Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 121 to 150 of 1592
CURRENT
2016-04-05
Standard
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
CURRENT
2016-04-05
Standard
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
CURRENT
2016-04-01
Standard
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
CURRENT
2016-04-01
Standard
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
2016-03-29
WIP Standard
J1337
This SAE Information Report covers the important fundamental maintenance and service precautions for all off-road single-piece and multi-piece rims. Detailed information on specific procedures concerning mounting, demounting, maintenance and service of a particular type, style, or design of off-road rim assembly can be obtained by consulting rim or tire manufacturers or distributors. These procedures and service precautions are guidelines to be considered in preparation of the machine service manual and operator's manual and workplace procedures. It is the intent of this Information Report to allow for further development and review of these guidelines and then make this document a Recommended Practice.
2016-03-25
WIP Standard
J712
The purpose of this SAE Recommended Practice is to provide a selection of disc wheels for industrial and agricultural application with a maximum of interchangeability. This is accomplished by establishing five groups of disc wheels, in each of which the hub mounting elements are common. These groups are designated 4 bolt, 5 in bolt circle; 5 bolt, 4.5 in bolt circle; 5 bolt, 5.5 in bolt circle; 6 bolt, 6 in bolt circle; and 8 bolt, 8 in bolt circle. Further, this document establishes an SAE part number and the maximum rated radial load for each standard wheel. In addition, the document requires the wheel manufacturer's name or trademark to be impression stamped on the wheel with location at the discretion of the manufacturer.
CURRENT
2016-03-23
Standard
J175_201603
The SAE Recommended Practice establishes minimum performance requirements and related uniform laboratory test procedures for evaluating lateral (curb) impact collision resistance of all wheels intended for use on passenger cars and light trucks.
CURRENT
2016-03-18
Standard
J328_201603
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for fatigue testing of wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles. For heavy truck wheels and wheels intended to be used as duals, see SAE J267. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, see SAE J1204. These minimum performance requirements apply only to wheels made of materials included in Tables 1 to 4. The minimum cycles noted in Tables 1 through 4 are to be used on individual test and a sample of tests conducted, with Weibull Statistics using 2 parameter, median ranks, 50% confidence level and 90% reliability, typically noted as B10C50.
CURRENT
2016-03-18
Standard
J1986_201603
This SAE Recommended Practice is intended to serve as a guide for standardization of features, dimensions, and configurations of balance weights for aluminum and steel wheels intended for use on passenger cars, light trucks, and multipurpose vehicles to assure good installation and retention of the balance weight. This document also provides test procedures and minimum performance requirements for testing balance weight retention.
2016-03-17
WIP Standard
ARP6412
The scope of the Landing Gear Integrity Programs (LGIP) Aerospace Recommended Practice (ARP) is intended to assist in the safe-life structural integrity management of the landing gear system and subsystems components. In addition, component reliability, availability, and maintainability is included in a holistic LGIP.
CURRENT
2016-03-16
Standard
AIR5656A
This SAE Aerospace Information Report (AIR) provides a methodology for performing a statistical assessment of gas-turbine-engine stability-margin usage. Consideration is given to vehicle usage, fleet size, and environment to provide insight into the probability of encountering an in-service engine stall event. Current industry practices, such as ARP1420, supplemented by AIR1419, and engine thermodynamic models, are used to determine and quantify the contribution of individual stability threats. The statistical technique adopted by the S-16 committee for performing a statistical stability assessment is the Monte Carlo method (see Applicable References 1 and 2). While other techniques may be suitable, their application is beyond the scope of this document. The intent of the document is to present a methodology and process to construct a statistical-stability-assessment model for use on a specific system and its mission or application.
CURRENT
2016-03-16
Standard
AS6296
This SAE Aerospace Standard (AS) specifies minimum performance standards for Electronic Flight Information System (EFIS) displays that are head-down and intended for use in the flight deck by the flight crew in all 14 CFR Part 23, 25, 27, and 29 aircraft. This document is expected to be used by multiple regulatory agencies as the basic requirement for a technical standard order for EFIS displays. The requirements and recommendations in this document are intended to apply to, but are not limited to, the following types of display functions: Primary Flight and Primary Navigation displays, including vertical situation and horizontal situation functions. Displays that provide flight crew alerts, which may include engine instrument, aircraft systems information/control. Control displays including communication, navigation and system control displays.
2016-03-15
WIP Standard
AIR6411
Provide information and guidance for landing gear operation in cold temperature environment. Covers all operational aspects on ground and in flight. Includes effects on: tires, wheels, brakes, shock strut, seals, and actuation.
