Display:

Results

Viewing 1 to 30 of 3644
2015-04-14
Technical Paper
2015-01-1442
Wolfgang Sinz, Jörg Moser, Christoph Klein, Robert Greimel, Karsten Raguse, Class Middendorff, Christina Steiner
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with an accuracy of approximately 5 millimetres, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimetres.
2015-04-14
Technical Paper
2015-01-1707
Ravi Ranjan, Shivaswaroop Parameswaraiah
Glare is subjective and can cause either disability or discomfort to eyes. A recent report from NHTSA (National Highway Traffic Safety Administration) shows that 22,487 deaths occurred in the year 2012. FARS (Fatality Analysis Reporting System) shows that 10,480 deaths occur at night time. This accounts to 48% fatalities during night time. Thus glare during driving, especially at night time is a serious concern and must be addressed. No commercial product exists to counter the glare, though there had been some academic progress in realizing a solution. The paper consists of two promising technologies that can help in reducing glare. The system level design comprises of vision based identification of glare source. And a device placed between the driver and source is controlled for its transmittance. By changing the transparency locally the glare is avoided without affecting the overall visibility.
2015-04-14
Technical Paper
2015-01-1450
Jeremy Daily, Andrew Kongs, James Johnson, Jose Corcega
The proper investigation of crashes involving commercial vehicles is critical for fairly assessing liability and damages, if they exist. In addition to traditional physics based approaches, the digital records stored within heavy vehicle electronic control modules (ECMs) are useful in determining the events leading to a crash. Traditional methods of extracting digital data use proprietary diagnostic and maintenance software and require a functioning ECM. However, some crashes induce damage that renders the ECM inoperable, even though it may still contain data. As such, the objective of this research is to examine the digital record in an ECM and understand its meaning. The research was performed on a Detroit Diesel DDEC V engine control module. The data extracted from the flash memory chips include: Last Stop Record, two Hard Brake events, and the Daily Engine Usage Log. The procedure of extracting and reading the memory chips is explained.
2015-04-14
Technical Paper
2015-01-1415
Yasuhiro Matsui, Shoko Oikawa
The number of traffic deaths in Japan decreased over the past 20 years to 4373 in 2013. Among accident types of road-accident fatalities, only cyclist fatalities increased in number from 2012 to 2013, from 563 to 600, an increase of 7%. The Japanese government began assessing the safety performance of car bonnet tops in terms of pedestrian deaths in 2005, but there has been no effective regulation for cyclist protection in Japan. The implementation of countermeasures that reduce the severity of injuries and number of deaths in traffic accidents requires a detailed understanding of the features of cyclist injuries in vehicle-versus-cyclist accidents. The aim of this study is to clarify the circumstances in which cyclists are injured.
2015-04-14
Technical Paper
2015-01-1418
Shane Richardson, Nikola Josevski, Andreas Sandvik, Tandy Pok, Tia Lange Orton, Blake Winter, Xu Wang
Pedestrian throw distance can be used to evaluate vehicle impact speed for wrap or forward projection type pedestrian collisions. There have been multiple papers demonstrating relationships between the impact speed of a vehicle and the subsequent pedestrian throw distance. In the majority of instances the scenarios evaluated focused on the central width of the vehicle impacting the pedestrian. However based on investigated pedestrian collisions there is a depending on where and how the vehicle and pedestrian engaged with one another, the definition of the engagement can and does significantly influence the throw distance. PC-Crash was used to simulate multiple pedestrian impacts at multiple speeds and pedestrian throw distance impact speed contour plots were created. The pedestrian throw distance impact speed contour plots for a range of vehicle types and pedestrian sizes are presented.
2015-04-14
Technical Paper
2015-01-1421
Dennis Turriff, David J. King, James Bertoch
Vehicle rollovers generate complicated damage patterns as a result of multiple vehicle-to-ground contacts. The goal of this work was to isolate and characterize specific directional features in coarse- and fine-scale scratch damage generated during a rollover crash. Four rollover tests were completed using stock 2001 Chevrolet Trackers. Vehicles were decelerated and launched from a rollover test device to initiate driver’s side leading rolls onto concrete and dirt surfaces. Gross vehicle damage and both macroscopic and microscopic features of the scratch damage were documented using standard and macro lenses, a stereomicroscope, and a scanning electron microscope (SEM). The most evident indicators of scratch direction, and thus roll direction, were accumulations of abraded material found at the termination points of scratch-damaged areas.
