Criteria

Display:

Results

Viewing 121 to 150 of 33395
2017-09-17
Journal Article
2017-01-2532
David B. Antanaitis, Michael Shenberger, Max Votteler
Abstract The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
2017-09-17
Journal Article
2017-01-2511
Toshikazu Okamura
Abstract The most fundamental function of an automobile brake system is assuring stable braking effectiveness under various conditions. In a previous paper (2004-01-2765), the author et al. confirmed that the friction behavior of disc brakes during running-in depends on both the friction materials and discs’ friction-surface textures. Various friction pairs were tested by combining discs finished with roller-burnishing and grinding and five friction materials including NAO and low-steel. Some NAO material exhibited large effects on the difference in friction behaviors between the discs’ surface textures. A disc finished with roller-burnishing needed a longer running-in period than that with grinding. In another paper (2011-01-2382), a further experiment was conducted by combining eight surface textures (finished under four turning conditions with and without additional roller-burnishing), two NAO materials, and two rotational directions.
2017-09-17
Journal Article
2017-01-2521
Stacey Scherer
Abstract Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
2017-09-17
Journal Article
2017-01-2480
Roberto Dante, Andrea Sliepcevich, Marco Andreoni, Mario Cotilli
Abstract Tin sulfides (SnS and SnS2), represent a safer and greener alternative to other metal sulfides such as copper sulfides, and MoS2 etc. Their behavior is usually associated to that of solid lubricants such as graphite. A mixture of tin sulfides, with the 65 wt% of SnS2, has been characterized by scanning electron microscopy and by thermal gravimetric analysis (TGA). In order to investigate the effect of tin sulfides upon two crucial friction material ingredients, two mixtures were prepared: the former was made by mixing tin sulfides with a natural flake graphite and the latter was made mixing tin sulfides with a straight novolak. They were analyzed by TGA and differential thermal analysis (DTA) in both nitrogen and air. Some interferences were detected between tin sulfides and graphite in air.
2017-09-04
Technical Paper
2017-24-0084
Giacomo Belgiorno, Nikolaos Dimitrakopoulos, Gabriele Di Blasio, Carlo Beatrice, Martin Tuner, Per Tunestal
Abstract In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
2017-09-04
Technical Paper
2017-24-0090
Robert E. Morgan, Morgan Heikal, Emily Pike-Wilson
Abstract Traffic related NOx and particle emission remain a significant concern particularly in the urban environment. Electrification offers a medium to long term solution, but there remains a need to significantly reduce internal combustion engine emissions in the short and medium term, and potentially in the long term for long range inter city transportation. Late injection low temperature combustion (LTC) has the potential to achieve ultra-low emissions levels in a compression ignition engine by increasing the lean pre-mixed burn fraction. However, significant quantities of diluent are normally required to achieve the required delay in ignition and pre-mixing to achieve LTC. This results in high boost requirements, increased pumping work and the complexity of the air handling system and potentially adversely impacting fuel economy.
2017-09-04
Technical Paper
2017-24-0093
Lorenzo Bartolucci, Stefano Cordiner, Vincenzo Mulone, Vittorio Rocco
Abstract Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
2017-09-04
Technical Paper
2017-24-0098
Christophe Barro, Curdin Nani, Richard Hutter, Konstantinos Boulouchos
Abstract The operation of dual fuel engines, operated with natural gas as main fuel, offers the potential of substantial savings in CO2. Nevertheless, the operating map area where low pollutant emissions are produced is very narrow. Especially at low load, the raw exhaust gas contains high concentrations of unburned methane and, with high pilot fuel portions due to ignition limitations, also soot. The analysis of the combustion in those conditions in particular is not trivial, since multiple combustion modes are present concurrently. The present work focuses on the evaluation of the individual combustion modes of a dual fuel engine, operated with natural gas as main and diesel as pilot fuel, using a combustion model. The combustion has been split in two partwise concurrent combustion phases: the auto-ignition phase and the premixed flame propagation phase.
