Display:

Results

Viewing 211 to 240 of 10685
2016-04-05
Journal Article
2016-01-1553
Akihito Yamamoto, Wataru Tanaka, Takafumi Makino, Shunya Tanaka, Ken Tahara
Abstract This paper reports that estimation accuracy of suspension stroke velocity is increased by considering the damping force delay characteristics to an observer. Thereby ride comfort is improved, using the simple and low-cost semi active suspension systems that use only three vertical acceleration sensors.
2016-04-05
Journal Article
2016-01-1572
Jugal Popat, Aneesh Nabar, Meighan Read, Chen Fu, Chunhui Zhang, Galab Kausik, Harsh Patel, Peter Thomas Tkacik
Abstract Published information on studies of something so critical to safety as passenger vehicle tire pressures can be found [1, 2]; however, they only account for rolling tires. Studies related to spare tire pressures are lacking. This paper is the result of measurements on 150+ vehicles and the most surprising results are presented regarding the influence of Tire Pressure Monitoring Systems (TPMS) and the new spare tire locations and use. A statistical study was performed on the collected data to determine the correlation between tire pressures, vehicle age and TPMS. One particular topic of investigation was the relationship between various factors that influence spare tire pressure. Some newer models, particularly some mini-vans, have placed the spare tire in an unusual and inconvenient place for regular maintenance. Based on the data collected, TPMS has a positive influence on rolling tires but not on spare tires.
2016-04-05
Journal Article
2016-01-1571
Harsh Patel, Michael Casino, David Noakes, Nicholas Kauffman, Daniel Rohwedder, Jugal Popat, Aneesh Nabar, Peter Thomas Tkacik
Abstract This paper is part of a bigger research effort that aims to capture the influences of static wheel alignment measurement accuracy for road going vehicles. Vehicle alignments can and often are the bottleneck in automotive and truck assembly lines and a greater understanding of the issues are very valuable. The alignment equipment in this research has been tuned and adjusted to minimize external variables and the team of authors have 300+ vehicle measurements. Of the many things that influence the accuracy and repeatability of vehicle suspension alignment measurement and adjustment, the measurement procedures can be the most significant. This includes but is not limited to alignment machine setup and vehicle tire pressures.
2016-04-05
Journal Article
2016-01-1569
Kiho Yum
Abstract In this research, the influence of tire force and moment (F&M) characteristics on vehicle on-center steering performance was analyzed and then how to improve vehicle on-center performance was studied through controlling tire structure design parameter, tread pattern shape and tread grip characteristics. First, the relationship between vehicle on-center steering performance and tire F&M characteristics was identified by comparing vehicle steering measurements and tire F&M measurements. It was found that key factor of tire related with on-center performance is aligning torque at lower slip angles. As the aligning torque at slip angle 1° increases, on-center feel is improved. Second, the influence of tire design parameters on tire aligning torque was studied through F&M finite element (FE) analysis and measurement. It was found that the aligning torque at lower slip angle increases as stiffness of the tread and sidewall decreases.
2016-04-05
Journal Article
2016-01-1630
Benjamin Hirche, Beshah Ayalew
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
2016-04-05
Journal Article
2016-01-1637
Hongyuan Zang, Zhuoping Yu, Lu Xiong
Abstract To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
2016-04-05
Journal Article
2016-01-1635
Donald F. Tandy, Jung Bae, Jason Colborn, Clay Coleman
Abstract Recreational Off Road Vehicles (ROVs) which are sometimes referred to as side-by-sides, have increased in popularity over the last decade. These vehicles are available in many different sizes and performance characteristics from a host of different manufacturers and also have a variety of different missions, just as there are many types of off road terrain. The United States Federal Government, through the Consumer Product Safety Commission (CPSC), has advocated and proposed vehicle handling and rollover resistance standards for the side-by-sides which have a top speed above 25 miles per hour (these are not defined as “low speed vehicles”). For the sake of repeatability, the proposed maneuvers are to be performed on a high friction hard surface (like asphalt) as opposed to the off road surfaces (i.e. grass, sand, dirt, mud. rocks, etc.) that these vehicles are designed to be operated on.
