Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3103
2017-09-19
Technical Paper
2017-01-2052
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver PhD
Aircraft seating systems are evaluated utilizing a variety of impact conditions and selected injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropometric dummies such as those outlined in 14 CFR part 25. An example would be a dummy seated in an upright position held with a two point belt decelerated from an impact speed and allowed to engage components that are in front of the dummy. Examples of head contact surfaces would include video monitors, a wide range of seat back materials, and airbags from which the HIC and other injury measures can be calculated. Other injury measures, such as Nij, are also of interest and can be measured with the Hybrid III dummy as well. A minimum deceleration pulse is defined as part of the regulations for a frontal impact. In this study the effect of variations in decelerations that meet the requirements is considered.
2017-09-19
Technical Paper
2017-01-2054
K Friedman, G Mattos, K Bui, J Hutchinson, A Jafri, J Paver
Aircraft seating systems are evaluated utilizing a variety of impact conditions and selected injury measures. Injury measures like the Head Injury Criterion (HIC) are evaluated under standardized conditions using anthropometric dummies such as those outlined in 14 CFR part 25. An example would be a dummy seated in an upright position held with a two point belt decelerated from an impact speed and allowed to engage components that are in front of the dummy. Examples of head contact surfaces would include video monitors, a wide range of seat back materials, and airbags from which the HIC and other injury measures can be calculated. Other injury measures, such as Nij, are also of interest and can be measured with the Hybrid III dummy as well. It has been shown that the friction between the head form and contact surfaces can affect the test results obtained in other safety applications.
2017-03-28
Technical Paper
2017-01-1468
Do Hoi KIm
Previous work identified a relationship between vehicle drop and dummy injury under the high-speed frontal impact condition [1]. The results showed that vehicle drop greater than 60mm made the dummy injury worse. Moreover, that work identified the front side member as the crucial part affecting the vehicle drop. In this study, the body structure mechanism was studied to reduce vehicle drop by controlling the front side member, shotgun, and A-pillar. By analyzing full vehicles, it was recognized that the arch shape of the front side member was very important. Furthermore, if the top of the arch shape of front side member, shotgun, and A-pillar were connected well, then the body deformation energy could lift the lower part of A-pillar, effectively reducing vehicle drop. This structure design concept is named “Body Lift Structure” (BLS). The BLS was applied to B and C segment platforms. Additionally, a “Ring” shape was defined by the front side member, dash panel, and A-pillar.
2017-03-28
Technical Paper
2017-01-1471
Xiao Luo, Wenjing Du, Hao Li, Peiyu LI, Chunsheng Ma, Shucai Xu, Jinhuan Zhang
Abstract Occupant restraint systems are developed based on some baseline experiments. While these experiments can only represent small part of various accident modes, the current procedure for utilizing the restraint systems may not provide the optimum protection in the majority of accident modes. This study presents an approach to predict occupant injury responses before the collision happens, so that the occupant restraint system, equipped with a motorized pretensioner, can be adjusted to the optimal parameters aiming at the imminent vehicle-to-vehicle frontal crash. The approach in this study takes advantage of the information from pre-crash systems, such as the time to collision, the relative velocity, the frontal overlap, the size of the vehicle in the front and so on. In this paper, the vehicle containing these pre-crash features will be referred to as ego vehicle. The information acquired and the basic crash test results can be integrated to predict a simplified crash pulse.
2017-03-28
Technical Paper
2017-01-1462
Haiyan Li, Xin Jin, Hongfei Zhao, Shihai Cui, Binhui Jiang, King H. Yang
Abstract Computational human body models, especially detailed finite element models are suitable for investigation of human body kinematic responses and injury mechanism. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Parameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, were analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
2017-03-28
Technical Paper
2017-01-1466
Claudia De La Torre, Ravi Tangirala, Michael Guerrero, Andreas Sprick
Abstract Studies in the EU and the USA found higher deformation and occupant injuries in frontal crashes when the vehicle was loaded outboard (frontal crashes with a small overlap). Due to that, in 2012 the IIHS began to evaluate the small overlap front crashworthiness in order to solve this problem.A set of small overlap tests were carried out at IDIADA’s (Institute of Applied Automotive Research ) passive safety laboratory and the importance of identifying the forces applied in each structural element involved in small overlap crash were determined. One of the most important structural elements in the small overlap test is the wheel. Its interaction in a small overlap crash can modify the vehicle interaction at the crash, which at the laboratory the interaction is with a barrier. That interaction has a big influence at the vehicle development and design strategy.
