Display:

Results

Viewing 211 to 240 of 10606
2016-02-01
Technical Paper
2016-28-0035
Shraddhesh Rasal, Jayanth Jaganmohan, Sohan Agashe, Kiran P Wani
Abstract The design of the conventional passive suspension has always been a compromise between vehicle handling and comfort, which led to the development of the modern active and semi active suspension systems. Amongst these, semi-active suspension has been focus of research in recent years owing to its lesser complexity and less power consumption as compared to active suspension. Semi active suspension uses real time variation in damping coefficient which can be achieved by using various control strategies. It is observed from available literature that Skyhook (for better ride comfort), Groundhook (for better vehicle handling) and Hybrid are most widely used strategies. These strategies use ‘On-Off’ control strategy (i.e. two preset values of damping co-efficient) but a better control over damping coefficients can be achieved using Continuous Control strategy. This paper aims to implement Continuous control strategy using Fuzzy logic for the semi active suspension.
2016-01-27
Article
A new Michelin tire is an all-season street grabber with technical attributes derived from endurance racing.
2016-01-26
WIP Standard
J1981
The test is designed to evaluate the frontal impact resistance of wheel and tire assemblies used with passenger cars, light trucks and multi-purpose vehicles. The test is specifically related to vehicle pothole tests that are undertaken by most vehicle manufacturers. The scope has been expanded to allow the use of a striker that can be angled to preferentially impact the inboard and outboard wheel flange. For side impact of the outboard rim flange only, please refer to SAE J175. This SAE Recommended Practice provides a procedure to test a wheel or a tire and the test failure critiera. The specific test for a vehicle requires input from a pothole test on that vehicle to establish the drop height of the striker used in this test.
2016-01-25
Standard
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
2016-01-20
Article
System offers fast response and eliminates piston drag, but hydraulic output to front wheels is still needed for larger cars.
2016-01-20
WIP Standard
J840
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process. This Recommended Practice is applicable during product and process development, product verification and quality control. This Recommended Practice does not replicate or predict actual vehicle performance or part durability.
2016-01-15
WIP Standard
J1121
This recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
2016-01-13
Article
Last year's double-digit hiring spree of engineers continues at Schaeffler as demand in North America intensifies for the supplier's engine, transmission, and chassis technologies.
2016-01-12
WIP Standard
J1707
This SAE Recommended Practice provides basic recommendations for dispensing and handling of SAE J1703 and SAE J1704 Brake Fluids by Service Maintenance Personnel to assure their safe and effective performance when installed in or added to motor vehicle hydraulic brake actuating systems. This document is concerned only with brake fluid and those system parts in contact with it. It describes general maintenance procedures that constitute good practice and that should be employed to help assure a properly functioning brake system. Recommendations that promote safety are emphasized. Specific step-by-step service instructions for brake maintenance on individual makes or models are neither intended nor implied. For these, one should consult the vehicle manufacturer’s service brake maintenance procedures for the particular vehicle. Vehicle manufacturer’s recommendations should always be followed.
2016-01-11
WIP Standard
J1122
This SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see 'Design and Application of Helical and Spiral Springs - SAE HS 795 SEP82', also 'Helical Compression and Extension Spring Terminology - SAE J1121 NOV75.' Both of these documents use SI (metric) units in accordance with the provisions of SAE J916 MAY85, and so does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
2016-01-06
WIP Standard
J2059
In this SAE Recommended Practice, attention will be given to passenger cars and light trucks (through Class III). The purpose of this recommended practice is to define standardized symbols that describe the arrangement and function of drivetrain systems and components of all-wheel-drive vehicles. This document presents basic symbols, superimposed symbols and symbols with modifiers. Various vehicle drivetrain schematics are shown with specific component arrangements or general driveline layout to illustrate varying levels of descriptive intent.
2016-01-04
WIP Standard
AIR5552A
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
2016-01-01
Journal Article
2015-01-9084
Seyedmohammad Shams, Peng Yang, Rani Elhajjar
Abstract The disk spring offers the potential of significant weight savings when designed with continuous fiber reinforced composite materials. The internal stresses in a disk spring are ideally suited for composite material application due to their superior resistance to in-plane and bending stresses. In this study, a composite laminate disk spring is designed, analyzed and fabricated to take advantage of the low specific strength and weight and high damage tolerance of composite laminates. The design of the disk composite spring considers effects of the laminate stacking sequence and the geometric variables on the disk spring's mechanical performance. A continuum damage finite element analysis approach is used to understand the damage initiation and evolution as a function of applied load. Experimental analysis and a progressive damage analysis based on virtual crack closure technique are performed to evaluate the damage tolerance of the disk spring under fatigue loadings.