2016-04-05
Journal Article
2016-01-1639
Jonathan Loyola, Francis Assadian
Abstract An investigation into two new control strategies for the vehicle Anti-lock Braking System (ABS) are made for a possible replacement of current non-optimal slip control methods. This paper applies two techniques in order to maximize the braking force without any wheel locking. The first considers the power dissipated by the brake actuator. This power method does not use slip to construct its reference signal for control. A heuristic approach is taken with this algorithm where one searches for the maximum power dissipated. This can open up easier implementation of regenerative braking concurrently with ABS on an electro-hydraulic braking system. Parameter scheduling is explored in this algorithm. The second algorithm employs the use of perturbation based Extremum Seeking Control (ESC) to provide a reference slip and a Youla controller in a negative feedback loop.
2016-04-05
Journal Article
2016-01-1645
Carlo Lugaro, Antoine Schmeitz, Toshiya Ogawa, Tetsuya Murakami, Sonny Huisman
Abstract A vehicle parking manoeuvre is characterized by low or zero speed, small turning radius and large yaw velocity of the steered wheels. To predict the forces and moments generated by a wheel under these conditions, the Pacejka Magic Formula model has been extended to incorporate the effect of spin (turn slip model) in the past years. The extensions have been further developed and incorporated in the MFTyre/MF-Swift 6.2 model. This paper describes the development of a method for the identification of the turn slip parameters. Based on the operating conditions of a typical parking manoeuvre, the dominant parameters of the turn slip model are firstly defined. At an indoor test facility, the response of a tyre under the identified operating conditions is measured. An algorithm is developed to identify the dominant turn slip parameters from the measured responses.
2016-04-05
Journal Article
2016-01-1644
Haizhen Liu, Weiwen Deng, Rui He, Lei Qian, Shun Yang, Jian Wu
Abstract This paper presents a power assisted braking control based on a novel mechatronic booster system. A brake pedal feel control unit is first discussed which includes a pedal emulator with an angular sensor to detect driver’s pedal travel, a signal processing module with a Kalman filter for sensor signal conditioning, and a driver braking intention detection and behavior recognition module based on the displacement and velocity of the pedal travel. A power assisted braking control is then presented as the core of the system which consists of controls on basic power assist, velocity compensation and friction compensation. The friction is estimated based on a generic algorithm offline. A motor controller is designed to provide the desired torque for the power assist. Finally, a novel mechatronic booster system is designed and built with an experimental platform set up with a widely adopted rapid prototype system using dSPACE products, such as MicroAutoBox, RapidPro, etc.
2016-04-05
Journal Article
2016-01-1619
Lara Schembri Puglisevich, Adrian Gaylard, Matthew Osborne, Jonathan Jilesen, Adriano Gagliardi
Abstract Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
2016-04-05
Journal Article
2016-01-1646
Tao Xu, Yanhua Shen, Wenming Zhang
Abstract The traditional hydraulic steering mode in articulated motor-driven vehicle makes the vehicle structure complex. Further more, the forces between the front and rear part of the articulated vehicle could damage the articulated joint body in the process of vehicle steering. However, skid steering mode could make the vehicle steer with the different speed of each wheel, which is flexible without hydraulic steering system. The purpose of this paper is to introduce the principle of skid steering mode in articulated motor-driven vehicle. In this paper, the theory of traditional wheeled vehicle’s skid-steering mode and hydraulic steering mode of articulated vehicle are used to establish the in-situ skid-steering kinematic and dynamic model. Based on the model, the vehicle trajectory and the dynamic relationships among the body structure of the vehicle, longitudinal forces, lateral forces of each wheel are described.
