Criteria

Display:

Results

Viewing 181 to 210 of 9956
Technical Paper
2014-04-01
Hiroki Taniguchi, Takeshi Kimura, Yuya Takeda, Taku Suzuki, Akihiro Kaneko, Tomohiro Jinbo
Abstract This paper describes a control method to improve straight-line stability without sacrificing natural steering feel, utilizing a newly developed steering system controlling the steering force and the wheel angle independently. It cancels drifting by a road cant and suppresses the yaw angle induced by road surface irregularities or a side wind. Therefore drivers can keep the car straight with such a little steering input adjustment, thus reducing the driver's workload greatly. In this control method, a camera mounted behind the windshield recognizes the forward lane and calculate the discrepancy between the vehicle direction and the driving lane. This method has been applied to the test car, and the reduction of the driver's workload was confirmed. This paper presents an outline of the method and describes its advantages.
Technical Paper
2014-04-01
Ralph S. Shoberg, Jeff Drumheller
Abstract Reliable wheel attachment must start with proper tightening of the lug nuts in order to achieve the clamping force necessary to hold the vehicle's wheels securely for all operating conditions. It is the purpose of this paper to provide a complete overview of the theory and practice of using torque-angle signature analysis methods to examine the installation and audits of wheel lug nuts. An accurate estimate of clamp load can be determined without actually measuring the clamp load. The torque-angle signature analysis, known as “M-Alpha”, performed on tightening and loosening curves provides a powerful tool to understand the integrity of a bolted joint when clamp load data is not available. This analysis technique gives insight into the frictional effects, material properties, and geometric factors that can affect the clamp load attained during the installation process.
Technical Paper
2014-04-01
Andrew Nevin, Eric Daoud
Abstract Traditional tread depth measurements require manual utilization of a mechanical device to acquire measurements at each location of interest on a tire. Drive-over machine-vision sensors are becoming available as a means for measuring tread depth. These sensors typically consist of a laser and a camera contained in an environmentally-sealed sensor housing. Tires approach the sensor over the supporting surface, while a laser projects an illuminating line across the tread surface for capture in a digital image. This scan is evaluated to provide a single 2D contour of tread depth at the illuminated line. Advanced machine-vision sensors acquire a sequence of images, which results in a multitude of data points over a 3D region of the tread surface. Post-processing of the acquired images illustrates the observed tread pattern and establishes multiple tread depth measurements. Measurements determined by the advanced sensors from hundreds of tires were compared to manual measurements acquired with analog and digital mechanical gauges.
Technical Paper
2014-04-01
Akihito Yamamoto, Haruhiko Sugai, Ryo Kanda, Shuuichi Buma
Abstract This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Technical Paper
2014-04-01
Prashanth KR. Vaddi, Sandeep Vinjamuri, Kumar Cheruvu
Abstract Advanced research in ABS (Anti-lock Braking System), traction control, electronic LSD's (Limited Slip Differential) and electrical powertrains have led to an architecture development which can be used to provide a controlled yaw moment to stabilize a vehicle. A steer assistance mechanism that uses the same architecture and aims at improving the vehicle response to the driver steering inputs is proposed. In this paper a feed-forward approach where the steering wheel angle is used as the main input is developed. An optimal control system is designed to improve vehicle response to steering input while minimizing the H2 performance of the body slip angle. The control strategy developed was simulated on a 14 DOF full vehicle model to analyze the response and handling performance.
Technical Paper
2014-04-01
Anthony Barkman, Kelvin Tan, Arin McIntosh, Peter Hylton, Wendy Otoupal-Hylton
This paper discusses a project intended as a design study for a team of college students preparing for careers in motorsports. The project's objective was to conduct a design study on the possible redesign of the suspension for a dirt-track sprint car. The car examined was typical of those which race on one-quarter to one-half mile dirt oval tracks across the United States. The mission of this concept study was to develop a different configuration from the traditional torsion bar spring system, for the front end. The design included moving the dampers inboard with the addition of a rocker to relate the movement through the front suspension system. For the rear end, components were designed to allow the radius rod to be adjustable from the cockpit, thus providing the driver with adjustability to changing track conditions. The project goal was to design functional front end and rear end changes that could provide a positive impact on handling as well as keeping the system easy to replace in a short period of time.
