Display:

Results

Viewing 1 to 30 of 554
2016-09-27
Journal Article
2016-01-8011
Kevin Grove, Jon Atwood, Myra Blanco, Andrew Krum, Richard Hanowski
Abstract This study evaluated the performance of heavy vehicle crash avoidance systems (CASs) by collecting naturalistic driving data from 150 truck tractors equipped with Meritor WABCO OnGuardTM or Bendix® Wingman® AdvancedTM products. These CASs provide drivers with audio-visual alerts of potential conflicts, and can apply automatic braking to mitigate or prevent a potential collision. Each truck tractor participated for up to one year between 2013 and 2015. Videos of the forward roadway and drivers’ faces were collected along with vehicle network data while drivers performed their normal duties on revenue-producing routes. The study evaluated the performance of CAS activations by classifying them into three categories based on whether a valid object was being tracked and whether drivers needed to react immediately.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-07-06
WIP Standard
J224
The purpose and scope of this SAE Recommended Practice is to provide a basis for classification of the extent of vehicle deformation caused by vehicle accidents on the highway. It is necessary to classify collision contact deformation (as opposed to induced deformation) so that the accident deformation may be segregated into rather narrow limits. Studies of collision deformation can then be performed on one or many data banks with assurance that the data under study are of essentially the same type. The seven-character code is also an expression useful to persons engaged in automobile safety, to describe appropriately a field-damaged vehicle with conciseness in their oral and written communications. Although this classification system was established primarily for use by professional teams investigating accidents in depth, other groups may also find it useful.
2016-05-20
Book
This is the electronic format of the Journal.
2016-04-05
Technical Paper
2016-01-1450
Peter Vertal, Hermann Steffan
Abstract The objective of this work is to test the potential benefit of active pedestrian protection systems. The tests are based on real fatal accidents with passenger cars that were not equipped with active safety systems. Tests have been conducted in order to evaluate what the real benefit of the active safety system would be, and not to gain only a methodological prediction. The testing procedure was the first independent testing in the world which was based on real fatal pedestrian accidents. The aim of the tests is to evaluate the effectiveness of the Volvo pedestrian detection system. The in-depth accident database ZEDATU contains about 300 fatal pedestrian traffic accidents in urban areas. Eighteen cases of pedestrians hit by the front end of a passenger vehicle were extracted from this database. Cases covering an average traffic scenario have been reconstructed to obtain detailed model situations for testing.
2016-04-05
Technical Paper
2016-01-1453
I-Hsuan Lee, Bi-Cheng Luan
Abstract Autonomous emergency braking (AEB) systems is one of the functions of the Advanced Driver Assists System to avoid or mitigate vehicle frontal collisions. Most of the previous studies focus on two-car scenario where the host vehicle monitors the distances to the vehicles in front, and automatically applies emergency brake when a collision is imminent. The purpose of this paper is to develop an Advanced-AEB control system that mitigates collisions in a multi-car scenario by measuring the distances to the vehicles in front as well as those to the vehicles behind using the concept of impedance control. A simple gain-scheduling PI controller was designed for the host vehicle to track the reference inputs generated by the impedance control. The preliminary simulation results demonstrate that the proposed AEB is effective in mitigating the collisions in a 3-car following scenario.
2016-04-05
Technical Paper
2016-01-1455
John Gaspar, Timothy Brown, Chris Schwarz, Susan Chrysler, Pujitha Gunaratne
Abstract In 2010, 32,855 fatalities and over 2.2 million injuries occurred in automobile crashes, not to mention the immense economic impact on our society. Two of the four most frequent types of crashes are rear-end and lane departure crashes. In 2011, rear-end crashes accounted for approximately 28% of all crashes while lane departure crashes accounted for approximately 9%. This paper documents a study on the NADS-1 driving simulator to support the development of driver behavior modeling. Good models of driver behavior will support the development of algorithms that can detect normal and abnormal behavior, as well as warning systems that can issue useful alerts to the driver. Several scenario events were designed to fill gaps in previous crash research. For example, previous studies at NADS focused on crash events in which the driver was severely distracted immediately before the event. The events in this study included a sample of undistracted drivers.
2016-04-05
Technical Paper
2016-01-1457
John M. Scanlon, Kerry Page, Rini Sherony, Hampton C. Gabler
Abstract There are over 4,500 fatal intersection crashes each year in the United States. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging active safety systems designed to detect an imminent intersection crash and either provide a warning or perform an automated evasive maneuver. The performance of an I-ADAS will depend on the ability of the onboard sensors to detect an imminent collision early enough for an I-ADAS to respond in a timely manner. One promising method for determining the earliest detection opportunity is through the reconstruction of real-world intersection crashes. After determining the earliest detection opportunity, the required sensor range, orientation, and field of view can then be determined through the simulation of these crashes as if the vehicles had been equipped with an I-ADAS.
