Display:

Results

Viewing 211 to 240 of 10739
2016-04-05
Technical Paper
2016-01-0455
Hongyu Zheng, Jinghuan Hu, Shuo Yang
Abstract Steering-by-wire(SBW) system makes the vehicle not constrained by the steering wheel control. Joystick, button and touch screen can all be used for automobile steering control. Using joystick to achieve steering operations has its unique advantages and many problems which are needed to be resolved at the same time. This paper firstly introduced the components of traditional steering wheel steer-by-wire system, then came up with the difference between joystick steer-by-wire system and traditional steer-by-wire system about transmission ratio, transmission ratio control strategy of joystick steer-by-wire system is proposed at the same time. At last, this paper studied driver’s busy degree when the vehicle running with a big turning radius at low speed and the effect of different angle transmission ratio on vehicle handing stability when the vehicle running at intermediate speed.
2016-04-05
Technical Paper
2016-01-0456
Zhaozhong Zhang, Dongpu Cao
Abstract One main objective is to find out how these parameters interact and optimal driver control gain and driver preview time are obtained. Some steps further, neuromuscular dynamics is considered and the system becomes different from the simplified driver-vehicle system studied before. New optimal driver control gain and driver preview time could be obtained for both tensed and relaxed muscle state. Final step aims at analysing the full system considering driver, neuromuscular, steer-by-wire and vehicle models. The steer-by-wire system could potentially have a significant influence on the vehicle when the driver is at impaired state, which could be represented by setting higher response delay time or smaller preview time. Vehicle's stability and active safety could also be improved by introducing the steer-by-wire system.
2016-04-05
Technical Paper
2016-01-0458
Jiawei Li, Gangfeng Tan, Yangjie Ji, Yongchi Zhou, Ziang Liu, Yingxiao Xu
Abstract Vehicle auxiliary braking system is very significant to the brake safety. The eddy current retarder (ECR) has a good braking performance, but the braking torque would fade under high speed domain. In the contrary, the regenerative brake (RGB) could provide a satisfied braking performance in high speed domain. However, the braking torque in low speed domain is insufficient. This paper proposed a novel concept of the integrated energy-recuperation retarder (IEER), which would take advantage of the merits of both the ECR and the RGB to have a steady braking performance in all-speed domain. The IEER integrates the structures of rotary eddy current retarder (RECR) and the RGB, both of which share a stator. Braking torque of the IEER produced by stator core and armature-windings can stack together, and therefore the IEER can provide greater braking torque than the RECR. Besides, the IEER can recover electric energy from armature-windings.
2016-04-05
Technical Paper
2016-01-0446
Chen Liang, Guolin Wang, Zhou Zheng
Abstract A 3D finite element (FE) model of a radial tire 205/55R16, established using ABAQUS software, is utilized to simulate tire force and moment properties. Drum tests are designed to validate the FE model’s reliability. To investigate the impacts of PCR contour design theory on tire force and moment, a modified string balance contour theory is presented. Based on string balance contour theory, it simplifies the shape of belt pressure share ratio as a trapezium. Besides, a program for calculating tire contour curve is compiled using MATLAB software. Applying different belt pressure share ratios, diverse tire contours are designed. One of the contours is selected according to its positive effect on cornering stiffness in simulation.
2016-04-05
Technical Paper
2016-01-0451
Fu Wenkui, Liu Ligang, Shu Jin, Wang Dawei, Xu Long
Abstract Virtual Road Load Data Acquisition (vRLDA) is to replace traditional Road Load Data Acquisition (RLDA) thus becomes the important method to obtain the load for the fatigue analysis of the vehicle components. Pothole event, which is a typical loadcase among vehicle durability test in the development process, is simulated based on Adams/Car in this paper. Flex-body is adopted in the full vehicle model in order to improve the simulation accuracy. Flexible ring tire model, FTire, is used for the benefit of validity in higher frequency domain. The result shows that simulation result correlated well both in wheel center travel and load of tire and suspension parts. Consequently, it is available to predict the max effective jounce travel and body max load in the early phase of vehicle development thus decrease the potential risk in the later phase and the total research cost. vRLDA is also proven as a reliable and effective method to obtain the load.
