Criteria

Display:

Results

Viewing 1 to 30 of 33165
2017-07-10
Technical Paper
2017-28-1949
Johnson Jose, Ramesh M, G Venkatesan, M Khader Basha
Unmanned Aerial Vehicles (UAV) are being deployed in military, law enforcement, search & rescue, scientific research, environmental & climate studies, reconnaissance and other commercial and non-commercial applications on a large scale. A design and development of landing gear system has been taken up for a UAV. This paper presents the design optimization of structural components of Wheel-Brake & Fork assembly pertaining to the Main Landing Gear (MLG) for a UAV. The wheel, fork, axle and linkages constitute the wheel assembly. The wheel assembly is assembled with the strut assembly and forms the Landing gear system. The Fork is the connecting member between the shock strut and the axle containing the wheelbrake assembly. As the fork and axle are subjected to shock loads while landing, the strength of these components are very much essential to withstand the dynamic loads.
2017-07-10
Technical Paper
2017-28-1953
Tushar Narendra Puri lng, Lalitkumar Ramujagir Soni lng, Sourabh Deshpande
The infliction of rigorous emission norms across the world has made the automobile industry to focus and dwell upon researches to reduce the engine emissions of diesel engine. Variation in injection timing has better influence on reduction of engine emissions. This paper deal with numerical simulation of 4-stroke, single cylinder, naturally aspirated, direct injection diesel engine running at 1640 RPM using CONVERGE_STUDIO CFD tool. As the piston and bowl geometry considered in this work is symmetric only 45 degree sector engine model considered for simulation over 360 degree complete engine model. To study the combustion and inside flow physics taking place inside engine cylinder more accurately and to reduce computational time, simulation from 20 bTDC during compression stroke up to 140 aTDC in the power stroke is considered as available in the literature.
2017-06-17
Journal Article
2017-01-9077
Zaimin Zhong, Junjie Li, Shuihua Zhou, Yingkun Zhou, Shang Jiang
Abstract Description of PMSM torque in high accuracy is critical and previous work for its further research. However, the traditional linear torque model fails to describe its non-ideal characteristics of practical working. This paper presents a generalized torque model of PMSM based on flux linkage reconstruction. In synchronous rotating space coordinates, flux linkage were reconstructed through Fourier series expansion and bivariate polynomial. Based on this model, a precise PMSM torque ripple description and corresponding suppression method were developed. Current feed-forward compensation and the rotor field oriented control were applied in torque ripple suppression. Simulation and experimental results both show that the model not only accurately describes the nonlinear variation of PMSM torque in different working conditions, but also can be used to suppress PMSM torque ripple effectively.
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-06-17
Journal Article
2017-01-9453
Tobias Hoernig
Within the scope of today’s product development in automotive engineering the aim is to produce more light and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two dimensions: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
2017-06-05
Technical Paper
2017-01-1867
Mustafa Tosun, Mehdi Yildiz, Aytekin Ozkan
Abstract Structure borne noises can be transmitted to interior cabin via physical connections by gearbox as well as other active components. Experimental Transfer Path Analysis (TPA) Methods are utilized to investigate main paths of vibrations which are eventually perceived as noise components inside the cabin. For identifying the structure and air borne noise transfer paths in a system, Matrix Inversion (MI), Mount Stiffness (MS), Operational Transfer Path Analysis (OTPA) and Operational Path Analysis with Exogenous Inputs (OPAX) Methods exist. In this study, contribution ranking of transmission paths from active system components through the physical connections into the interior cabin are investigated by MI and OPAX Methods and finally a comparison of them is presented based on the accuracy of obtained results. The modifications are applied on dominant transfer paths which are determined by the mentioned methods above, respectively.