2017-09-04
Technical Paper
2017-24-0103
Marlene Wentsch, Marco Chiodi, Michael Bargende
Abstract Main limiting factor in the application of 3D-CFD simulations within an engine development is the very high time demand, which is predominantly influenced by the number of cells within the computational mesh. Arbitrary cell coarsening, however, results in a distinct distortion of the simulation outcome. It is rather necessary to adapt the calculation models to the new mesh structure in order to ensure reliability and predictability of the 3D-CFD engine simulation. In the last decade, a fast response 3D-CFD tool was developed at FKFS in Stuttgart. It aims for a harmonized interaction between computational mesh, implemented calculation models and defined boundary conditions in order to enable fast running simulations for engine development tasks. Their susceptibility to errors is significantly minimized by various measures, e.g. extension of the simulation domain (full engine) and multi-cycle simulations.
2017-09-04
Technical Paper
2017-24-0101
Pedro Marti-Aldaravi, Kaushik Saha, Jaime Gimeno, Sibendu Som
Abstract Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
2017-09-04
Technical Paper
2017-24-0105
Stefania Falfari, Gian Marco Bianchi, Giulio Cazzoli, Claudio Forte PhD, Sergio Negro
Abstract The primary target of the internal combustion engines design is to lower the fuel consumption and to enhance the combustion process quality, in order to reduce the raw emission levels without performances penalty. In this scenario the direct injection system plays a key role for both diesel and gasoline engines. The spray dynamic behaviour is crucial in defining the global and the local air index of the mixture, which in turns affects the combustion process development. At the same time it is widely recognized that the spray formation is influenced by numerous parameters, among which also the cavitation process inside every single hole of the injector nozzle. The proper prediction of the cavitation development inside the injector nozzle holes is crucial in predicting the liquid jet emerging from them.
2017-09-04
Technical Paper
2017-24-0107
Alessandro Montanaro, Luigi Allocca, Vittorio Rocco, Michela Costa, Daniele Piazzullo
Abstract Gasoline direct injection (GDI) engines are characterized by complex phenomena involving spray dynamics and possible spray-wall interaction. Control of mixture formation is indeed fundamental to achieve the desired equivalence ratio of the mixture, especially at the spark plug location at the time of ignition. Droplet impact on the piston or liner surfaces has also to be considered, as this may lead to gasoline accumulation in the liquid form as wallfilm. Wallfilms more slowly evaporate than free droplets, thus leading to local enrichment of the charge, hence to a route to diffusive flames, increased unburned hydrocarbons formation and particulate matter emissions at the exhaust. Local heat transfer at the wall obviously changes if a wallfilm is present, and the subtraction of the latent heat of vaporization necessary for secondary phase change is also an issue deserving a special attention.
2017-09-04
Technical Paper
2017-24-0113
Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco, Maria Cristina Cameretti
Abstract The management of multiple injections in compression ignition (CI) engines is one of the most common ways to increase engine performance by avoiding hardware modifications and after-treatment systems. Great attention is given to the profile of the injection rate since it controls the fuel delivery in the cylinder. The Injection Rate Shaping (IRS) is a technique that aims to manage the quantity of injected fuel during the injection process via a proper definition of the injection timing (injection duration and dwell time). In particular, it consists in closer and centered injection events and in a split main injection with a very small dwell time. From the experimental point of view, the performance of an IRS strategy has been studied in an optical CI engine. In particular, liquid and vapor phases of the injected fuel have been acquired via visible and infrared imaging, respectively. Injection parameters, like penetration and cone angle have been determined and analyzed.
2017-09-04
Technical Paper
2017-24-0119
Jos Feijen, Gerard Klink, Ed Jong, Andreas Schmid, Niels Deen, Michael Boot
Abstract Second generation biomass is an attractive renewable feedstock for transport fuels. Its sulfur content is generally negligible and the carbon cycle is reduced from millions to tens of years. One hitherto non-valorized feedstock are so-called humins, a residual product formed in the conversion of sugars to platform chemicals, such as hydroxymethylfurfural and methoxymethylfurfural, intermediates in the production of FDCA, a building block used to produce the polyethylene furanoate (PEF) bottle by Avantium. The focus of this study is to investigate the spray combustion behavior of humins as a renewable alternative for heavy fuel oil (HFO) under large two-stroke engine-like conditions in an optically accessible constant volume chamber.