2016-04-05
Technical Paper
2016-01-0452
Tingyou Ming, Weiwen Deng, Sumin Zhang, Bing Zhu
Abstract In this paper, a model predictive control (MPC) based trajectory tracking scheme utilizing steering wheel and braking or acceleration pedal is proposed for intelligent vehicles. The control objective is to track a desired trajectory which is obtained from the trajectory planner. The proposed control is based on a simplified third-order vehicle model, which consists of longitudinal vehicle dynamics along with a commonly used bicycle model. A nonlinear model predictive control (NMPC) is adopted in order to follow a given path by controlling front steering, braking and traction, while fulfilling various physical and design constraints. In order to reduce the computational burden, the NMPC is converted to a linear time-varying (LTV) MPC based on successive online linearization of the nonlinear system model. Two different test conditions have been used to verify the effectiveness of the proposed approaches through simulations using Matlab and CarSim.
2016-04-05
Technical Paper
2016-01-0453
Yingxiao Xu, Xuexun Guo, Gangfeng Tan, Jiawei Li, Yongchi Zhou, Yangjie Ji, LiWen Yu
Abstract Eddy current retarder (ECR) shares a large market of auxiliary brakes in China, but shortcomings of the short continuous braking time and the high additional energy consumption are also obvious. The propose of combined braking partakes the braking torque of ECR. However, the existed serial-parallel braking strategy could hardly balance well the relationship between the braking stability and the energy recovery efficiency. This research puts forward an energy management strategy of combined braking system which aims to maximize energy recovery while ensure the brake stability. The motor speed, the braking request and the state of charge (SoC) of the storage module are analyzed synthetically to calculate the reasonable braking torque distribution proportion. And the recovered energy is priority for using in the braking unit to reduce the additional energy consumption in this strategy.
2016-04-05
Technical Paper
2016-01-0441
Aref M. A. Soliman
Abstract An active suspension system has better performance than a passive suspension. However, it requires a significant amount of energy and is constructed from high cost components. To solve the problem of the power required, a switchable damper suspension system has been studied. In this paper, control strategies for the switchable damper suspension system and passive are compared in terms of their relative ride performance capabilities. Practical limitations involving switching time delay and threshold delay values are modeled and their effect on the ride performance are evaluated. The four setting switchable damper is compared with the two and three setting switchable dampers. The control strategies are used to maintain suspension working space level within design limit and to minimize body acceleration level. The results showed that the four setting switchable damper gives better ride improvements compared with the two and three setting switchable dampers.
2016-04-05
Technical Paper
2016-01-0443
Han Zhang, Gang Li, Yu Wang, Yuchuan Gu, Xiang Wang, Xuexun Guo
Abstract A vehicular hydraulic electrical energy regenerative semi-active suspension(HEERSS) was presented, and its working principle and performance were analyzed. Firstly, configuration and working principle of the HEERSS were described; Secondly, kinetic equation of HEERSS was deduced, and a skyhook controller was designed for HEERSS. The traditional skyhook control strategy should be changed for the characteristic of HEERSS, because the damping force during extension stroke could be controlled, but not in compression stroke. Thirdly, the performance of HEERSS was compared with passive suspension(PS), traditional semi-active suspension(TSS). The simulation results indicated that the performance of HEERSS would be compromise between TSS and PS, but the HEERSS could harvest vibration energy which was advanced than TSS and PS.
2016-04-05
Technical Paper
2016-01-0442
Xing Xu, Zou Nannan
Interconnected air suspension system can change a vehicle’s operation characteristics by exchanging gas between air springs. In this paper, we analyze the structure and working principle of interconnected air suspension based on thermodynamics and vehicle dynamics. Then air suspension’s mathematical model including interconnected characteristics is established to study gas exchange principle of air suspension system. Interconnected pipeline parameters and excitation phase differences’ influence on characteristics of air suspension system in whole vehicle are calculated and analyzed. Simulation results show that the stiffness of air suspension is reduced when air springs of the suspension system are interconnected, as well as it decreases gradually with the increase of interconnected pipeline diameter; the stiffness of air springs is minimum if the excitation phase difference between both sides of air springs is 180 degrees.