Technical Paper
2014-04-01
Xiaomin Lin, Nenggen Ding, Guoyan Xu, Feng Gao
Abstract Most tractor-semitrailers are fitted with multi-axle trailers which cannot be actively steered, and such vehicles with an articulated configuration are inclined to exhibit instability such as trailer swing, jack-knifing, and rollover at high speed. Proposed in this paper is an optimal control of the yaw stability of tractor-semitrailers at high speed by applying an active trailer's steering angle. An optimal control algorithm is designed by employing a 3-DOF vehicle model in the yaw plane. The optimal linear quadratic regulator (LQR) approach is used with a cost function including sideslip angles, yaw rates of both tractor and trailer, and trailer's steering angle. The yaw stability at the high speed is also quantified by the dynamic performance measurements of lateral path deviation, hitch angle and rearward amplification (RA). The algorithm is evaluated by co-simulations using TruckSim and Matlab/Simulink softwares. Simulation results under double lane change maneuvers show that trailer swing and jack-knifing are suppressed with a small path-tracking error and it is concluded that the optimal control of semi-trailer steering can improve the yaw stability at high speed.
Technical Paper
2014-04-01
Shinhoon Kim, John McPhee, Nasser Lashgarian Azad
Abstract A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim. The vehicle is driven by constant rotational input which is applied to the rear wheel.
Technical Paper
2014-04-01
Ibrahim A. Badiru
Abstract The automotive industry commonly uses two definitions of the suspension roll center, the Kinematic Roll Center (KRC) - of interest in studying suspension geometry, and the Force-based Roll Center (FRC) - of interest in studying steady-state vehicle dynamics. This paper introduces a third definition, the Dynamic Roll Axis (DRA) - of interest in studying transient vehicle dynamics. The location of each one of these roll centers has a unique application to vehicle design and development. Although the physical meaning of each roll center is significantly different, the generic term “roll center” is often used without proper specification. This can lead to confusion about how roll centers influence vehicle behavior. This paper hopes to clarify some of this confusion and is organized into three parts: (1) Describes calculation methods for each of the three vehicle roll centers (for independent suspensions) as well as their relevance to vehicle dynamics; (2) Explains the relationship between the kinematic and force-based roll centers; (3) Offers recommendations on considerations for choosing roll center(s) location during vehicle design.
Technical Paper
2014-04-01
Shreesha Y. Rao, JongYun Jeong, Ryan M. Ashby, Gary J. Heydinger, Dennis A. Guenther
Abstract A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research. The RSC system was developed after a careful study of the field test data obtained from the vehicle manufacturer in which the ESC was activated.
Technical Paper
2014-04-01
Mingyuan Bian, Long Chen, Yugong Luo, Keqiang Li
Abstract A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper
2014-04-01
Yang Liu, Zechang Sun, Wenbin JI
Abstract A brake pedal stroke simulator for Electro-hydraulic Braking System (EHBS) was developed to ensure the comfort braking pedal feel for the brake-by-wire system. An EHBS with an integrated master cylinder was proposed, and a composite brake pedal stroke simulator was designed for the EHBS, which was comprised of two inline springs and a third parallel one. A normally closed solenoid valve was used to connect the master cylinder booster chamber and the stroke simulator. The suitable brake pedal stroke was achieved by three stages of these springs' compression, whereas the solenoid valve was shutdown to enable mechanical control of the service brakes when electrical faults appeared. The pedal stroke simulator and the EHBS were modeled in MATLAB/SIMULINK-AMESim, and then the pedal stroke characteristic including the depressing and releasing process and its influencing factors, namely the preload force of the return spring, the cross-sectional area of the solenoid valve orifice, piston damping coefficient, and the pressure booster ratio were analyzed during the normal and failsafe mode.