2016-04-05
Technical Paper
2016-01-1454
Libo Dong, Stanley Chien, Jiang-Yu Zheng, Yaobin Chen, Rini Sherony, Hiroyuki Takahashi
Abstract Pedestrian Automatic Emergency Braking (PAEB) for helping avoiding/mitigating pedestrian crashes has been equipped on some passenger vehicles. Since approximately 70% pedestrian crashes occur in dark conditions, one of the important components in the PAEB evaluation is the development of standard testing at night. The test facility should include representative low-illuminance environment to enable the examination of the sensing and control functions of different PAEB systems. The goal of this research is to characterize and model light source distributions and variations in the low-illuminance environment and determine possible ways to reconstruct such an environment for PAEB evaluation. This paper describes a general method to collect light sources and illuminance information by processing large amount of potential collision locations at night from naturalistic driving video data.
2016-04-05
Technical Paper
2016-01-1447
Qiang Yi, Stanley Chien, Jason Brink, Wensen Niu, Lingxi Li, Yaobin Chen, Chi-Chen Chen, Rini Sherony, Hiroyuki Takahashi
Abstract As part of active safety systems for reducing bicyclist fatalities and injuries, Bicyclist Pre-Collision System (BPCS), also known as Bicyclist Autonomous Emergency Braking System, is being studied currently by several vehicles manufactures. This paper describes the development of a surrogate bicyclist which includes a surrogate bicycle and a surrogate bicycle rider to support the development and evaluation of BPCS. The surrogate bicycle is designed to represent the visual and radar characteristics of real bicyclists in the United States. The size of bicycle surrogate mimics the 26 inch adult bicycle, which is the most popular adult bicycle sold in the US. The radar cross section (RCS) of the surrogate bicycle is designed based on RCS measurement of the real adult sized bicycles.
2016-04-05
Technical Paper
2016-01-0114
Chris Schwarz, Timothy Brown, John Lee, John Gaspar, Julie Kang
Abstract Distracted driving remains a serious risk to motorists in the US and worldwide. Over 3,000 people were killed in 2013 in the US because of distracted driving; and over 420,000 people were injured. A system that can accurately detect distracted driving would potentially be able to alert drivers, bringing their attention back to the primary driving task and potentially saving lives. This paper documents an effort to develop an algorithm that can detect visual distraction using vehicle-based sensor signals such as steering wheel inputs and lane position. Additionally, the vehicle-based algorithm is compared with a version that includes driving-based signals in the form of head tracking data. The algorithms were developed using machine learning techniques and combine a Random Forest model for instantaneous detection with a Hidden Markov model for time series predictions.
2016-04-05
Technical Paper
2016-01-0124
Andrew Scott Alden, Brian Mayer, Patrick Mcgowen, Rini Sherony, Hiroyuki Takahashi
Abstract Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
2016-04-05
Technical Paper
2016-01-1446
Rini Sherony, Qiang Yi, Stanley Chien, Jason Brink, Mohammad Almutairi, Keyu Ruan, Wensen Niu, Lingxi Li, Yaobin Chen, Hiroyuki Takahashi
Abstract According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
2016-04-05
Technical Paper
2016-01-0150
Felix Pistorius, Andreas Lauber, Johannes Pfau, Alexander Klimm, Juergen Becker
Abstract Various algorithms such as emergency brake or crash warning using V2X communication have been published recently. For such systems hard real-time constraints have to be satisfied. Therefore latency needs to be minimized to keep the message processing delay below a certain threshold. Existing V2X systems based on the IEEE 1609 and SAE J2735 standards implement most message processing in software. This means the latency of these systems strongly depends on the CPU load as well as the number of incoming messages per time. According to safety constraints all messages of nearby vehicles have to be processed, whereby no prediction of the message importance can be given without analyzing the message content. Regarding the aforementioned requirements we propose a novel architecture that optimizes latency to satisfy the hard real-time constraints for V2X messages.
2016-04-05
Technical Paper
2016-01-0147
Toshiya Hirose, Tomohiro Makino, Masanobu Taniguchi, Hidenobu Kubota
Abstract Vehicle to vehicle communication system (V2V) can send and receive the vehicle information by wireless communication, and can use as a safety driving assist for driver. Currently, it is investigated to clarify an appropriate activation timing for collision information, caution and warning in Japan. This study focused on the activation timing of collision information (Provide objective information for safe driving to the driver) on V2V, and investigated an effective activation timing of collision information, and the relationship between the activation timing and the accuracy of the vehicle position. This experiment used Driving Simulator. The experimental scenario is four situations of (1) “Assistance for braking”, (2) “Assistance for accelerating”, (3) “Assistance for right turn” and (4) “Assistance for left turn” in blind intersection. The activation timing of collision information based on TTI (Time To Intersection) and TTC (Time To Collision).