2015-04-14
Journal Article
2015-01-1489
Raed E. El-jawahri, Tony R. Laituri, Agnes S. Kim, Stephen W. Rouhana, Para V. Weerappuli
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraint, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point vehicle belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven different body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
2015-04-14
Journal Article
2015-01-1470
Takahiro Isshiki, Atsuhiro Konosu, Yukou Takahashi
It is anticipated that the currently used legform impact test methods using a legform impactor simulating only a lower limb of a pedestrian, such as the Flexible Pedestrian Legform Impactor (FlexPLI) and the EEVC legform impactor, cannot appropriately evaluate the probability of lower limb injuries of pedestrians in the cases of the collisions with vehicles equipped with high bumpers (high-bumper vehicles). The reason for this limitation is considered to be the lack of the upper body representation. However, the detailed analysis about the effect of the upper body has been limited. The latest legform impact test method using the FlexPLI attempts to compensate for the influences of the upper body by setting the impact height 50 mm higher than that of an actual pedestrian. It is anticipated that this compensation is not effective in collisions with high-bumper vehicles, however, the ineffectiveness of the compensation has not been clarified.
2015-03-10
Technical Paper
2015-01-0024
Jaehaeng Yoo
Abstract For the robust passenger NCAP(New Car Assessment Program) 5star and the stable neck injury performance, a new concept of passenger airbag has been required. Especially, the deployment stability and the vent hole control technology of the passenger airbag can be improved. According to these requirements, the deployment stability technique has been studied and the ‘Active Vent’ technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.
2015-03-10
Technical Paper
2015-01-0027
Tia Lange Gaffney, Blake Winter, Arky Elston, Andreas Sandvik, Tandy Pok, Shane Richardson, Nikola Josevski
Abstract When a vehicle is involved in a collision, often a question arises regarding the vehicle's pre-crash velocity. In modern vehicles, velocity data can typically be extracted from the vehicle's Electronic Data Recorder (EDR) via OEM or aftermarket diagnostic tools. However, many modern vehicles - and particularly vehicles operated and/or manufactured in Australia - are not equipped with downloadable EDRs. In these cases, the pre-crash velocity must be calculated based on physical forensic evidence. One method for estimating collision velocity is the crush-energy method, wherein the vehicle is modeled as a spring system. The velocity is then estimated based on the vehicle-specific stiffness properties and on the post-collision crush profile. The vehicle-specific stiffness properties must be derived from a comparable staged crash test. Often, no such crash test exists.
2015-02-26
WIP Standard
J3074
This procedure establishes a recommended practice for performing a Lumbar Flexion test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past there has not been any tests to document the performance of Hybrid III 50th lumbar.
2015-02-16
WIP Standard
J2878
This procedure establishes a recommended practice for performing a Low Speed Thorax Impact Test to the Hybrid III Small Female Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand by the industry to have a certification test which results in peak chest deflection similar to current full vehicle, frontal impact tests. An inherent problem exists with the current certification procedure because the normal (6.7 m/s) thorax impact test has test results for peak chest deflection that are greater than those currently seen in full vehicle, frontal tests. The intent of this document is to develop a low speed thorax certification procedure for the H-III5F dummy with a 3.0 m/s impact similar to the SAE J2779 procedure for the H-III50M dummy.
2015-02-13
WIP Standard
J2517
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/ (volt/volt) or mm/ (mvolt/volt)).
2015-02-03
Standard
J2862_201502
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy.
2015-01-14
Technical Paper
2015-26-0162
Hasan M. Naqvi, Geetam Tiwari
Abstract Road accidents and persons killed in India have been reported to the tune of 4,90,383 and 1,38,258 respectively during 2012. On National Highways (NHs), major share of accidents (about 29%) and number of persons killed (35.3%) are observed out of total accidents. National Highways in India constitute about 2% of total road network (92,851 km) in India, but carries about 40% of traffic. 46% (42,829 km) of NHs in India comprises of two-lane and about 19% (17239 km) of NHs are single or intermediate-lane. Road accidents being multi-disciplinary in nature involves attention of multiple departments such as Highways Authority, Police, Motor Vehicles, Automobile Manufacturers, NGOs, etc. Owing to spurt in growth of motor vehicle population in India, road accidents are not reduced significantly despite improvement in NHs (widening of carriageway and riding quality).