Technical Paper
2014-04-01
Jie Ni, Lifu Wang
Abstract In this paper, a torsion-eliminating Hydraulically Interconnected Suspension (THIS) is proposed for the first time to reduce the undesired articulation (warp) stiffness of a two-axis vehicle. The dynamic characteristics of a typical sport utility vehicle (SUV) fitted with the THIS is investigated in the frequency domain. The equations of motion of the coupled mechanical and hydraulic sub-systems are presented. The vehicle basic mechanical sub-system is modeled as a 7 degrees of freedom (DOF) mass-spring-damper system. The hydraulic impedance method is employed to model the fluid sub-system. The relationships between the dynamic fluid states, i.e. pressures and flows, are determined by transfer matrices. Then the mechanical and hydraulic sub-systems are coupled through the mechanical-fluid boundary conditions. Based on fluid hydraulic impedance method, the characteristic equations of this mechanically and hydraulically coupled system are derived with a state vector including the displacements and velocities of mechanical system and the pressure at the mechanical-hydraulic boundary section.
Technical Paper
2014-04-01
Austin Gurley
Abstract Selection of springs and dampers is one of the most important considerations when finalizing a race car suspension design. It is also one of most complex due to the dynamic interaction of the vehicle with the ground. Current tuning methods for spring and dampers' effect on vehicle ride can be based on simplified dynamic models of the vehicle, such as the quarter-car model. While efficient computationally, the traditional quarter-car model does not account for the non-linear variation in grip seen by a fluctuating contact-patch. Both amplitude and frequency of suspension oscillation contribute to loss of tire grip. The method can be improved by incorporation of a dynamic tire model, though resulting in non-linear effects. An improved ‘rolling quarter-car’ model is created, which includes the effect of dynamic tire forces in the analysis of improved grip. Using typical Formula SAE race car, characteristics as a test case, a linearized dynamic model is made. The effect of suspension parameters on the dynamic tire forces produced are surveyed.
Technical Paper
2014-04-01
Lee Carr, Dan Barnes, Jennifer Crimeni
Abstract Prior to the widespread implementation of ABS brake technology in light vehicles, driver training often included instruction to “pump the brakes” to avoid locking the wheels. Many driver education programs now recommend maintaining high brake pedal force and relying on ABS. It is sometimes asserted that drivers desiring to stop a vehicle quickly still “pump the brakes”. Investigators sought to understand whether drivers desiring to decelerate quickly pump the brakes, especially in a way that may deplete the vacuum stored in a vehicle's brake booster if so equipped, or whether they apply the brakes in a manner corresponding to their desired deceleration. The National Highway Traffic Safety Administration (NHTSA) conducted a testing program to examine driver braking behavior in crash avoidance maneuvers. The data for those 245 test runs were reanalyzed, assessing patterns of brake pedal force application to determine whether pedal force variation was sufficient in magnitude and duration to reflect driver intent.
Technical Paper
2014-04-01
Aref M. A. Soliman, Nouby M. Gazaly, Fatma S. Kadry
Abstract The road condition has an important influence on ride quality; however, the road condition cannot be sufficiently controlled. The proper design of truck components is the only way to improve ride quality. This work is an investigation into the ride behaviour of passive and active suspension systems using full truck model. A mathematical model for the evaluation of ride comfort for a truck moving on an irregular road surface is developed. The cab suspension for passive system is represented by a parallel arrangement of a spring and damper. The gain scheduling (GS) strategy is used to improve truck ride comfort. The influence of suspension elements, tyre stiffness, truck speed and road input on ride comfort is evaluated. The results showed that the active suspension system with gain scheduling strategy gives better ride improvements compared with active system .in terms of vertical cab acceleration. Furthermore, the optimum values of cab spring stiffness and damping coefficient are obtained.
Technical Paper
2014-04-01
Yutong Li, Junzhi Zhang, Chen Lv
Abstract As the main power source of the electric vehicle, the electric motor has outstanding characteristics including rapid response, accurate control and four-quadrant operation. Being introduced into the dynamic chassis control of electrified vehicles, the electric motor torque can be used not only for driving and regenerative braking during normal operating conditions, but also offers a great potential to improve the dynamic control performance of the anti-lock braking under emergency deceleration situations. This paper presents a robust control algorithm for anti-lock braking of a front-wheel-drive electric vehicle equipped with an axle motor. The hydraulic and regenerative braking system of the electric vehicle is modeled as a LPV (linear parameter varying) system. The nonlinearities of the control system are considered as uncertain parameters of a linear fractional transformation. A static-state feedback control algorithm which is robust against the uncertainties is designed to achieve the maximum braking capability of the vehicle.