CURRENT
2016-03-15
Standard
J1817_201603
This SAE Recommended Practice describes a marking system to distinguish long-stroke from standard stroke for service, parking, and combination air-brake actuators, roto-chambers, and components. Said actuators are used for applying cam and disc-type foundation brakes by slack adjuster means.
2016-03-14
WIP Standard
AS6410
This document was requested by the FAA to provide a technical update of TSO-C26d to address Electric Brake Actuation, standardize with TSO-C135a and address any remaining concerns with the current technical requirements in AIR5381.
2016-03-14
WIP Standard
AS6409
Provide specifications for hydraulic fluids used in landing gear shock struts. Some of this information was previously in AIR5358 however specifications should be in an AS. This new document will contain the appropriate specifications for premixed hydraulic fluid with additives believed to improve fluid performance and reduce friction.
2016-03-11
WIP Standard
ARP6408
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a reasonable definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers. The definition will outline normal and excessive leakage that is measureable and routinely encountered in newly assembled refurbished/remanufactured components, leakage during acceptance flights, recently delivered and in-service aircraft.
CURRENT
2016-02-18
Standard
J2688_201602
The scope and purpose of the SAE Recommended Practice is to provide standards for the control and indication of parking brakes in hydraulic braked vehicles over 4540 kg (10000 lb) GVWR. This recommended practice pertains to automatic transmission applications and supplements the SAE J915 recommended practice. This recommended practice does not address parking brake system performance. Parking brake system performance, both static and dynamic conditions, is the responsibility of the OEM vehicle manufacturer or manufacturers that modify the vehicle by adding special vocational required equipment (such as but not limited to outriggers, cranes, etc.).
2016-02-17
WIP Standard
J3079/1
This SAE Recommended Practice applies to the validation process required for test systems used to measure deflection or compressibility of friction materials and friction material assemblies for passenger cars, light trucks, and commercial vehicles equipped with hydraulic or air brake systems, and using disc or drum brakes.
CURRENT
2016-01-25
Standard
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
2016-01-20
WIP Standard
J840
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process. This Recommended Practice is applicable during product and process development, product verification and quality control. This Recommended Practice does not replicate or predict actual vehicle performance or part durability.
2016-01-06
WIP Standard
J2059
In this SAE Recommended Practice, attention will be given to passenger cars and light trucks (through Class III). The purpose of this recommended practice is to define standardized symbols that describe the arrangement and function of drivetrain systems and components of all-wheel-drive vehicles. This document presents basic symbols, superimposed symbols and symbols with modifiers. Various vehicle drivetrain schematics are shown with specific component arrangements or general driveline layout to illustrate varying levels of descriptive intent.
2016-01-04
WIP Standard
AIR5552A
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
2015-12-31
WIP Standard
J670
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response.
CURRENT
2015-12-20
Standard
AMS7304F
This specification covers coiled springs fabricated from carbon-steel wire.
CURRENT
2015-12-17
Standard
J1604_201512
This SAE Standard covers molded rubber boots used as end closures on drum-type wheel brake actuating cylinders to prevent the entrance of dirt and moisture, which could cause corrosion and otherwise impair wheel brake operation. The document includes performance tests of brake cylinder boots of both plain and insert types under specified conditions and does not include requirements relating to chemical composition, tensile strength, or elongation of the rubber compound. Further, it does not cover the strength of the adhesion of rubber to the insert material where an insert is used. The rubber material used in these boots is classified as suitable for operation in a temperature range of −40 to +120 °C ± 2 °C (−40 to + 248 °F ± 3.6 °F).
CURRENT
2015-12-17
Standard
J2315_201512
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
2015-11-25
WIP Standard
J3115
This document aims to establish best practices in equipment setup and measurement of brake rotor disk thickness variation (DTV) on vehicle.
CURRENT
2015-11-19
Standard
J2224_201511
This SAE Information Report lists the symbols used by suppliers of truck, trailer, and bus wheel seals to identify their products. These symbols appear on seals and packaging. 1.1 Purpose The purpose of this document is to provide users of truck, trailer, and bus wheel seals a means of identifying the suppliers of all such components by use of the symbology utilized by the suppliers on their components and packaging.
CURRENT
2015-11-05
Standard
J3063_201511
This SAE Technical Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task on a sustained basis like those defined in SAE J3016 Automated Driving Systems.
Viewing 121 to 150 of 1592