2016-04-05
Technical Paper
2016-01-0429
Paul Augustine, Timothy Hunter, Nathan Sievers, Xiaoru Guo
Abstract The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
2016-04-05
Technical Paper
2016-01-0428
Ruochen Wang, Renkai Ding, Qing Ye
Abstract For coordinating the ride comfort and driving safety, the “inerter-spring-damper” (ISD) system is proposed in this paper, and the “spring-adjustable damper” is adapted to connect with ISD in series, then, a new type of semi-active suspension system is established. In order to verify the system rationality, the ISD semi-active suspension model and robust controller model are established respectively in the AMESim and MATLAB/Simulink environment, which is based on two degrees of freedom suspension model. Then, the co-simulation of ISD semi-active suspension with robust control is analyzed. Compared with the conventional ISD suspension, the results show that, the ISD semi-active suspension with robust control can significantly reduce the body vertical vibration, restrain tire resonance and enhance the tire grounding, that is, this system can coordinate the conflicts between vehicle ride comfort and driving safety.
2016-04-05
Technical Paper
2016-01-0431
Guangqiang Wu, Huwei Wu, Xiang Chen
Abstract The nonlinear characteristics impact of multi-staged stiffness clutch damper on the vehicle creeping is investigated by using the lumped-parameter modeling method as a certain mass-production passenger sedan is taken as the research subject. Firstly, a quasi-transient engine model of an inline four-cylinder and four-stroke engine, based on measured data of cylinder gas pressure versus crankshaft angle, is derived. Effective output torque is acquired and as the input excitation to the driveline system. Secondly, a 12-DOF (Degree of Freedom) nonlinear and branched powertrain system and vehicle longitudinal dynamics model is established. The differential mechanism characteristics and dynamic tire property based on the LuGre tire model are considered. Then, for a traditional two-staged stiffness clutch damper in consideration of hysteresis characteristics, vehicle powertrain system responses in both the time and frequency domain are obtained.
2016-04-05
Technical Paper
2016-01-0430
Joel Metz, Xin Zhang, Xiao Yu
The Front Lower Control Arm (FLCA) is a key part of the automotive suspension for performance and safety. Many FLCA designs attach to the front sub-frame using rubber handling and riding bushings, which determine the vehicle dynamics and comfort. In this paper, a design for a ride bushing using a metal pin structure is discussed. The inner portion of the ride bushing is a hollow metal collar with a layer of rubber, and the FLCA pin structure is pressed into the rubber. For safety requirements, the bushings must meet a pin push-in and push-out force requirement. During the development of the bushing design, different test groups conducted tests to determine if manufactured parts meet the push-out force specification. Each group tested at a different load rate and generated different maximum push out force values. The push-in/out speed was found to have a strong influence on the generated maximum load.
2016-04-05
Technical Paper
2016-01-0474
Shukai Yang, Bingwu Lu, Zuokui Sun, Yingjie Liu, Hangsheng Hou
Abstract A low frequency vibration issue around 3.2 Hz occurs during a commercial heavy truck program development process, and it is linked to extremely uncomfortable driving and riding experiences. This work focuses on an analytical effort to resolve the issue by first building a full vehicle MBS (multi-body-system) model, and then carrying out vibration response analyses. The model validation is performed by using full vehicle testing in terms of structural modes and frequency response characteristics. In order to resolve the issue which is excited by tire non-uniformity, the influence of the cab suspension, frame modes, front leaf spring system and rear tandem suspension is analyzed. The root cause of the issue is found to be the poor isolation of the rear tandem suspension system. The analytical optimization effort establishes the resolution measure for the issue.
2016-04-05
Technical Paper
2016-01-0471
Jian Zhao, Jun Huang, Bing Zhu, Jingwei Shan
In the past decades, the stability of vehicles has been improved significantly by use of variety of chassis control systems such as Antilock Braking System (ABS), Electric Stability Program (ESP) and Active Front Steering (AFS). Recently, in order to further improve the performance of vehicles, more and more researches are focused on the integration control of multiple degrees of freedom of vehicle dynamic. However, in order to control multiple degrees of freedom simultaneously, the nonlinear problems caused by the coupling between different degrees of freedom have to be solved, which is always a difficult task. In this paper, a three-degrees-of-freedom single track vehicle model, in which some nonlinear terms are considered, is built firstly. Then, the nonlinear model is processed by the fuzzy technique and the T-S fuzzy model is designed.