Technical Paper
2014-04-01
Lijiao Yu, Hongyu Zheng, Changfu Zong
Abstract Nowadays, conventional steering system cannot meet consumers' requirements as their environmental awareness increasing. Electrically controlled steering system can solve this problem well [1] [2]. Electrically controlled steering system has been not only applied widely in automobile steering technique but also becomes an important section of automobile integrated chassis control technology. It is necessary for vehicles to test their every component repeatedly before every component assembled. So a test bench becomes an essential part for vehicle products' design and improvement. The electrically controlled steering system consists of Electric Power Steering system (EPS), Active Front Steering (AFS) and Steer by Wire (SBW). The similarity among them is containing pinion-and-rack mechanical structure, so it is viable to design a test bench suitable for these three systems. This paper takes EPS as a prototype to verify the design's availability. The designed test bench is also used to detect and verify the electrically controlled steering system's performance at the same time.
Technical Paper
2014-04-01
Maki Kawakoshi, Takanobu Kaneko, Toru Nameki
Abstract Controllability (C) is the parameter that determines the Automotive Safety Integrity Level (ASIL) of each hazardous event based on an international standard of electrical and/or electronic systems within road vehicles (ISO 26262). C is classified qualitatively in ISO 26262. However, no specific method for classifying C is described. It is useful for C classification to define a specific classification based on objective data. This study assumed that C was classified using the percentage of drivers who could reduce Severity (S) in one or more classes compared with the S class in which the driver did not react to a hazardous event. An experiment simulated a situation with increased risk of collision with a leading vehicle due to insufficient brake force because of brake-assist failure when the experiment vehicle decelerated from 50 km/h on a straight road. First, the relationship between the S class and the difference of speed at the moment of collision obtained in the experiment was classified according to ISO/DIS 26262 Part 3 Annex B.
Technical Paper
2014-04-01
Tomislav Lovric, Manuel Schneider-Scheyer, Samir Sarkic
Abstract Today's Automotive ECU development is a global engineering exercise. It requires efficient planning, design and implementation. Time to market, innovative customer functions and cost effective design are key to success. Not only the technical realization with compressed time schedules and frequent change requests, but also the documentation, and the proof of compliance to ISO-26262 requires efficient solutions to be applied. Key to successful ECU development of complex safety critical systems inside a global team is a systematic approach to identify the ideal realization out of multiple design alternatives. This is why TRW Electronics Engineering for its Braking ECU products decided to design the new product generation with the help of Model Based System Engineering methods (MBSE). With these methods the team is realizing the opportunities provided by top-down driven development considering Requirements Engineering, Semi-formal Architecture Description, and early support to create evidence to conform to ASIL D in accordance to ISO 26262.
Technical Paper
2014-04-01
Lijiao Yu, Hongyu Zheng, Changfu Zong
Abstract Nowadays, electric control steering system has been a main tendency. It consists of Electric Power Steering (EPS) system, Steer by Wire (SBW) system and Active Front Steering (AFS) system. EPS is more widely applied and its technology is more developed. By 2010, the cars equipped with EPS have reached almost 30%. This paper describes one integrated test bench which can test and verify electric control steering system. The main target of the paper is to design and set up a resistance loading system for the test bench referred. The paper takes EPS as a prototype to verify the designed resistance loading system. If the resistance loading system provides a precise simulated torque for the bench, the results of tests will be more approximate with vehicle tests and the acquired data will be reliable for electric control steering system's design and improvement. The linear electric cylinder applied in the loading system is used to provide simulated torque for the bench. The linear electric cylinder is combined with a kind of software independently designed.
Technical Paper
2014-04-01
Rolf Schneider, Andre Kohn, Karsten Schmidt, Sven Schoenberg, Udo Dannebaum, Jens Harnisch, Qian Zhou
Abstract The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers. In this paper, our emphasis is on the practical realization of integration platform ECUs in the chassis domain, which is characterized by higher functional safety, and in the future, high security requirements.