2017-03-28
Technical Paper
2017-01-1730
Gridsada Phanomchoeng, Sunhapos Chantranuwathana
Abstract Nowadays, the tendency of people using bicycles as the way of transportation has increased as well as the tendency of the bicycle accidents. According to the research of National Highway Traffic Safety Administration (NHTSA), National Survey on Bicyclist and Pedestrian Attitude and Behavior, the major root causes of bicycle accidents are from the road surface condition. Thus, this work has developed the system to detect the road surface condition. The system utilizes the laser and camera to measure the height of road. Then, with the information of the road height and bicycle speed, the road surface condition can be classified into 3 categories due to severe condition of the road. For the secure road, cyclists could safely ride on it. For the warning road, cyclists need to slow down the speed. Lastly, for the dangerous road, cyclists have to stop their bicycles.
2017-03-28
Technical Paper
2017-01-1728
Nitin Singh, Aayoush Sharma, Sameer Shah, Balakumar Gardampaali
Abstract In any unlikely event of accidents or vehicle breakdown, there is accumulation of traffic which results in road-blockage and causes in convenience to other vehicles. If this happens in remote areas, the accidents victims are left unattended and there is delay in providing emergency services. In case of traffic, it obstructs the entry of ambulance and rescue team which results in death of passengers. To prevent this mishap, a mechatronics based road block avoidance and accident alarming system is designed which is automated by the use of sensors. The road-block is detected with the help sensors located at regular intervals on road. This input is given to a Local Control Unit (LCU) which is integrated on every road. Several such LCUs are connected to a Main Control Unit (MCU) which is located at the nearest police station. A single MCU covers the area administered by that police station. Additional CCTV cameras are present to give graphical view of accident.
2017-03-28
Technical Paper
2017-01-1561
Anton A. Tkachev, Nong Zhang
Abstract Rollover prevention is one of the prominent priorities in vehicle safety and handling control. A promising alternative for roll angle cancellation is the active hydraulically interconnected suspension. This paper represents the analytical model of a closed circuit active hydraulically interconnected suspension system followed by the simulation. Passive hydraulically interconnected suspension systems have been widely discussed and studied up to now. This work specifically focuses on the active hydraulically interconnected suspension system. Equations of motion of the system are formalized first. The system consists of two separate subsystems that can be modeled independently and further combined for simulation. One of the two subsystems is 4 degrees of freedom half-car model which simulates vehicle lateral dynamics and vehicle roll angle response to lateral acceleration in particular.
2017-03-28
Technical Paper
2017-01-0264
Venkatesh Babu, Ravi Thyagarajan, Jaisankar Ramalingam
Abstract In this paper, the capability of three methods of modelling detonation of high explosives (HE) buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) (2) Structured - Arbitrary Lagrangian-Eulerian (S-ALE), and (3) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The ALE method of modeling the effects of buried charges in soil is well known and widely used in blast simulations today [1]. Due to high computational costs, inconsistent robustness and long run times, alternate modeling methods such as Smoothed Particle Hydrodynamics (SPH) [2, 9] and DEM are gaining more traction. In all these methods, accuracy of the analysis relies not only on the fidelity of the soil and high explosive models but also on the robustness of fluid-structure interaction. These high-fidelity models are also useful in generating fast running models (FRM) useful for rapid generation of blast simulation results of acceptable accuracy.