2015-12-31
WIP Standard
J670
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response.
2015-12-20
Standard
AMS7304F
This specification covers coiled springs fabricated from carbon-steel wire.
2015-12-17
Standard
J1604_201512
This SAE Standard covers molded rubber boots used as end closures on drum-type wheel brake actuating cylinders to prevent the entrance of dirt and moisture, which could cause corrosion and otherwise impair wheel brake operation. The document includes performance tests of brake cylinder boots of both plain and insert types under specified conditions and does not include requirements relating to chemical composition, tensile strength, or elongation of the rubber compound. Further, it does not cover the strength of the adhesion of rubber to the insert material where an insert is used. The rubber material used in these boots is classified as suitable for operation in a temperature range of -40 to +120 °C ± 2 °C (-40 to + 248 °F ± 3.6 °F).
2015-12-17
Standard
J2315_201512
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
2015-12-02
Magazine
Improving heavy-duty engine component efficiencies Cylinder deactivation can improve fuel economy by using a reduced number of cylinders that operate at higher loads and thermal efficiency, while other cylinders are turned off, when the engine operates at partial load conditions. A switching roller finger follower is one of the technologies that help make it work. Pumping up hydraulic capabilities Electrohydraulic advances keep coming as distributed electronics flex their muscle. Tracking the trends in commercial vehicle communications Industry insiders at Molex offer what they think the future may hold for heavy-duty components in 24/7 communications systems. ADAS system validation It is crucial that different advanced driver assistance systems functionalities interact seamlessly with existing electronic control unit (ECU) networks.
2015-12-01
Journal Article
2015-01-9114
Hendrik Abel, Sebastiaan van Putten, Andreas Wagner, Günther Prokop
Abstract The aim of this investigation is the improvement of the lateral vehicle dynamics by optimizing the rim width. For that purpose, the rim width is considered as a development tool and configured with regard to specified targets. Using a specifically developed method of simulation, the influence of the rim width is analysed within different levels - starting at the component level “tyre” and going up to the level of the whole vehicle. With the help of substantial simulations using a nonlinear two-track model, the dimensioning of the rim width is brought to an optimum. Based on both, tyre and vehicle measurements, the theoretical studies can be proved in practice. As a result, the rim width has a strong influence on the behaviour of the tyre as well as on the overall vehicle performance, which emphasises its importance as a potential development tool within the development of a chassis.
2015-12-01
Journal Article
2015-01-9115
Peter Koch, Christian Angrick, Denise Beitelschmidt, Günther Prokop, Peter Knauer
Abstract In ride comfort as well as driving dynamics, the behavior of the vehicle is affected by several subsystems and their properties. When analyzing the suspension, especially the characteristics of the main spring and damper but also rubber bushings are of main importance. Still, the properties of the different components are dependent on the present operating conditions. Concerning rubber bushings, several effects have already been investigated, e.g. dependencies of the transfer function of frequency, amplitude or load history. In this context influences of changes in temperature are often neglected. However, in the following research, the focus specifically lies on determination and analysis of the temperature dependency of rubber bushings. For this purpose, initially the relationship between properties of pure rubber and rubber bushings is described, which serves as a basis for correlating respective temperature dependencies.
2015-12-01
Magazine
Uncertainty quantification The technique is a must for next-generation simulation tools. Oil-pump sizing Researchers from Hinduja Tech investigate options for low friction and power consumption. The future of Indian commercial aviation The growth in traffic that airport modernization has supported has also made a significant contribution to the local and national economies, while the improved infrastructure has been positive for the perception of India in the global market. Driving EVs toward lower cost The race ison to reduce battery and electric-drive systems cost while improving efficiency. Powering on Rolls-Royce's Chief Engineer discusses new technologies that inspire current R&D design and evaluation work as part of its strategic roadmap for future big commercial programs. HMIs extend beyond the cab Telematic functions are being integrated into multi-function user interfaces.
2015-11-25
WIP Standard
J3115
This document aims to establish best practices in equipment setup and measurement of brake rotor disk thickness variation (DTV) on vehicle.
2015-11-24
Article
TrelleborgVibracoustic announces two new decoupling solutions for RWD and AWD vehicles: a cord-reinforced elastomer coupling, and a tube-in-tube system that is suited for hybrid vehicles.
2015-11-19
Standard
J2224_201511
This SAE Information Report lists the symbols used by suppliers of truck, trailer, and bus wheel seals to identify their products. These symbols appear on seals and packaging. 1.1 Purpose The purpose of this document is to provide users of truck, trailer, and bus wheel seals a means of identifying the suppliers of all such components by use of the symbology utilized by the suppliers on their components and packaging.