2016-04-05
Technical Paper
2016-01-0470
Wei Chen, Zhe Sun, Jun Zheng, Liang Pan, Xurong Yi
Abstract This paper presents the relationship between suspension and steering systems and wheels, and proposes the vehicle dynamics modeling method. A vehicle dynamics model combined with the suspension K&C test data of a concrete vehicle was built based on the method. The simulation results show that the method is correct and feasible, and the dynamics model performed characteristics of the suspension and steering systems with high precision can be used for the followup simulation and optimization.
2016-04-05
Technical Paper
2016-01-0464
Lingyang Li, Wei Wu, Ji Chen, Jianpeng Shi, Xicheng Wang, Liuhua Qian
Abstract In order to expand the product design and development capabilities of Electric Power Steering (EPS) system, a passenger car’s simulation model integrated with EPS system model will be made. Some analytical investigation is conducted in this paper. Through simplifying the architecture model of EPS system, the mathematical equation expressions of steering wheel and column, worm gear reducer, rack and pinion, steer-wheels, brushed DC electrical motor, and ECU assistance and compensation laws will be described. A number of tests on the EPS full system and subsystems and components will be executed. The tests’ results will be used as the input parameters of the model, and then be used for model validations. After that, the EPS system model will be created. Since the most important part of control logic strategy is the top secret of steering assembly supplier and it could’t be provided to OEM in details or not even a black-box model directly.
2016-04-05
Technical Paper
2016-01-0463
Juan Sierra, Camilo Cruz, Luis Munoz, Santiago Avila, Elkin Espitia, Jaime Rodriguez
Abstract Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
2016-04-05
Technical Paper
2016-01-0507
Kazunori Miyake, Tomoya Nishida, Takanori Kurokawa, Hirokazu Arai
Abstract Sliding intermediate shaft of Electric Power Steering (EPS) system is used for torque transmission from steering wheel or motor and buffering reverse input from tire. Polyamide coating material with good sliding properties is treated in the sliding types of intermediate shaft. Conventionally, sliding types of intermediate shaft with polyamide coating have been used in vehicle interior. On the other hand, extension of applied area to engine room is needed. However, in high temperature conditions, there is concerns about increase of friction coefficient and wear volume of polyamide by deterioration of sliding properties of polyamide. Therefore, improvement of sliding properties of polyamide in high temperature is necessary. In this research, we examined sliding properties of polyamide blended with metal stearate in high-temperature to use polyamide in high temperature compared to conventional environment. As resin material, we used polyamide 610 blended with metal stearates.
2016-04-05
Technical Paper
2016-01-1664
Yoshio Masuda, Yosuke Yamasoe, Yosuke Kuki, Takahiro Okano, Kiyoyuki Uchida
Abstract To solve various environmental problems, fuel-efficient vehicles that reduce CO2 emissions as well as exhaust gas emissions have been developed. In such vehicles, a regenerative brake is used to further reduce fuel consumption. Because the market size for such vehicles is expanding, a brake system is required that can be used in a wide range of vehicles extending from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs). In addition, issues such as deceleration fluctuation and brake pedal fluctuation arise because the regenerative brake force is dependent on the vehicle speed. This paper presents a brake system configuration and its element technologies that can replace existing brake systems in different vehicles ranging from ICEVs to EVs. The proposed system can realize a regenerative cooperative brake not only by replacing the brake booster unit but also without replacing the modulator.
2016-04-05
Technical Paper
2016-01-1638
Eunhyek Joa, Kyongsu Yi, Kilsoo Kim
Abstract This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
2016-04-05
Technical Paper
2016-01-1627
Liangxiu Zhang, Guangqiang Wu
Abstract In order to improve the robustness and stability of autonomous vehicle at high speed, a path tracking approach which combines front steering and differential braking is investigated in this paper. A bicycle model with 3-DOFs is established and a linear time-varying predictive model using front steering as its control input can be derived. Based on model predictive theory, the path tracking issue using linear time-varying model predictive control can be transformed into an online quadratic programming problem with constraints. The expected front steering angle can be obtained from online moving optimization. Then the direct yawing control is adopted to treat two types of differential braking control. The first one investigates steady-state gain of yaw rate in linear 2-DOFs vehicle model, and designs a stable differential braking controller which is based on reference yaw rate.
2016-04-05
Technical Paper
2016-01-1647
Jing Li, Xiong Yang, Hui Miao, Zheng Tang Shi
Abstract A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively.