2017-09-04
Technical Paper
2017-24-0121
Ivan Arsie, Giuseppe Cialeo, Federica D'Aniello, Cesare Pianese, Matteo De Cesare, Luigi Paiano
Abstract In the last decades, NOx emissions legislations for Diesel engines are becoming more stringent than ever before and the selective catalytic reduction (SCR) is considered as the most suitable technology to comply with the upcoming constraints. Model-based control strategies are promising to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-selective catalytic reduction. In this paper, a control oriented model of a Cu-zeolite urea-SCR system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. To make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational burden. Particularly, the model allows estimating the NH3 slip that is fundamental not only to minimize urea consumption but also to reduce this unregulated emission.
2017-09-04
Technical Paper
2017-24-0006
Alejandro Aljure, Xavier Tauzia, Alain Maiboom
Abstract Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency, despite the difficulty of depollution and extra associated costs. They require more accessories to function properly, such as turbocharging and post-treatment systems. The most important pollutants emitted from diesel engines are NOx and particles (in conventional engines), being difficult to reduce and control because reducing one increases the other. Low temperature combustion (LTC) diesel engines are able to reduce both pollutants, but increase emissions of CO and HC. Besides HCCI and EGR systems, one method that could achieve LTC conditions is by using multiple injections (pilot/main, split injection, etc.). However, understanding multiple diesel injection is no easy task, so far done by trial and error and complex 3D CFD models, or too simplified by 0D models.
2017-09-04
Technical Paper
2017-24-0003
Andreas Sidorow, Vincent Berger, Ghita Elouazzani
Abstract Gasoline engines have typically a waste gate actuator to control the boost pressure. The electrification of the vehicle and combustion engine components leads to new challenges of application of electric actuators in engine components, like turbochargers, which are faced with relatively high ambient temperatures. Another challenge is a simulation and prediction of the mechanical load on the actuator and kinematic components at different application scenarios, which can help to find the optimal solution which fulfills the durability, controllability, etc. targets. This paper deals with a physical dynamic model of an electric waste-gate actuator and kinematic components. The modeling includes a thermal, electrical and mechanical parts of the turbocharger control system and is validated on test-bench and engine measurements including pulsation effects.
2017-09-04
Technical Paper
2017-24-0002
Adrian Irimescu, Silvana Di Iorio, Simona Merola, Paolo Sementa, Bianca Maria Vaglieco
Abstract Quasi-dimensional modeling is used on a wide scale in engine development, given its potential for saving time and resources compared to experimental investigations. Often it is preferred to more complex CFD codes that are much more computationally intensive. Accuracy is one major issue of quasi-dimensional simulations and for this reason sub-models are continuously developed for improving predictive capabilities. This study considers the use of equivalent fluid velocity and characteristic length scales for simulating the processes of fresh charge entrainment and oxidation behind the flame front. Rather than dividing combustion into three different phases (i.e. laminar kernel, turbulent flame propagation and oxidation near the walls), the concept of turbulent heat and mass transfer is imposed throughout the entire process.
2017-09-04
Technical Paper
2017-24-0010
Federico Millo, Luciano Rolando, Alessandro Zanelli, Francesco Pulvirenti, Matteo Cucchi, Vincenzo Rossi
Abstract This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
2017-09-04
Technical Paper
2017-24-0007
Joachim Beeckmann, Raik Hesse, Felix Bejot, Nan Xu, Heinz Pitsch
Abstract Especially for internal combustion engine simulations, various combustion models rely on the laminar burning velocity. With respect to computational time needed for CFD, the calculation of laminar burning velocities using a detailed chemical mechanism can be replaced by incorporation of approximation formulas, based on rate-ratio asymptotics. This study revisits an existing analytical approximation formula [1]. It investigates applicable temperature, pressure, and equivalence ratio ranges with special focus on engine combustion conditions. The fuel chosen here is methane and mixtures are composed of methane and air. The model performance to calculate the laminar burning velocity are compared with calculated laminar burning velocities using existing state of the art detailed chemical mechanisms, the GRI Mech 3.0 [2], the ITV RWTH [3], and the Aramco mechanism [4].
