Criteria

Text:
Topic:
Sector:
Content:
Display:

Results

Viewing 1 to 30 of 212
2015-07-17
Standard
AIR6441
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
2015-05-07
Standard
ARP597E
This document recommends supplementary design criteria to enhance endurance and reliability of transport aircraft wheels and brakes.
2015-04-22
WIP Standard
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
2015-04-21
Standard
ARP4834B
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the selection, inspection, retread and repair of worn civil aircraft tires, and the means to verify that the retreaded tire is suitable for continued service. This document is applicable to both bias ply and radial aircraft tires qualified subsequent to the adoption of this document.
2015-04-08
WIP Standard
ARP1907C
This Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
2015-02-13
WIP Standard
ARP4955B
The purpose of this SAE Aerospace Recommended Practice (ARP) is to establish guidelines for the measurement of static and dynamic characteristic properties of aircraft tires. It is intended as a general guide toward standard practice, but may be subject to frequent changes to keep pace with experience and technical advances.
2015-02-10
WIP Standard
AIR5800A
This SAE Aerospace Information Report (AIR) applies to landing gear tires and airframe structure for all types and models of civil and military aircraft having tires as part of the landing gear. This report describes the advantages and disadvantages of prerotating tires prior to landing, and explains why this practice is not generally adopted. Two potential benefits of this practice are considered: 1) Tire wear and 2) Spin-up loads on the landing gear and aircraft structure.
2014-12-01
Standard
AIR4243A
This document discusses the work done by the U.S. Army Corps of Engineers and the Waterways Experiment Station (WES) in support of SAE A-5 Committee activity on Aerospace Landing Gear Systems. It is an example of how seemingly unrelated disciplines can be combined effectively for the eventual benefit of the overall aircraft systems, where that system includes the total airfield environment in which the aircraft must operate. In summary, this AIR documents the history of aircraft flotation analysis as it involves WES and the SAE.
2014-12-01
Standard
ARP6265
This document describes a recommended test procedure to assess the burst characteristics of tires used on 14CFR Part 25 or similar transport airplanes.
2014-11-20
Standard
AS4833A
This SAE Aerospace Standard (AS) sets forth criteria for the selection and verification processes to be followed in providing tires that will be suitable for intended use on civil aircraft. This document encompasses new and requalified radial and bias aircraft tires.
2014-11-13
WIP Standard
AIR5358A
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
2014-11-11
Standard
ARP1070D
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control. It focuses on recommended practices specific to antiskid and its integration with the aircraft as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2, for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1. ARP4754, Guidelines for Development of Civil Aircraft and Systems 2. ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment 3. RTCA DO-178, Software Considerations in Airborne Systems and Equipment Certification 4. RTCA DO-254, Design Assurance Guidance for Airborne Electronic Hardware 5.
2014-11-06
Standard
ARP6225
This document is for establishing tire removal criteria of on-wing civil aircraft tires only. This document is primarily intended for use with commercial aircraft but may be used on other categories of civil aircraft as applicable. The criteria are harmonized with the Care and Service Manuals of the tire manufacturers for both radial and bias tires.
2014-10-29
WIP Standard
ARP6307
This document is for establishing and addressing anomalies on appearance of new and newly retreaded tires.
2014-07-29
Standard
AIR5372A
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
2014-07-21
WIP Standard
AS24585C
No scope available.
2014-07-11
Standard
AS1188A
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
2014-06-16
Standard
ARP5265B
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires as well as criteria for the maintenance of the operating environment so as to achieve the purpose stated in 1.1. (Definitions of terms related to aircraft tires are found in 2.2.)
2014-06-10
Standard
AIR5914
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
2013-12-16
Standard
AIR4777B
This SAE Aerospace Information Report (AIR) identifies current nondestructive inspection (NDI) methods used to ensure product integrity and maximize "in service" life of the major structural components of aircraft wheel and brake assemblies.
2013-12-16
Standard
ARP6152
This SAE Aerospace Recommended Practice (ARP) defines a procedure for demonstrating service overload capability for new, main and nose landing gear, radial or bias tires fitted on multiple wheel landing gear of Part 25 certified aircraft.
2013-12-04
WIP Standard
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
2013-11-01
Standard
ARP1493C
This document covers military aircraft wheel and hydraulically actuated brake equipment.
2013-11-01
Standard
AS707C
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
2013-11-01
Standard
AS8584B
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
2013-10-21
WIP Standard
AIR6280
This Aerospace Information Report will summarize several existing aircraft landing gear shimmy analysis techniques and provide guidance on the synthesis and testing of tire properties, strut properties, and other landing gear mechanical properties that support the various shimmy analysis methods. This AIR is applicable to large and small fixed wing and rotary wing aircraft for military or civilian use.
2013-10-20
Standard
AS85352/2A
Scope is unavailable.
2013-10-20
Standard
AS85352/3A
Scope is unavailable.
2013-10-20
Standard
AS85352/4A
Scope is unavailable.
2013-10-10
Standard
AS85352/1A
Scope is unavailable.
Viewing 1 to 30 of 212

Filter

  • Aerospace
    212
  • Standard
    212