadlocks, and lock/unlock problems. When the analyzer does not report any alarm, the program is proven free from those classes of errors. Dedicated support for ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-aware analysis.
2017-03-28
Technical Paper
2017-01-0050
Mario Berk, Hans-Martin Kroll, Olaf Schubert, Boris Buschardt, Daniel Straub
Abstract With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
2017-03-28
Technical Paper
2017-01-0066
Shogo Nakao, Akihiko Hyodo, Masaki Itabashi, Tomio Sakashita, Shingo Obara, Tetsuya Uno, Yasuo Sugure, Yoshinobu Fukano, Mitsuo Sasaki, Yoshihiro Miyazaki
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
Viewing 151 to 180 of 33174