2015-01-14
Technical Paper
2015-26-0172
Girikumar Kumaresh, Thomas Lich, Moennich Joerg
Abstract In the year of 2012 in India the total number of accidents with injuries is registered by Ministry of Road Transport and Highway with 490,383 out of which injured people are 509,667 and fatalities are 138,258 [1]. Nearly 17% of the fatalities are occupants of passenger cars which constitute the second highest contributor for fatal accidents in India [1]. In order to understand the root causes for car accidents in India, Bosch accident research carried out a study based on in-depth accidents collected in India. Apart from other accident contributing factors e.g. infrastructure the driver behaviour and his actions few milliseconds just prior to the crash is an extremely important and a key valuable data for the understanding of accident causation. Further on it supports also the development of modern automotive safety functions. Hence this research was undertaken to evaluate the benefit of the state-of-the art vehicle safety systems known as Antilock Braking System (ABS).
2015-01-14
Technical Paper
2015-26-0167
Thomas Lich, Girikumar Kumaresh, Joerg Moennich
Abstract Motorized two wheelers, also known as powered two wheelers (PTW) are the most common mode of transportation in India. Around one in four deaths that occurred on the roads in India in 2012 involved a motorcyclist, according to Ministry of Road Transport and Highways. This constitutes the highest contributor for fatal accidents in India [1]. The European Transport Safety Council (ETSC) analysis shows the risk of a motorcyclist having a fatal accident is 20 times greater than for a car driver travelling the same route [2]. An investigation conducted by Bosch looked at the accident database of Road Accident Sampling System for India (RASSI). This investigation revealed interesting facts about the Indian motorcycle accident situation, such as root causes of powered two wheeler collisions and riders behaviour including their braking patterns during the pre-crash phase of the accident.
2015-01-14
Technical Paper
2015-26-0209
Ludek Hyncik, Jan Spicka, Jaroslav Manas, Jan Vychytil
Abstract The paper contributes to the field of vehicle safety technology by the virtual approach using biomechanical virtual human body models. The goal of the paper is to exploit the previously developed scaling algorithm to create several virtual human models of a given age and body proportions and to assess the impact analysis using the sensitivity approach. Based on a validated reference model, the previously developed scaling algorithm develops virtual human body models for given height, mass, age and gender. Particular body segments are scaled based on the anthropometrical database concerning the body dimensions taking also percentiles into account. The body stiffness is driven by age dependent flexindex. Several virtual models of human bodies representing particular cadavers were generated via the automatic scaling algorithm. The frontal sled test response of three models was successfully compared to the available experimental data previously.
2015-01-14
Technical Paper
2015-26-0152
Alok Anand, Pratap Daphal, Pratyush Khare
Abstract The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event. A case study has been explained in this paper to highlight the methodology.
2014-11-01
Book
This title carries the papers developed for the 2014 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes. The topics covered this year include: • Head/brain biomechanics • Thorax, spine, and pelvis biomechanics • Overlap/angled frontal crash testing and real-world performance • Pedestrian and cyclist injury factors and testing • Rollover and side-impact crashes and computational modeling
2014-10-07
Magazine
Outlook for autonomous driving includes cloud Connectivity with off-board data and services and among vehicles will be crucial in maintaining safety and security in future autonomous vehicles. The next wave of crash simulation As computing speed has improved and software itself has made significant speed and performance gains with each release, modeling tools are now quick enough to build high-quality, large, high-detail vehicle models in a very efficient manner. SAE 2014 Convergence preview Interest in advanced driver-assistance technologies is surging, with automotive engineers and decision makers at OEMs and suppliers working feverishly on the convenience vs. safety trade-off and other electronics-related challenges. Cooled EGR shows benefits for gasoline engines Exhaust gas recirculation systems now in use on diesel engines are used mainly to meet emissions regulations. In gasoline engines, they are an appealing way to meet ever more stringent fuel-economy standards
2014-09-30
Technical Paper
2014-01-2388
Jeffrey K. Ball, Mark Kittel, Trevor Buss, Greg Weiss
Abstract Trucking fleets are increasingly installing video event recorders in their vehicles. The video event recorder system is usually mounted near the vehicle's rear view mirror, and consists of two cameras: one looking forward and one looking towards the driver. The system also contains accelerometers that record lateral and longitudinal g-loading, and some may record vehicle speed (in mph) based on GPS positions. The unit constantly monitors vehicle acceleration and speed, and also records video. However, the recorded data is only stored when a preset acceleration threshold is met. The primary use of the system is to assist fleets with driver training and education, but the recorded data is also being used as a tool to reconstruct accidents. By integrating the accelerometer data, the vehicle speed and distance traveled during the event can be calculated.
