Criteria

Text:
Topic:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 240
CURRENT
2017-08-15
Standard
AS5714A
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 27, and 29. Compliance with this specification is not considered approval for installation on any aircraft.
CURRENT
2017-08-14
Standard
AMS7301J
This specification covers low-alloy steel springs made of annealed round wire heat treated after forming.
2017-08-10
WIP Standard
AS6541
Defines the requirements for a typical aircraft wheel valve assembly. Required material, tolerance(s) and appropriate finishes are provided.
CURRENT
2017-08-07
Standard
AMSQQW428B
This specification covers uncoated, round, high carbon steel wire for the fabrication of mechanical springs and wire forms for general purpose use.
CURRENT
2017-06-09
Standard
ARP4912C
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down.
2017-05-03
WIP Standard
AIR6952
The pupose of this SAE AIR is to provide guidelines for sizing stored energy systems in use in emergency braking systems, in light of their intended purpose and applicable certification regulations.
2017-05-02
WIP Standard
AIR6168A
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. This AIR covers the landing gear structure and shock absorber. It does not include the landing gear systems or landing gear wheels, tires and brakes. Landing gear tire condition and pressure monitoring are detailed in AIR4830 and ARP6137, respectively.
2017-05-02
WIP Standard
ARP6951
Identify best practices to reduce tire damage during storage, shipping and handling.
2017-04-26
WIP Standard
AS1145D
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
HISTORICAL
2017-03-21
Standard
AS5714
This SAE Aerospace Standard (AS) prescribes the Minimum Performance Standards (MPS) for wheel, brake, and wheel and brake assemblies to be used on aircraft certificated under 14 CFR Parts 23, 27, and 29. Compliance with this specification is not considered approval for installation on any aircraft.
2017-01-31
WIP Standard
AIR6417
This Aerospace Information Report (AIR) provides information related to experience with carbon brake quality-assurance rejected takeoff tests, and considerations regarding test setup, test conditions, test frequency and cost considerations.
CURRENT
2017-01-12
Standard
ARP5429A
This SAE Aerospace Recommended Practice (ARP) applies to fatigue testing of landing gear and landing gear components.
2016-11-03
WIP Standard
AIR6805
This document will outline existing best practices in the instrumentation of landing gears for in-service operation (including flight test, operational loads monitoring, etc.).
CURRENT
2016-10-21
Standard
ARP1619B
This SAE Aerospace Recommended Practice (ARP) defines recommended planning and substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety of the originally certified aircraft, and performance and aircraft compatibility are appropriately addressed in aircraft documentation. Successful demonstration also requires that failure modes be identified and mitigation provided for each. These procedures apply to modifications made by the original component or assembly supplier as well as approval of an alternate supplier.
CURRENT
2016-09-14
Standard
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
CURRENT
2016-08-11
Standard
AS24586B
CURRENT
2016-07-18
Standard
AS24585C
CURRENT
2016-05-24
Standard
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
CURRENT
2016-05-06
Standard
AIR5358A
This document describes fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
CURRENT
2016-05-06
Standard
AIR4905A
The purpose of this document is to present general considerations for the design and use of aircraft wheel chocks. The design and use of aircraft wheel chocks is a good deal more complicated than it may appear at first glance.
CURRENT
2016-05-02
Standard
AMS5110K
This specification covers a carbon steel in the form of wire supplied as coils of wire or as finished springs.
CURRENT
2016-04-12
Standard
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
2016-03-17
WIP Standard
ARP6412
The scope of the Landing Gear Integrity Programs (LGIP) Aerospace Recommended Practice (ARP) is intended to assist in the safe-life structural integrity management of the landing gear system and subsystems components. In addition, component reliability, availability, and maintainability is included in a holistic LGIP.
CURRENT
2016-03-16
Standard
AIR5656A
This SAE Aerospace Information Report (AIR) provides a methodology for performing a statistical assessment of gas-turbine-engine stability-margin usage. Consideration is given to vehicle usage, fleet size, and environment to provide insight into the probability of encountering an in-service engine stall event. Current industry practices, such as ARP1420, supplemented by AIR1419, and engine thermodynamic models, are used to determine and quantify the contribution of individual stability threats. The statistical technique adopted by the S-16 committee for performing a statistical stability assessment is the Monte Carlo method (see Applicable References 1 and 2). While other techniques may be suitable, their application is beyond the scope of this document. The intent of the document is to present a methodology and process to construct a statistical-stability-assessment model for use on a specific system and its mission or application.
CURRENT
2016-03-16
Standard
AS6296
This SAE Aerospace Standard (AS) specifies minimum performance standards for Electronic Flight Information System (EFIS) displays that are head-down and intended for use in the flight deck by the flight crew in all 14 CFR Part 23, 25, 27, and 29 aircraft. This document is expected to be used by multiple regulatory agencies as the basic requirement for a technical standard order for EFIS displays. The requirements and recommendations in this document are intended to apply to, but are not limited to, the following types of display functions: Primary Flight and Primary Navigation displays, including vertical situation and horizontal situation functions. Displays that provide flight crew alerts, which may include engine instrument, aircraft systems information/control. Control displays including communication, navigation and system control displays.
2016-03-15
WIP Standard
AIR6411
Provide information and guidance for landing gear operation in cold temperature environment. Covers all operational aspects on ground and in flight. Includes effects on: tires, wheels, brakes, shock strut, seals, and actuation.
2016-03-14
WIP Standard
AS6410
This document was requested by the FAA to provide a technical update of TSO-C26d to address Electric Brake Actuation, standardize with TSO-C135a and address any remaining concerns with the current technical requirements in AIR5381.
2016-03-14
WIP Standard
AS6409
Provide specifications for hydraulic fluids used in landing gear shock struts. Some of this information was previously in AIR5358 however specifications should be in an AS. This new document will contain the appropriate specifications for premixed hydraulic fluid with additives believed to improve fluid performance and reduce friction.
2016-03-11
WIP Standard
ARP6408
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a reasonable definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers. The definition will outline normal and excessive leakage that is measureable and routinely encountered in newly assembled refurbished/remanufactured components, leakage during acceptance flights, recently delivered and in-service aircraft.
CURRENT
2016-01-25
Standard
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Viewing 1 to 30 of 240

Filter

  • Aerospace
    240
  • Standard
    240