2017-06-05
Technical Paper
2017-01-1880
Guojian Zhou, Xiujie Tian, Keda Zhu, Wei Huang, Richard E. Wentzel, Melvyn J. Care, Kaixuan Mao, Jiu Hui Wu
Abstract A flexible rebound-type acoustic metamaterial with high sound transmission loss (STL) at low frequency is proposed, which is composed of a flexible, light-weight membrane material and a sheet material - Ethylene Vinyl Acetate Copolymer (EVA) with uneven distributed circular holes. STL was analyzed by using both computer aided engineering (CAE) calculations and experimental verifications, which depict good results in the consistency between each other. An obvious sound insulation peak exists in the low frequency band, and the STL peak mechanism is the rebound-effect of the membrane surface, which is proved through finite element analysis (FEA) under single frequency excitation. Then the variation of the STL peak is studied by changing the structure parameters and material parameters of the metamaterial, providing a method to design the metamaterial with high sound insulation in a specified frequency range.
2017-06-05
Technical Paper
2017-01-1888
Rasheed Khan, Mahdi Ali, Eric C. Frank
Abstract Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
2017-06-05
Technical Paper
2017-01-1903
Masami Matsubara, Nobutaka Tsujiuchi, Tomohiko Ise, Shozo Kawamura
Abstract The tire is one of the most important parts, which influence the noise, vibration, and harshness of the passenger cars. It is well known that effect of rotation influences tire vibration characteristics, and earlier studies presented formulas of tire vibration behavior. However, there are no studies of tire vibration including lateral vibration on effect of rotation. In this paper, we present new formulas of tire vibration on effect of rotation using a three-dimensional flexible ring model. The model consists of the cylindrical ring represents the tread and the springs represent the sidewall stiffness. The equation of motion of lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests.
2017-06-05
Technical Paper
2017-01-1905
Kiran Patil, Javad Baqersad, Jennifer Bastiaan
Abstract Tires are one of the major sources of noise and vibration in vehicles. The vibration characteristic of a tire depends on its resonant frequencies and mode shapes. Hence, it is desirable to study how different parameters affect the characteristics of tires. In the current paper, experimental modal tests are performed on a tire in free-free and fixed conditions. To obtain the mode shapes and the natural frequencies, the tire is excited using a mechanical shaker and the response of the tire to the excitation is measured using three roving tri-axial accelerometers. The mode shapes and resonant frequencies of the tire are extracted using LMS PolyMax modal analysis. The obtained mode shapes in the two configurations are compared using Modal Assurance Criterion (MAC) to show how mode shapes of tires change when the tire is moved from a free-free configuration to a fixed configuration. It is shown that some modes of the tire are more sensitive to boundary conditions.
2017-06-05
Technical Paper
2017-01-1904
Tan Li, Ricardo Burdisso, Corina Sandu
Abstract Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
2017-06-05
Technical Paper
2017-01-1907
Yang Wang, Yong Xu, Xiao Tan
Abstract The vibration isolation performance of vehicle powertrain mounting system is mostly determined by the three-directional stiffness of each mount block. Because of the manufacturing tolerance and the coupling effect, the stiffness of mounts cannot be maintained stable. The purpose of this study was to find out the way to optimize the stiffness of mounts via the design of experiments (DOE). According to the DOE process, a full factorial design was implemented. The z-direction stiffness of three mount blocks in the mounting system was selected as the three analysis factors. The maximum and the minimum stiffness of each mount block within the manufacturing tolerance were selected as the two levels. The measured vibration of vehicle body under certain loading case was selected as the response factor. After eight times of experiment, the DOE parameters were analyzed with statistical methods.
2017-06-05
Technical Paper
2017-01-1751
Nicolas Schaefer, Bart Bergen, Tomas Keppens, Wim Desmet
Abstract The continuous pursuit for lighter, more affordable and more silent cars, has pushed OEMs into optimizing the design of car components. The different panels surrounding the car interior cavity such as firewall, door or floor panels are of key importance to the NV performance. The design of the sound packages for high-frequency airborne input is well established. However, the design for the mid-frequency range is more difficult, because of the complex inputs involved, the lack of representative performance metrics and its high computational cost. In order to make early decisions for package design, performance maps based on the different design parameters are desired for mid-frequencies. This paper presents a framework to retrieve the response surface, from a numerical design space of finite-element frequency sweeps. This response surface describes the performance of a sound package against the different design variables.