2014-08-18
WIP Standard
J98
This SAE Standard is intended to be used as a guide for manufacturers and users of general purpose industrial machines to provide a reasonable degree of protection for personnel during normal operation and servicing. This document excludes skid steers which are covered by SAE J1388. Avoidance of accidents also depends upon the care exercised by such persons (see SAE J153). Inclusion of this standard instate, federal, or any laws or regulations where flexibility of revision is lacking is discouraged.
2014-07-09
Standard
J1001_201407
The guidelines for operator and bystander protection in this recommended practice apply to towed, semimounted or mounted flail mowers and flail power rakes when powered by a propelling tractor or machine of at least 15 kw (20 hp), intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries and along roadways and highways. The use of the word "industrial" is not to be confused with "in-plant industrial equipment". This document does not apply to: 1. Turf care equipment primarily designed for personal use, consumption or enjoyment of a consumer in or around a permanent or temporary household or residence. 2. Machines designed primarily for agricultural purposes but which may be used for industrial use. 3. Self powered or self propelled mowers or mowing machines.
2014-07-09
Standard
J232_201407
This SAE Standard establishes performance criteria for towed, semi-mounted, or mounted and arm type rotary mowers with one or more blade assemblies of 77.5 cm blade tip circle diameter or over, mounted on a propelling tractor or machine of at least 15 kW, intended for marketing as industrial mowing equipment and designed for cutting grass and other growth in public use areas such as parks, cemeteries, and along roadways and highways. The use of the word “industrial” is not to be confused with “in-plant industrial equipment.” This document does not apply to: a. Turf care equipment primarily designed for personal use, consumption, or enjoyment of a consumer in or around a permanent or temporary household or residence. b. Equipment designed primarily for agricultural purposes but which may be used for industrial use. c. Self-powered or self-propelled mowers or mowing machines.
2014-05-07
Technical Paper
2014-36-0025
Frederico A. A. Barbieri, Vinicius de Almeida Lima, Leandro Garbin, Joel Boaretto
Abstract Brazil presents a very diverse road and traffic conditions and due to several factors the number of truck accidents is very high. Inside truck accidents group, the one that causes the highest number of losses and fatalities is the rollover crash and understanding rollover dynamics is very important to prevent such events. The diversity of cargo vehicles arrangements requires a detailed study regarding the dynamic behavior these vehicle combinations in order to increase operation safety. The same tractor unit can be used with different types and numbers of trailers and/or semi-trailers, each one with different suspension configurations. These truck combinations have distinct dynamic performances that need evaluation. In this sense, this work presents a first phase study on the dynamic behavior of different types of cargo vehicle configuration. A 6×2 tractor is combined with a two distinct grain semi-trailer with different types of suspension: pneumatic and leaf spring.
2014-04-01
Collection
This technical paper collection focuses on the latest research related to methods and techniques for reconstructing vehicular crashes involving wheeled and tracked vehicles, pedestrians, and roadside features. Emphasis is placed on experimental data and theoretical methods that will enable reconstructionists to identify, interpret and analyze physical evidence from vehicular crashes.
2014-04-01
Technical Paper
2014-01-0811
Horst Lanzerath, Niels Pasligh
Abstract Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient.
2014-04-01
Technical Paper
2014-01-0569
Ishika Zonina Towfic, Jennifer Johrendt
Abstract The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity.
2014-04-01
Technical Paper
2014-01-0961
Alan R. Wedgewood, Patrick Granowicz, Zhenyu Zhang
Abstract Materials used in automotive components play a key role in providing crash safety to passengers and pedestrians. DuPont's lightweight hybrid material technology, which combines injection molded fiber reinforced plastics with drape molded woven composite materials, provides safety engineers with stiff energy absorbing alternatives. In an effort to validate the hybrid material's crash performance while avoiding expensive crash testing, numerical tools and methodologies are applied in evaluation of a hybrid composite test beam. Multi-scale material models capturing nonlinear strain-rate dependency, anisotropic characteristics, and failure criteria, are calibrated on a fiber reinforced plastic and a woven fabric. The fiber orientation and warp/weft angles were extracted from injection and drape molding simulation.
Viewing 1 to 30 of 3644

Filter

Subtopics