Criteria

Text:
Topic:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 202
WIP Standard
2014-07-21
No scope available.
Standard
2014-07-11
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard
2014-06-16
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires as well as criteria for the maintenance of the operating environment so as to achieve the purpose stated in 1.1. (Definitions of terms related to aircraft tires are found in 2.2.)
Standard
2014-06-10
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
WIP Standard
2014-04-29
This SAE Aerospace Standard (AS) sets forth criteria for the selection and verification processes to be followed in providing tires that will be suitable for intended use on civil aircraft. This document encompasses new and requalified radial and bias aircraft tires.

This document establishes the minimum recommended performance standards for new tires to be used on civil aircraft. All new or requalified tires shall meet these standards.

Standard
2013-12-16
This SAE Aerospace Recommended Practice (ARP) defines a procedure for demonstrating service overload capability for new, main and nose landing gear, radial or bias tires fitted on multiple wheel landing gear of Part 25 certified aircraft.
Standard
2013-12-16
This SAE Aerospace Information Report (AIR) identifies current nondestructive inspection (NDI) methods used to ensure product integrity and maximize "in service" life of the major structural components of aircraft wheel and brake assemblies.
WIP Standard
2013-12-04
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard
2013-11-01
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S. Department of Transportation FAA Advisory Circular No. 25.735-1 and U.S.
Standard
2013-11-01
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
Standard
2013-11-01
This document covers military aircraft wheel and hydraulically actuated brake equipment.
WIP Standard
2013-10-21
This Aerospace Information Report will summarize several existing aircraft landing gear shimmy analysis techniques and provide guidance on the synthesis and testing of tire properties, strut properties, and other landing gear mechanical properties that support the various shimmy analysis methods. This AIR is applicable to large and small fixed wing and rotary wing aircraft for military or civilian use.
Standard
2013-10-20
Scope is unavailable.
Standard
2013-10-20
Scope is unavailable.
Standard
2013-10-20
Scope is unavailable.
Standard
2013-10-10
Scope is unavailable.
Standard
2013-09-26
This SAE Aerospace Recommended Practice (ARP) is to provide a recommended minimum laboratory roll performance for main landing gear aircraft wheels without tires installed and applies to both bolted and lock-ring wheel designs for FAA Part 25 and military aircraft main wheels (not required for any nose wheels or main wheels on FAA Part 23, 27 or 29 applications).
WIP Standard
2013-09-21
This document recommends supplementary design criteria to enhance endurance and reliability of transport aircraft wheels and brakes.
Standard
2013-04-20
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
WIP Standard
2013-04-03
This aerospace information report (AIR) will review the new landing gear taxi system technology currently being developed by various companies and descibe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certificational requirements that may be needed to be addressed.
Standard
2013-04-01
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial, military, fixed wing and rotary wing air vehicles.
WIP Standard
2013-03-11
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard
2013-02-14
This document provides recommended practices for the design, development, and verification testing of NWS systems.
Standard
2012-10-22
This SAE Aerospace Recommended Practice (ARP) covers the design, construction, performance and testing requirements for hand held aircraft tire inflation pressure gauges with valve stem attachment chuck to be used with all aircraft types. The ground-based gauges in this specification are those which are designed to read the tire inflation pressure from a position adjacent to the tire.
WIP Standard
2012-10-18
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard
2012-10-15
This SAE Aerospace Information Report (AIR) contains regulatory and guidance information related to airplane wheels, tires, and brakes. It contains certain Civil Air Regulations (CAR) and Federal Aviation Regulations (formerly referred to as FARs) from Title 14 Code of Federal Regulations (CFR) in their current version as well as the historical versions. This gives the reader an ability to assemble certain CAR/CFR parts as they existed at any date in the past (referred to as a Regulatory Basis). A certain amount of preamble explanatory material is included, which led to the regulatory rule changes (Amendments to the CFR).
Standard
2012-10-03
This specification contains landing gear strength and rigidity requirements, which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes.
Standard
2012-10-03
Scope is unavailable.
Standard
2012-10-03
This specification covers definition of landingn impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard
2012-10-03
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A 5 Committee. AIR4846 also accepts the premise that an essential aircraft requirement can often justify a gears' complexity and consequent weight.
Viewing 1 to 30 of 202

Filter

  • Aerospace
    202
  • Standard
    202