2017-06-05
Technical Paper
2017-01-1754
Kyoung-Jin Chang, Seonghyeon Kim, Dong Chul Park, So Youn Moon, Sunghwan Park, Myung Hwan Yun
Abstract This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
2017-06-05
Journal Article
2017-01-1756
Seonghyeon Kim, Kyoung-Jin Chang, Dong Chul Park, Seung Min Lee, Sang Kwon Lee
Abstract This paper presents a systematic approach to interior engine sound design for enhancing sound character of car interior sound effectively. Nowadays an active noise control technology is widely used in vehicle industry. Particularly, an active sound design (ASD) technique using vehicle’s audio system for controlling interior sound due to powertrain has become a general method to improve sound quality or character. The ASD system using speakers has the advantage of creating various sounds relatively easy. In this study, the novel systematic approach is proposed to guide the efficient design of powerful and pleasant acceleration sound by order spectrum analysis. At first, primary attributes of powerful and pleasant sound were analyzed and sound concept was derived. Secondly, the optimal linearity and the level envelope of firing order were derived by subjective evaluation.
2017-06-05
Journal Article
2017-01-1758
Seung Min Lee, Dong Chul Park, Seonghyeon Kim, Sang Kwon Lee
Abstract Recently the interior sound is actively generated by the active sound design (ASD) device in a passenger car. Therefore, the objective evaluation method for the sound quality of actively designed sounds is required. In previous research, the sound quality of interior sound has been presented with powerful and pleasant for the existing passenger car. This paper presents a novel approach method for the objective evaluation of powerfulness and pleasantness of actively designed interior sound. The powerfulness has been evaluated based on the degreed of modulation and a quantity of low frequency booming of the sound in the paper. On the other hand, the pleasantness is evaluated based on the slope ratio of harmonic orders per octave in frequency domain. These evaluation methods are successfully applied to the objective evaluation of luxury passenger car.
2017-06-05
Technical Paper
2017-01-1764
Himanshu Amol Dande, Tongan Wang, John Maxon, Joffrey Bouriez
Abstract The demand for quieter interior cabin spaces among business jet customers has created an increased need for more accurate prediction tools. In this paper, the authors will discuss a collaborative effort between Jet Aviation and Gulfstream Aerospace Corporation to develop a Statistical Energy Analysis (SEA) model of a large commercial business jet. To have an accurate prediction, it is critical to accurately model the structural and acoustic subsystems, critical noise transmission paths, and dominant noise sources for the aircraft. The geometry in the SEA model was developed using 3D CAD models of major airframe and interior cabin components. The noise transmission path was characterized through extensive testing of various aircraft components in the Gulfstream Acoustic Test Facility. Material definitions developed from these tests became input parameters in the SEA model.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-06-05
Journal Article
2017-01-1765
Albert Allen, Noah Schiller, Jerry Rouse
Abstract Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
2017-06-05
Journal Article
2017-01-1770
Wallace Hill, Dennis Kinchen, Mark A. Gehringer
Abstract This paper describes the development of an analytical method to assess and optimize halfshaft joint angles to avoid excessive 3rd halfshaft order vibrations during wide-open-throttle (WOT) and light drive-away events. The objective was to develop a test-correlated analytical model to assess and optimize driveline working angles during the virtual design phase of a vehicle program when packaging tradeoffs are decided. A twelve degree-of-freedom (12DOF) system model was constructed that comprehends halfshaft dynamic angle change, axle torque, powertrain (P/T) mount rate progression and axial forces generated by tripot type constant velocity (CV) joints. Note: “tripot” and “tripod” are alternate nomenclatures for the same type of joint. Simple lumped parameter models have historically been used for P/T mount optimization; however, this paper describes a method for using a lumped parameter model to also optimize driveline working angles.