2016-04-05
Technical Paper
2016-01-0161
Valentin Soloiu, Imani Augusma, Deon Lucien, Mary Thomas, Roccio Alba-Flores
Abstract This study presents the design and development of a vehicle platform with intelligent sensors that has the capabilities to drive independently and cooperatively on roads. An integrated active safety system has been designed to optimize the human senses using ultrasonic infrared sensors and transmitter/receiver modules, to increase the human vision, feel and communication for increased road safety, lower congestion rates, and decrease CO2 emissions. Ultrasonic sensors mounted on the platform, emitted longitudinal 40 kHz waves and received echoes of these sound waves when an object was within its direction. The duration was converted to a distance measurement to detect obstacles as well as using distance measurement threshold values to implement adaptive cruise control. Infrared sensors equipped with an IR LED and a bipolar transistor detected a change in light intensity to identify road lanes.
2016-04-05
Journal Article
2016-01-1456
Rini Sherony, Renran Tian, Stanley Chien, Li Fu, Yaobin Chen, Hiroyuki Takahashi
Abstract Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
2016-04-05
Journal Article
2016-01-1449
Taylor Johnson, Rong Chen, Rini Sherony, Hampton C. Gabler
Abstract Lane departure warning (LDW) systems can detect an impending road departure and deliver an alert to allow the driver to steer back to the lane. LDW has great potential to reduce the number of road departure crashes, but the effectiveness is highly dependent upon driver acceptance. If the driver perceives there is little danger after receiving an alert, the driver may become annoyed and deactivate the system. Most current LDW systems rely heavily upon distance to lane boundary (DTLB) in the decision to deliver an alert. There is early evidence that in normal driving DTLB may be only one of a host of other cues which drivers use in lane keeping and in their perception of lane departure risk. A more effective threshold for LDW could potentially be delivered if there was a better understanding of this normal lane keeping behavior. The objective of this paper is to investigate the lane keeping behavior of drivers in normal driving.
2016-04-05
Technical Paper
2016-01-1458
Ryuta Ono, Wataru Ike, Yuki Fukaya
Abstract Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
2016-04-05
Journal Article
2016-01-0149
Mehdi Jalalmaab, Mohammad Pirani, Baris Fidan, Soo Jeon
In this paper, a consensus framework for cooperative parameter estimation within the vehicular network is presented. It is assumed that each vehicle is equipped with a dedicated short range communication (DSRC) device and connected to other vehicles. The improvement achieved by the consensus for parameter estimation in presence of sensor’s noise is studied, and the effects of network nodes and edges on the consensus performance is discussed. Finally, the simulation results of the introduced cooperative estimation algorithm for estimation of the unknown parameter of road condition is presented. It is shown that due to the faster dynamic of network communication, single agents’ estimation converges to the least square approximation of the unknown parameter properly.
2016-04-05
Journal Article
2016-01-1660
Takahiro Okano, Akira Sakai, Yusuke Kamiya, Yoshio Masuda, Tomoyuki Yamaguchi
Abstract The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
CURRENT
2016-01-25
Standard
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
2016-01-18
WIP Standard
ARP4102/10B
This document presents criteria for flight deck controls and displays for airborne collision avoidance systems providing vertical-only guidance, and provides design guidance for operational, functional, and installation characteristics and requirements for airborne collision avoidance systems in existing and future aircraft.
2015-11-09
Technical Paper
2015-22-0010
Jingwen Hu, Carol A. Flannagan, Shan Bao, Robert W. McCoy, Kevin M. Siasoco, Saeed Barbat
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
2015-09-22
Technical Paper
2015-36-0543
Rodolfo Antonio da Silva Araujo, José Antonio Rodrigues, Marcelo Lopes de Oliveira e Souza
Abstract The increasing development of Unmanned Aerial Vehicle (UAV) technologies has allowed greater use of UAVs as remote sensing platforms to enhance satellite and manned aerial vehicle remote sensing surveillance and environmental management systems. Particularly, the Brazilian National Institute for Space Research - INPE has an Environmental Data Collection System (SCD) since 1993. Recently, the MCTI (Ministry of Science, Technology and Innovation) opened the National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN). Both may need additional resources for their expansions in the near future as offered by UAV technologies. These needs illustrate the potential of UAV technologies as complement to existing or future systems. This paper presents an overview of data transmission used in UAVs for remote sensing surveillance and environmental management systems.
2015-09-15
Technical Paper
2015-01-2471
Alessandro Ceruti, Simone Curatolo, Alessandro Bevilacqua, Piergiovanni Marzocca
Abstract The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
2015-09-15
Technical Paper
2015-01-2475
Francesco Cappello, Roberto Sabatini, Subramanian Ramasamy
Abstract Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers.
2015-08-18
Magazine
The advent of stop-start technology As environmental concerns grow for R&D teams, OEMs look to bring the strategy further into the mainstream. Recycling opportunities for hybrid/electric vehicle lithium-ion batteries With limited reserves and strict environmental regulations, re-cyclers look to established extraction means to reuse, recycle, and dispose of the used batteries. Cameras look to go the distance Automakers seek vision systems with greater distances, improved reliability, and more functionality, thanks to ruggedized complementary metal-oxide semiconductor technologies. Getting right with composites With composites now a mainstay in most new aircraft de-signs, the engineering emphasis has switched from understanding if they work to thinking through the most efficient way to manufacture them, such as using design-for-manufacturing software.
Viewing 1 to 30 of 554

Filter