2016-04-05
Journal Article
2016-01-1648
M. Kamel Salaani, Sughosh Rao, Joshua L. Every, David R. Mikesell, Frank Barickman, Devin Elsasser, John Martin
Abstract The rapid innovation underway with vehicle brake safety systems leads to extensive evaluation and testing by system developers and regulatory agencies. The ability to evaluate complex heavy truck braking systems is potentially more rapid and economical through hardware-in-the-loop (HiL) simulation which employs the actual electronics and vehicle hardware. Though the initial HiL system development is time consuming and expensive, tests conducted on the completed system do not require track time, fuel, vehicle maintenance, or technician labor for driving or truck configuration changes. Truck and trailer configuration and loading as well as test scenarios can be rapidly adjusted within the vehicle dynamics simulation software to evaluate the performance of automated safety interventions (such as ESC) over a wide range of conditions.
2016-04-05
Journal Article
2016-01-1649
Jose Velazquez Alcantar, Farhad Assadian
Abstract Optimizing/maximizing regen braking in a hybrid electric vehicle (HEV) is one of the key features for increasing fuel economy. However, it is known [1] that maximizing regen braking by braking the rear axle on a low friction surface results in compromising vehicle stability even in a vehicle which is equipped with an ESP (Enhanced Stability Program). In this paper, we develop a strategy to maximize regen braking without compromising vehicle stability. A yaw rate stability control system is designed for a hybrid electric vehicle with electric rear axle drive (ERAD) and a “hang on” center coupling device which can couple the front and rear axles for AWD capabilities. Nonlinear models of the ERAD drivetrain and vehicle are presented using bond graphs while a high fidelity model of the center coupling device is used for simulation.
2016-04-05
Journal Article
2016-01-0236
Forrest Jehlik, Eric Rask, Michael Duoba
Abstract It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
2016-04-05
Journal Article
2016-01-1298
Shukai Yang, Zuokui Sun, Yingjie Liu, Bingwu Lu, Tao Liu, Hangsheng Hou
Abstract This work carries out complex modal analyses and optimizations to resolve an 1800 Hz front brake squeal issue encountered in a vehicle program development phase. The stability theory of complex modes for brake squeal simulation is briefly explained. A brake system finite element model is constructed, and the model is validated by the measurement in accordance with the SAE 2521 procedure. The key parameters for evaluating the stability of the brake system complex modes are determined. The modal contributions of relevant components to unstable modes are analyzed and ranked. Finally, in order to resolve the squeal issue, the design improvements of rotor, caliper and pad are proposed and numerical simulations are carried out. The obtained results demonstrate that the optimized rotor and pad design can alleviate the squeal issue significantly while the optimized clipper design could essentially eliminate the squeal issue.
2016-04-05
Journal Article
2016-01-1375
Masahiro Ueda, Satoshi Ito, Daichi Suzuki
Abstract Ride quality is an important purchasing consideration for consumers. It is typically defined in terms of noise, vibration and harshness. These phenomena are a result of vibrations caused at the engine/powertrain and from the road surface, which are transmitted to the passenger cabin. To minimize such vibrations, rubber parts are used extensively at mounting points for the cabin, such as engine mountings and suspension bushings. The vehicle development process increasingly requires performance testing, including rubber parts using CAE, prior to prototype evaluation. This in turn requires a rubber material model that can accurately describe dynamic characteristics of rubber components, particularly frequency and amplitude dependency.
2016-04-05
Journal Article
2016-01-1479
Gray Beauchamp, David Pentecost, Daniel Koch, Nathan Rose
Abstract Tire mark striations are discussed often in the literature pertaining to accident reconstruction. The discussions in the literature contain many consistencies, but also contain disagreements. In this article, the literature is first summarized, and then the differences in the mechanism in which striations are deposited and interpretation of this evidence are explored. In previous work, it was demonstrated that the specific characteristics of tire mark striations offer a glimpse into the steering and driving actions of the driver. An equation was developed that relates longitudinal tire slip (braking) to the angle of tire mark striations [1]. The longitudinal slip equation was derived from the classic equation for tire slip and also geometrically. In this study, the equation for longitudinal slip is re-derived from equations that model tire forces.