2017-06-05
Journal Article
2017-01-1774
Fabio Luis Marques dos Santos, Tristan Enault, Jan Deleener, Tom Van Houcke
Abstract The increasing pressure on fuel economy has brought car manufacturers to implement solutions that improve vehicle efficiency, such as downsized engines, cylinder deactivation and advanced torque lock-up strategies. However, these solutions have a major drawback in terms of noise and vibration comfort. Downsized engines and lock-up strategies lead to the use of the engine at lower RPMs, and the reduced number of cylinders generates higher torque irregularities. Since the torque generated by the engine is transferred through flexible elements (clutch, torsional damper, gearbox, transmission, tire), these also impact the energy that is transferred to the vehicle body and perceived by the driver. This phenomenon leads to low frequency behavior, for instance booming noise and vibration. This paper presents a combined test and CAE modelling approach (1D/3D) to reverse engineer a vehicle equipped with a CPVA (centrifugal pendulum vibration absorber).
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Abstract In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
2017-06-05
Technical Paper
2017-01-1779
Xianwu Yang, Jian Pang, Lanjun Wang, Xiong Tian, Yu Tang
Abstract With drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode has a direct relationship with the transmission gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle, in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model. The influences of several parameters, including flywheel inertia, clutch stiffness, clutch hysteresis and drive shaft stiffness, on the 2nd order (major engine firing order for a 4-cylinder-4-stroke engine) torsional resonant frequency and the 2nd order torsional resonant peak of the transmission input shaft are analyzed by changing them alternatively.
2017-06-05
Technical Paper
2017-01-1782
Jobin Puthuparampil, Henry Pong, Pierre Sullivan
Abstract Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
2017-06-05
Technical Paper
2017-01-1788
Kishore Chand Ulli, Upender Rao Gade
Abstract Automotive window buffeting is a source of vehicle occupant’s discomfort and annoyance. Original equipment manufacturers (OEM) are using both experimental and numerical methods to address this issue. With major advances in computational power and numerical modelling, it is now possible to model complex aero acoustic problems using numerical tools like CFD. Although the direct turbulence model LES is preferred to simulate aero-acoustic problems, it is computationally expensive for many industrial applications. Hybrid turbulence models can be used to model aero acoustic problems for industrial applications. In this paper, the numerical modelling of side window buffeting in a generic passenger car is presented. The numerical modelling is performed with the hybrid turbulence model Scale Adaptive Simulation (SAS) using a commercial CFD code.
2017-06-05
Technical Paper
2017-01-1791
David Neihguk, Shreyas Fulkar
Abstract Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
2017-06-05
Technical Paper
2017-01-1792
Magnus Knutsson, Erik Kjellson, Rodney Glover, Hans Boden
Abstract Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
2017-06-05
Technical Paper
2017-01-1790
Vinayak H. Patil, Ravi Kumar Sara, T. R. Milind, Rodney C. Glover
Abstract Vehicle noise emission requirements are becoming more stringent each passing year. Pass-by noise requirement for passenger vehicles is now 74 dB (A) in some parts of the world. The common focus areas for noise treatment in the vehicle are primarily on three sub-systems i.e., engine compartment, exhaust systems and power train systems. Down- sizing and down- speeding of engines, without compromising on power output, has meant use of boosting technologies that have produced challenges in order to design low-noise intake systems which minimize losses and also meet today’s vehicle emission regulations. In a boosted system, there are a variety of potential noise sources in the intake system. Thus an understanding of the noise source strength in each component of the intake system is needed. One such boosting system consists of Turbo-Super configuration with various components, including an air box, supercharger, an outlet manifold, and an intercooler.
2017-06-05
Technical Paper
2017-01-1794
William Seldon, Jamie Hamilton, Jared Cromas, Daniel Schimmel
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
2017-06-05
Technical Paper
2017-01-1793
William Seldon, Amer Shoeb, Daniel Schimmel, Jared Cromas
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of exhaust system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of the GT-power engine and exhaust model and to update internal best practices for modeling. This paper will explore the details of an exhaust focused correlation project that was performed on a naturally aspirated spark ignition eight-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem.
Viewing 1 to 30 of 33165