2015-11-17
Technical Paper
2015-32-0745
Yu-fan Chen, Cheng-ping Yang, I-ming Chen, Tyng Liu
A systematic modeling methodology using Function Power Graph (FPG) to analyze mechanical systems is proposed in this paper, and the novel Centrifugal Anti-lock Braking System (C-ABS) is used as the example. In this paper, a systematic modeling process combined with the FPG method and SimulationX-based modeling has been demonstrated. First, schematic diagram and working principle of the C-ABS model has been developed and illustrated. Based on the FPG method, several symbols (power unit, clutch/brake unit, and connection unit) for the C-ABS have been introduced. Second, system mode, operation, and function inspection of the C-ABS have been analyzed. Then, each component model of the C-ABS (wheel, disc brake, gearbox, and centrifugal braking device) has been established, and then the schematic diagram of the C-ABS has been transferred into practical image of the system structure (or physical model) through SimulationX to identify the dynamic characteristics of the C-ABS.
2015-11-17
Technical Paper
2015-32-0709
Barath Mohan, Venkata Mangaraju Karanam, Chandramouli Padmanabhan
The aim of the present study is to develop feasible test methods to measure tire parameters that can be used in two wheeler industry for tire development. In this work, test methods are developed to measure the longitudinal friction coefficient and stiffness characteristics of motorcycle tires. Using the measured longitudinal forces from the testing procedure, a fairly accurate tire model has been developed. Based on this tire model the braking performance of the motorcycle is estimated using an analytical model of the vehicle. These are validated with experimental data. It is found that there is a good match between the results. The test is conducted for various bias ply tires used in motorcycles and the results are presented. The test methods proposed are shown to be adequate to estimate tire characteristics that are important for tire development and is less expensive compared to the standard testing facilities available.
2015-11-17
Technical Paper
2015-32-0810
Hisato Tokunaga, Kazuhiro Ichikawa, Takumi Kawasaki, Masato Kogirima, Eiji Sakurada, Tomo Yamamoto
High performance motorcycles require dynamic performance that encompasses superior handling, wherein the wheels are one of the key components that determine the dynamic performance of the motorcycle. In this paper, we will clarify the dynamic parameters for the wheels that have an impact on the handling while also constructing a design technique in which numerical shape optimization is applied.
2015-11-17
Technical Paper
2015-32-0785
Girish Kokane, Nizar Ahamed, Ravindra Kharul
Ride comfort and handling present conflicting requirements on damping properties of a suspension system. While ride comfort demands a softer damping, a higher damping force makes the ride handling better. Conventional dampers, being solely velocity dependent, are always a compromise between these two requirements. A damper can be made position sensitive, in addition to its velocity dependence, in order to obtain the best of both the worlds. A position-sensitive damper can have a softer damping force for low amplitude road excitations, as observed on highways and a higher damping force for higher amplitude road excitations, as observed in off-road conditions. Thus such a damper can be optimized not only for a good comfort, but for a good handling performance also. General designs for a position sensitive damper involve a bypass arrangement around the piston. This paper discusses an alternate arrangement for achieving position sensitive damping and its benefits.
2015-11-17
Technical Paper
2015-32-0786
Kishor Kothe, Nizar Ahamed, Girish Kokane, Ravindra Kharul
Vehicle suspension systems are designed keeping in mind the requirement for vehicle articulations and load transfer between chassis & tires. Another factor which is given due importance is the avoidance of extremities with end cushions. As such extremities result in generation of impact loads which could eventually lead to failure of end cushions and the vehicle chassis. Number of occurrences of these extremities is an indication of how good a vehicle suspension design is. This paper presents a methodology developed that converts a shock absorber to a potential sensor, that not only measures the travel and velocity, but also the different kind of loads generated at different events. It includes instrumentation, data acquisition and its analysis for evaluating the performance of the shock absorber and also to provide additional insights into its design.
2015-11-17
Technical Paper
2015-32-0829
Toshiki Yamashita, Tomoaki Kodama, Yasuhiro Honda, Toshio Otaka, Yuji Mizutani
The main purpose of Formula SAE Competition (hereafter called “FSAE”, “Formula Society of Automotive Engineering”) is to let students learn the basic ability necessary for engineers through design, fabrication and test projects. Higher running performance of a manufactured vehicle is one of the most important themes that should be studied in Student Formula Japan Competition (hereafter called SFJ Competition). Also, SFJ Competition is the series of the FSAE. the purpose of this study, the chassis must be required light weighting and high stiffness. The former can reduce the centrifugal force and the inertial force in the turning and the latter can contribute to demonstrate the suspension performance according to design [1], [2], [3], [4]. The SFJ Competition has Skid Pad event to compete for steerage responsiveness and high suspension performance on turning.
Viewing 211 to 240 of 10606

Filter