2016-04-05
Journal Article
2016-01-1468
Gray Beauchamp, Dana Thornton, William Bortles, Nathan Rose
Abstract Previous work demonstrated that the orientation of tire mark striations can be used to infer the braking actions of the driver [1]. An equation that related tire mark striation angle to longitudinal tire slip, the mathematical definition of braking, was presented. This equation can be used to quantify the driver’s braking input based on the physical evidence. Braking input levels will affect the speed of a yawing vehicle and quantifying the amount of braking can increase the accuracy of a speed analysis. When using this technique in practice, it is helpful to understand the sensitivity and uncertainties of the equation. The sensitivity and uncertainty of the equation are explored and presented in this study. The results help to formulate guidelines for the practical application of the method and expected accuracy under specified conditions. A case study is included that demonstrates the analysis of tire mark striations deposited during a real-world accident.
2016-04-05
Journal Article
2016-01-1477
Pamela D'Addario, Ken Iliadis, Gunter Siegmund
Abstract The ability to accurately calculate a snowmobile’s speed based on measured track marks in the snow is important when assessing a snowmobile accident. The characteristics and length of visible snowmobile track marks were documented for 41 locked-track braking tests and 38 rolldown tests using four modern snowmobiles on a groomed/packed snow surface. The documented track mark lengths were used to quantify the uncertainty associated with using track mark length to estimate initial speed. Regression models were developed for both data sets. The regression model of the locked-track tests revealed that using an average deceleration of 0.36g over the length of the locked track mark provides a good estimate of the best-fit line through the data, with the upper and lower 95th percentile prediction interval bounds best represented by using deceleration rates of 0.23g and 0.52g respectively.
2016-04-05
Journal Article
2016-01-1679
Shingo Koumura, Takahiro Shionoya
Abstract A dynamics model considering series rigidity was constructed to examine suspension friction, which has a major effect on ride comfort on paved roads. The friction characteristics of the bushings, ball joints, and shock absorbers are expressed with series elastic elements such as arm rigidity and the spring constant of the oil seals. It was confirmed that the calculated values for the overall spring constant and damping coefficient of the suspension virtually matched values measured in a 4-post shaker test. In addition, the results of analysis using this dynamics model confirmed that the degree of friction affects both the damping coefficient and the spring constant of the suspension, especially when the series rigidity is high. Also highly rigid friction has an adverse effect on sprung motion in frequency ranges above 15 Hz. After suspension enhancements were adopted based on these findings, 4-post shaker tests confirmed that sprung motion above 2 Hz improved..
2016-04-05
Journal Article
2016-01-1660
Takahiro Okano, Akira Sakai, Yusuke Kamiya, Yoshio Masuda, Tomoyuki Yamaguchi
Abstract The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
2016-04-05
Journal Article
2016-01-1666
Ryo Yamaguchi, Hiromichi Nozaki
Abstract In this research, we examine the three controls inside-outside wheel braking force and driving force, camber angle, and the derivative steering assistance to determine how angle differences affect cornering performance and controllability. This is accomplished by comparing body slip angle area differences in a closed loop examination of the grip to drift area using a driving simulator. The results show that inside-outside wheel braking force and driving force control in the area just before critical cornering occurs has a significant effect on vehicle stability. We also clarified that controlling the camber angle enhances grip-cornering force, and confirmed that the sideslip limit could be improved in the vicinity of the critical cornering area. Additionally, when the counter steer response was improved by the use of derivative steering assistance control in the drift area exceeding the critical cornering limit, corrective steering became easier.
2016-04-05
Journal Article
2016-01-1655
Benjamin Hirche, Beshah Ayalew
This paper presents the application of a proposed fuzzy inference system as part of a stability control design scheme implemented with active steering actuator sets. The fuzzy inference system is used to detect the level of overseer/understeer at the high level and a speed-adaptive activation module determines whether an active front steering, active rear steering, or active 4 wheel steering is suited to improve vehicle handling stability. The resulting model-free system is capable of minimizing the amount of model calibration during the vehicle stability control development process as well as improving vehicle performance and stability over a wide range of vehicle and road conditions. A simulation study will be presented that evaluates the proposed scheme and compares the effectiveness of active front steer (AFS) and active rear steer (ARS) in enhancing the vehicle performance. Both time and frequency domain results are presented.