2016-04-05
Technical Paper
2016-01-1640
Zhuoping Yu, Songyun Xu, Lu Xiong, Wei Han
Abstract An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
2016-04-05
Journal Article
2016-01-0092
Stijn Kerst, Barys Shyrokau, Edward Holweg
Abstract Active vehicle safety and driving assistance systems can be made more efficient, more robust and less complex if wheel load information would be available. Although this information could be determined via numerous different methods, due to various reasons, no commercially feasible approach has yet been introduced. In this paper the approach of bearing load estimation is topic of interest. Using the bearing for load measurement has considerable advantages making it commercially attractive as: i) it can be performed on a non-rotating part, ii) all wheel loads can be measured and iii) usually the bearing serves the entire lifetime of the vehicle. This paper proposes a novel approach for the determination of wheel loading. This new approach, based on the strain variance on the surface of the bearing outer ring, is tested on a dedicated bearing test setup.
2016-04-05
Technical Paper
2016-01-1546
Dongpil Lee, Bongchoon Jang, Kyongsu Yi, Sehyun Chang, Byungrim Lee
Abstract This paper describes a reference steering feel tracking algorithm for Electric-Power-Steering (EPS) system. Development of the EPS system with intended steering feel has been time-consuming procedure, because the feedforward map-based method has been applied to the conventional EPS system. However, in this study, a three-dimensional reference steering feel surface, which is determined from current vehicle states, is proposed. In order to track the proposed reference steering feel surface, sliding mode approach is applied to second-order steering dynamics model considering a coulomb friction model. An adaptive technique is utilized for robustness against uncertainties. In order to validate the proposed EPS control algorithm, hardware-in-the-loop simulation (HILS) has been conducted with respect to a typical steering test. It is shown that the reference steering feel is realized well by the proposed EPS control algorithm.
2016-04-05
Technical Paper
2016-01-1544
Dexin Wang, Frank Esser
Abstract Evaluation of electric steering (EPAS) system performance using vehicle specific load conditions is important for steering system design validation and vehicle steering performance tuning. Using real-time vehicle dynamics mathematical models is one approach for generating steering loads in steering hardware-in-the-loop (HIL) testing. However achieving a good correlation of simplified mathematical models with real vehicle dynamics is a challenge. Using rack force models from measured steering tie rod forces or from simulations using a high-fidelity vehicle dynamics model is an effective data-driven modelling method for testing EPAS systems under vehicle specific load conditions. Rack force models are identified from physical measurements or validated vehicle simulations of selected steering test maneuvers. The rack force models have been applied in steering system performance evaluation, benchmarking, and steering model validation.
2016-04-05
Technical Paper
2016-01-1676
Wenchao Liu, Guoying Chen, Changfu Zong, Chunshan Li
Abstract The driving range of the electric vehicle (EV) greatly restricts the development of EVs. The vehicles waste plenty of energy on account of automobiles frequently braking under the city cycle. The regenerative braking system can convert the braking kinetic energy into the electrical energy and then returns to the battery, so the energy regeneration could prolong theregenerative braking system. According to the characteristics of robustness in regenerative braking, both regenerative braking and friction braking based on fuzzy logic are assigned after the front-rear axle’s braking force is distributed to meet the requirement of braking security and high-efficient braking energy regeneration. Among the model, the vehicle model and the mechanical braking system is built by the CRUISE software. The paper applies the MATLAB/SIMULINK to establish a regenerative braking model, and then selects the UEDC city cycle for model co-simulation analysis.
2016-04-05
Technical Paper
2016-01-1667
Long Chen, Shuwei Zhang, Mingyuan Bian, Yugong Luo, Keqiang Li
Abstract As a typical parameter of the road-vehicle interface, the road friction potential acts an important factor that governs the vehicle motion states under certain maneuvering input, which makes the prior knowledge of maximum road friction capacity crucial to the vehicle stability control systems. Since the direct measure of the road friction potential is expensive for vehicle active safety system, the evaluation of this variable by cost effective method is becoming a hot issue all these years. A ‘wheel slip based’ maximum road friction coefficient estimation method based on a modified Dugoff tire model for distributed drive electric vehicles is proposed in this paper. It aims to evaluate the road friction potential with vehicle and wheel dynamics analyzing by using standard sensors equipped on production vehicle, and fully take the advantage of distributed EV that the wheel drive torque and rolling speed can be obtained accurately.
Viewing 211 to 240 of 10739

Filter