2017-09-04
Technical Paper
2017-24-0015
Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
2017-09-04
Technical Paper
2017-24-0018
Nikiforos Zacharof, Georgios Fontaras, Theodoros Grigoratos, Biagio Ciuffo, Dimitrios Savvidis, Oscar Delgado, J. Felipe Rodriguez
Abstract Heavy-duty vehicles (HDVs) account for some 5% of the EU’s total greenhouse gas emissions. They present a variety of possible configurations that are deployed depending on the intended use. This variety makes the quantification of their CO2 emissions and fuel consumption difficult. For this reason, the European Commission has adopted a simulation-based approach for the certification of CO2 emissions and fuel consumption of HDVs in Europe; the VECTO simulation software has been developed as the official tool for the purpose. The current study investigates the impact of various technologies on the CO2 emissions of European trucks through vehicle simulations performed in VECTO. The chosen vehicles represent average 2015 vehicles and comprised of two rigid trucks (Class 2 and 4) and a tractor-trailer (Class 5), which were simulated under their reference configurations and official driving cycles.
2017-09-04
Technical Paper
2017-24-0019
Alexander Mason, Aaron W. Costall, John R. McDonald
Abstract Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
2017-09-04
Technical Paper
2017-24-0016
Morris Langwiesner, Christian Krueger, Sebastian Donath, Michael Bargende
Abstract The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
2017-09-04
Technical Paper
2017-24-0022
Alessio Dulbecco, Gregory Font
Abstract Diesel engine pollutant emissions legislation is becoming more and more stringent. New driving cycles, including increasingly severe transient engine operating conditions and low ambient-temperature conditions, extend considerably the engine operating domain to be optimized to attain the expected engine performance. Technological innovations, such as high pressure injection systems, Exhaust Gas Recirculation (EGR) loops and intake pressure boosting systems allow significant improvement of engine performance. Nevertheless, because of the high number of calibration parameters, combustion optimization becomes expensive in terms of resources. System simulation is a promising tool to perform virtual experiments and consequently to reduce costs, however models must account for relevant in-cylinder physics to be sensitive to the impact of technology on combustion and pollutant formation.
2017-09-04
Technical Paper
2017-24-0023
Karim Gharaibeh, Aaron W. Costall
Abstract Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
2017-09-04
Technical Paper
2017-24-0020
Michele Becciani, Alessandro Bianchini, Matteo Checcucci, Lorenzo Ferrari, Michele De Luca, Luca Marmorini, Andrea Arnone, Giovanni Ferrara
Abstract The onset of aerodynamic instabilities in proximity of the left margin of the operating curve represents one of the main limitations for centrifugal compressors in turbocharging applications. An anticipated stall/surge onset is indeed particularly detrimental at those high boost pressures that are typical of engine downsizing applications using a turbocharger. Several stabilization techniques have been investigated so far to increase the rangeability of the compressor without excessively reducing the efficiency. One of the most exploited solutions is represented by the use of upstream axial variable inlet guide vanes (VIGV) to impart a pre-whirl angle to the inlet flow. In the pre-design phase of a new stage or when selecting, for example, an existing unit from an industrial catalogue, it is however not easy to get a prompt estimation of the attended modifications induced by the VIGV on the performance map of the compressor.
2017-09-04
Technical Paper
2017-24-0027
Nearchos Stylianidis, Ulugbek Azimov, Nobuyuki Kawahara, Eiji Tomita
Abstract A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. We have confirmed the statements of other authors that HO2+OH=H2O+O2, H2O2+M=OH+OH+M and H2O2+H=H2+HO2 reactions showed very high sensitivity during high-pressure ignition delay times and had considerable uncertainty.
2017-09-04
Technical Paper
2017-24-0026
Davide Paredi, Tommaso Lucchini, Gianluca D'Errico, Angelo Onorati, Stefano Golini, Nicola Rapetto
Abstract The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
2017-09-04
Technical Paper
2017-24-0025
Francesco Sapio, Andrea Piano, Federico Millo, Francesco Concetto Pesce
Abstract Development trends in modern Common Rail Fuel Injection System (FIS) show dramatically increasing capabilities in terms of optimization of the fuel injection pattern through a constantly increasing number of injection events per engine cycle along with a modulation and shaping of the injection rate. In order to fully exploit the potential of the abovementioned fuel injection pattern optimization, numerical simulation can play a fundamental role by allowing the creation of a kind of a virtual injection rate generator for the assessment of the corresponding engine outputs in terms of combustion characteristics such as burn rate, emission formation and combustion noise (CN). This paper is focused on the analysis of the effects of digitalization of pilot events in the injection pattern on Brake Specific Fuel Consumption (BSFC), CN and emissions for a EURO 6 passenger car 4-cylinder diesel engine.
Viewing 121 to 150 of 33395