2017-03-28
Technical Paper
2017-01-0080
Qilu Wang, Bo Yang, Gangfeng Tan, Shengguang Xiong, XiaoXiao Zhou
Abstract Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
2017-03-28
Technical Paper
2017-01-0435
Koundinya Narasimha Kota, Bharath Sivanandham
Abstract Active roll control system offers better solution in improving the vehicle comfort and handling. There are various ways of active roll control system actuation like electrical, hydraulic and electro-hydraulic combination systems etc. For the current work, dual hydraulic actuator based active roll control mechanism is used. In this paper we have used integrated Model-In-Loop (MIL) based simulation approach to validate the active roll control system. Dual linear hydraulic actuators models and control logic for improving the roll dynamics of the vehicle is built using Matlab/Simulink. The desired car characteristics maneuver and road profiles are modeled in IPG Car maker(a Model in Loop based tool). Simulink model is integrated with Car Maker model for validating the performance in extreme cornering maneuvers, such as double steer step, slalom 18m, fishhook.
2017-03-28
Technical Paper
2017-01-1581
Jianbo Lu, Hassen Hammoud, Todd Clark, Otto Hofmann, Mohsen Lakehal-ayat, Shweta Farmer, Jason Shomsky, Roland Schaefer
Abstract This paper presents two brake control functions which are initiated when there is an impact force applied to a host vehicle. The impact force is generated due to the host vehicle being collided with or by another vehicle or object. The first function - called the post-impact braking assist - initiates emergency brake assistance if the driver is braking during or right after the collision. The second function - called the post-impact braking - initiates autonomous braking up to the level of the anti-lock-brake system if the driver is not braking during or right after the collision. Both functions intend to enhance the current driver assistance features such as emergency brake assistance, electronic stability control, anti-brake-lock system, collision mitigation system, etc.
2017-03-28
Technical Paper
2017-01-1414
William Bortles, David Hessel, William Neale
Abstract When a vehicle with protruding wheel studs makes contact with another vehicle or object in a sideswipe configuration, the tire sidewall, rim and wheel studs of that vehicle can deposit distinct geometrical damage patterns onto the surfaces it contacts. Prior research has demonstrated how relative speeds between the two vehicles or surfaces can be calculated through analysis of the distinct contact patterns. This paper presents a methodology for performing this analysis by visually modeling the interaction between wheel studs and various surfaces, and presents a method for automating the calculations of relative speed between vehicles. This methodology also augments prior research by demonstrating how the visual modeling and simulation of the wheel stud contact can extend to almost any surface interaction that may not have any previous prior published tests, or test methods that would be difficult to setup in real life.
2017-03-28
Technical Paper
2017-01-1419
Smruti Panigrahi, Jianbo Lu, Sanghyun Hong
Abstract Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
2017-03-28
Technical Paper
2017-01-1411
Gary A. Davis
Abstract For at least 15 years it has been recognized that pre-crash data captured by event data recorders might help illuminate the actions of drivers prior to crashes. In left-turning crashes where pre-crash data are available from both vehicles it should be possible to estimate features such as the location and speed of the opposing vehicle at the time of turn initiation and the reaction time of the opposing driver. Difficulties arise however from measurement errors in pre-crash data and because the EDR data from the two vehicles are not synchronized so the resulting uncertainties should be accounted for. This paper describes a method for accomplishing this using Markov Chain Monte Carlo computation. First, planar impact methods are used to estimate the speeds at impact of the involved vehicles. Next, the impact speeds and pre-crash EDR data are used to reconstruct the vehicles’ trajectories during approximately 5 seconds preceding the crash.
2017-03-28
Technical Paper
2017-01-1413
Nathan A. Rose, Neal Carter, David Pentecost, Alireza Hashemian
Abstract This paper investigates the dynamics of four motorcycle crashes that occurred on or near a curve (Edwards Corner) on a section of the Mulholland Highway called “The Snake.” This section of highway is located in the Santa Monica Mountains of California. All four accidents were captured on video and they each involved a high-side fall of the motorcycle and rider. This article reports a technical description and analysis of these videos in which the motion of the motorcycles and riders is quantified. To aid in the analysis, the authors mapped Edwards Corner using both a Sokkia total station and a Faro laser scanner. This mapping data enabled analysis of the videos to determine the initial speed of the motorcycles, to identify where in the curve particular rider actions occurred, to quantify the motion of the motorcycles and riders, and to characterize the roadway radius and superelevation throughout the curve.