2016-04-05
Journal Article
2016-01-1526
Daniel V. McGehee, Cheryl A. Roe, Linda Ng Boyle, Yuqing Wu, Kazutoshi Ebe, James Foley, Linda Angell
Abstract Pedal misapplications may be rare, but the outcomes can be tragic. A naturalistic driving study with 30 drivers was conducted to gain a better understanding of foot pedal behaviors. Foot movements were observed from the moment subjects entered and positioned themselves in their vehicle, and continued through starting the ignition, shifting into gear, accelerating to driving speed, and finally, resting their foot after parking the vehicle. A coding methodology was developed to categorize the various foot movements and behaviors. Over 3,300 startup and parking sequences were coded. This paper describes the unique challenges involved in classifying foot movements and behaviors when drivers’ intentions are not known. For example, hesitant or interrupted foot movements often occurred when a driver was transitioning from a gas pedal press to a brake pedal press.
2016-04-05
Journal Article
2016-01-1670
Qian Wang, Beshah Ayalew, Amandeep Singh
Abstract This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
2016-04-05
Journal Article
2016-01-1669
Chen Lv, Junzhi Zhang, Yutong Li, Bolin Zhao, Ye Yuan
Abstract Thanks to the actuation flexibility of their systems, electric vehicles with individual powertrains, including in-wheel and on-board motors, are a very popular research topic amongst various types of electrified powertrain architectures. The introduction of the individual electric powertrain provides great capacity for improvement of the vehicle’s energy efficiency and control performance. However, it also poses tremendous challenges concerning vehicle safety, due to the complex system dynamics and cooperation mechanisms between multiactuators. For an electric vehicle with independently controlled motors, because of design and manufacturing factors, the steady-state error of each motor output torque, and the flexibilities and nonlinear backlash of left and right drivetrains, can be different. This results in asymmetrical output characteristics of electric powertrain systems on the same axle.
2016-04-05
Journal Article
2016-01-0461
Wenfei Li, Haiping Du, Weihua Li
Abstract This paper proposes a new braking torque distribution strategy for electric vehicles equipped with a hybrid hydraulic braking and regenerative braking system. The braking torque distribution strategy is proposed based on the required braking torque and the regenerative braking system’s status. To get the required braking torque, a new strategy is designed based on the road conditions and driver's braking intentions. Through the estimated road surface, a robust wheel slip controller is designed to calculate the overall maximum braking torque required for the anti-lock braking system (ABS) under this road condition. Driver's braking intentions are classified as the emergency braking and the normal braking. In the case of emergency braking, the required braking torque is to be equal to the overall maximum braking torque. In the case of normal braking, the command braking torque is proportional to the pedal stroke.
2016-04-05
Journal Article
2016-01-0462
Chunlei Wang, Xinjie Zhang, Konghui Guo, Fangwu Ma, Dong Chen
Abstract With the development of the advanced driver assistance system and autonomous vehicle techniques, a precise description of the driver’s steering behavior with mathematical models has attracted a great attention. However, the driver’s steering maneuver demonstrates the stochastic characteristic due to a series of complex and uncertain factors, such as the weather, road, and driver’s physiological and psychological limits, generating negative effects on the performance of the vehicle or the driver assistance system. Hence, this paper explores the stochastic characteristic of driver’s steering behavior and a novel steering controller considering this stochastic characteristic is proposed based on stochastic model predictive control (SMPC). Firstly, a search algorithm is derived to describe the driver’s road preview behavior.
2016-04-05
Journal Article
2016-01-0468
Jiageng Ruan, Paul Walker, Nong Zhang, Guangzhong Xu
Abstract Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking.
Viewing 211 to 240 of 10685

Filter