2017-03-28
Technical Paper
2017-01-1397
Alba Fornells, Núria Parera, Adria Ferrer, Anita Fiorentino
Abstract While accident data show a decreasing number of fatalities and serious injuries on European Union (EU) roads, recent data from ERSO (European Road Safety Observatory) show an increasing proportion of elderly in the fatality statistics. Due to the continuous increase of life expectancy in Europe and other highly-developed countries, the elderly make up a higher number of drivers and other road users such as bicyclists and pedestrians whose mobility needs and habits have been changing over recent years. Moreover, due to their greater vulnerability, the elderly are more likely to be seriously injured in any given accident than younger people. With the goal of improving the safety mobility of the elderly, the SENIORS Project, funded by the European Commission, is investigating and assessing the injury reduction that can be achieved through innovative tools and safety systems.
2017-03-28
Technical Paper
2017-01-1460
Nitesh Jadhav, Linda Zhao, Senthilkumar Mahadevan, Bill Sherwood, Krishnakanth Aekbote, Dilip Bhalsod
Abstract The Pelvis-Thorax Side Air Bag (PTSAB) is a typical restraint countermeasure offered for protection of occupants in the vehicle during side impact tests. Currently, the dynamic performance of PTSAB for occupant injury assessment in side impact is limited to full-vehicle evaluation and sled testing, with limited capability in computer aided engineering (CAE). The widely used CAE method for PTSAB is a flat bag with uniform pressure. The flat PTSAB model with uniform pressure has limitations because of its inability to capture airbag deployment during gap closure which results in reduced accuracy while predicting occupant responses. Hence there is a need to develop CAE capability to enhance the accuracy of prediction of occupant responses to meet performance targets in regulatory and public domain side impact tests. This paper describes a new CAE methodology for assessment of PTSAB in side impact.
2017-03-28
Technical Paper
2017-01-1459
HangMook Kim, Jae Kyu Lee, Jin Sang CHUNG
Abstract During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
2017-03-28
Technical Paper
2017-01-1453
Sudip Sankar Bhattacharjee, Shahuraj Mane, Harsha Kusnoorkar, Sean Hwang, Matt Niesluchowski
Abstract Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
2017-03-28
Technical Paper
2017-01-1457
Jingwen Hu, Nichole Ritchie Orton, Rebekah Gruber, Ryan Hoover, Kevin Tribbett, Jonathan Rupp, Dave Clark, Risa Scherer, Matthew Reed
Abstract Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
2017-03-28
Technical Paper
2017-01-1451
Jan Vychytil, Jan Spicka, Ludek Hyncik, Jaroslav Manas, Petr Pavlata, Radim Striegler, Tomas Moser, Radek Valasek
Abstract In this paper a novel approach in developing a simplified model of a vehicle front-end is presented. Its surface is segmented to form an MBS model with hundreds of rigid bodies connected via translational joints to a base body. Local stiffness of each joint is calibrated using a headform or a legform impactor corresponding to the EuroNCAP mapping. Hence, the distribution of stiffness of the front-end is taken into account. The model of the front-end is embedded in a whole model of a small car in a simulation of a real accident. The VIRTHUMAN model is scaled in height, weight and age to represent precisely the pedestrian involved. Injury risk predicted by simulation is in correlation with data from real accident. Namely, injuries of head, chest and lower extremities are confirmed. Finally, mechanical response of developed vehicle model is compared to an FE model of the same vehicle in a pedestrian impact scenario.
2017-03-28
Technical Paper
2017-01-1439
John C. Steiner, Christopher Armstrong, Tyler Kress, Tom Walli, Ralph J. Gallagher, Justin Ngo, Andres Silva
Abstract The use of the United States’ Global Positioning System (GPS) to assist with the management of large commercial fleets using telematics is becoming commonplace. Telematics generally refers to the use of wireless devices to transmit data in real time back to an organization. When tied to the GPS system telematics can be used to track fleet vehicle movements, and other parameters. GPS tracking can assist in developing more efficient and safe operations by refining and streamlining routing and operations. GPS based fleet telematics data is also useful for reducing unnecessary engine idle times and minimizing fuel consumption. Driver performance and policy adherence can be monitored, for example by transmitting data regarding seatbelt usage when there is vehicle movement. Despite the advantages for fleet management, there are limitations in the logged data for position and speed that may affect the utility of the system for analysis and reconstruction of traffic collisions.
2017-03-28
Technical Paper
2017-01-1437
William Bortles, Sean McDonough, Connor Smith, Michael Stogsdill
Abstract The data obtained from event data recorders found in airbag control modules, powertrain control modules and rollover sensors in passenger vehicles has been validated and used to reconstruct crashes for years. Recently, a third-party system has been introduced that allows crash investigators and reconstructionists to access, preserve and analyze data from infotainment and telematics systems found in passenger vehicles. The infotainment and telematics systems in select vehicles retain information and event data from cellular telephones and other devices connected to the vehicle, vehicle events and navigation data in the form of tracklogs. These tracklogs provide a time history of a vehicle’s geolocation that may be useful in investigating an incident involving an automobile or reconstructing a crash. This paper presents an introduction to the type of data that may be retained and the methods for performing data acquisitions.
2017-03-28
Technical Paper
2017-01-1431
Ke Dong, Brian Putala, Kristen Ansel
Abstract Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
2017-03-28
Technical Paper
2017-01-1430
Tony R. Laituri, Scott G. Henry
Abstract The present study had three objectives: (1) define a reasonable number of categories to bin head injuries, (2) develop an overarching risk function to estimate head-injury probability based on injury probabilities pertaining to those subordinate categories, and (3) assess the fidelity of both the overarching function and approximations to it. To achieve these objectives, we used real-world data from the National Automotive Sampling System (NASS), pertaining to adult drivers in full-engagement frontal crashes. To provide practical value, we factored the proposed US New Car Assessment Program (US NCAP) and the corresponding Request for Comments from the government. Finally, the NASS data stratifications included three levels of injury (AIS1+, AIS2+, AIS3+), two levels of restraint (properly-belted, unbelted), and two eras based on driver-airbag fitment (Older Vehicles, Newer Vehicles).
2017-03-28
Technical Paper
2017-01-1429
Sung Rae kim, Inju Lee, Hyung joo Kim
Abstract This paper aims to evaluate the biofidelity of a human body FE model with abdominal obesity in terms of submarining behavior prediction, during a frontal crash event. In our previous study, a subject-specific FE model scaled from the 50th percentile Global Human Body Model Consortium (GHBMC) human model to the average physique of three female post mortem human subjects (PMHSs) with abdominal obesity was developed and tested its biofidelity under lap belt loading conditions ([1]). In this study frontal crash sled simulations of the scaled human model have been performed, and the biofidelity of the model has been evaluated. Crash conditions were given from the previous study ([2]), and included five low-speed and three high-speed sled tests with and without anti-submarining device.
2017-03-28
Technical Paper
2017-01-1428
Berkan Guleyupoglu, Ryan Barnard, F. Scott Gayzik
Abstract Computational modeling of the human body is increasingly used to evaluate countermeasure performance during simulated vehicle crashes. Various injury criteria can be calculated from such models and these can either be correlative (HIC, BrIC, etc.) or based on local deformation and loading (strain-based rib fracture, organ damage, etc.). In this study, we present a method based on local deformation to extract failed rib region data. The GHMBC M50-O model was used in a Frontal-NCAP severity sled simulation. Failed Rib Regions (FRRs) in the M50-O model are handled through element deletion once the element surpasses 1.8% effective strain. The algorithm central to the methodology presented extracts FRR data and requires 4-element connectivity to register a failure. Furthermore, the FRRs are localized to anatomical sections (Lateral, Anterior, and Posterior), rib level (1,2,3 etc.) and element strain data is recorded.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
Viewing 1 to 30 of 3103