Technical Paper
2014-04-01
Sanghun Cho, Taewan Gu, Eunyoung Yoo, Youngkyu Jeong, Baegsu Joo
Abstract In automotive software developments, since the types of software functionalities are depending on automotive engineering domains such as powertrain, body, and chassis, software logic and data processing, code complexity, and its reliability are also depending on them. Therefore, it has some challenges that monolithic code quality measures are applied to software code for all domains. In addition, imprecise criteria for the measures also can make software developers and testers confused whether their code verifications are enough or not. This paper proposes domain-specific code quality measures and precise criteria by combining a new functionality model, named Abstract Function Model (AFM), and shows results of automotive software functionality analysis using the model. Using 8 real automotive software projects, we derived statistics of software code on specific automotive engineering domain and identified code quality measures from the statistics. For the identified code quality measures, we tactically modified the legacy software code quality measures to be more reasonable and suitable for domain-specific code verification in terms of coding rule checking, potential semantic error checking, and code structural metrics.
Technical Paper
2014-04-01
Felix Wittmeier, Timo Kuthada, Nils Widdecke, Jochen Wiedemann
Abstract The geometric shape of the tires can have a large influence on the aerodynamic drag of a passenger car as it has been shown already in different publications like for example [1, 2, 3]. However, to optimize the shape of a tire, nowadays quite some effort is needed in terms of wind tunnel time and costs for prototype tires. In this paper an approach to optimize the tire's shape in model scale is described, which can help to reduce both development time and costs. The first step in the development of this method was to verify that the aerodynamic effects of the tire geometry in model scale are comparable to full scale tests. This was achieved by measuring different production tires in full scale and also by measuring the quarter scale version of the same tires. The only difference between the original and the model scale tires was that the scaled tires were not deformable. The results show that the difference between two sets of tires is comparable in full scale and in quarter scale.
Technical Paper
2014-04-01
Sajjad Beigmoradi, Kambiz Jahani, Babak Ravaji
Abstract Efficient function of brake system is considered a crucial stage in the vehicle development process. Heat exchange reduction can decrease the operational condition of braking system. Although the rims patterns have a significant role on vehicle aerodynamics, they can also have effect on air flow around the brake disk. So, selecting a rim is vital from both a safety and an aerodynamic point of view. In this paper the effect of air flow around a brake disk for two different types of rims was studied; a steel casting and an aluminum alloy rim. Numerical simulation was used for this analysis. First, the flow field around brake disk with iron casting rim was investigated at different velocities. Second, the flow field around the same brake disk system with an aluminum alloy rim was modeled at the same velocities. Finally, the effect of rim design on flow pattern over brake disk was compared. It was found that changing rim design has significant influence on velocity distribution around brake disc and pads.
Technical Paper
2014-04-01
Matthew R. James, Simon Watkins, Matthew Watts
Abstract As open-wheeled racing cars frequently race in close proximity, a limiting factor on the ability to overtake is the aerodynamic performance of the vehicle while operating in a leading car's wake. Whilst various studies have examined the effectiveness of wings operating in turbulent flow, there has been limited research undertaken on the aerodynamic effect of such conditions on wheels. This study describes the influence of upstream turbulence on the wake flow features of an isolated wheel, since the flow field of a wheel will generally be turbulent (due to the wakes of upstream cars and/or bodywork). Pressure distributions and velocity vector plots are examined, which were obtained using a four-hole pressure-sensitive Cobra probe on a traverse 2.5 diameters downstream of the wheel axle line, in smooth and turbulent flow. This analysis also compares the effect of upstream turbulence on the wake for the rotating and stationary wheel; as well as investigating the sensitivity of the wake to the wheel-to-road gap in smooth and turbulent flow.
Technical Paper
2014-04-01
Massimiliana Carello, Andrea Giancarlo Airale, Alessandro Ferraris
Abstract The use of composite materials is very important in automotive field to meet the European emission and consumption standards set for 2020. The most important challenge is to apply composite materials in structural applications not only in racing vehicles or supercars, but also in mass-production vehicles. In this paper is presented a real case study, that is the suspension wishbone arm (with convergence tie and pull-rod system) of the XAM 2.0 urban vehicle prototype, that it has the particular characteristics that the front and rear, and left and right suspension system has the same geometry. The starting point has been an existing solution made in aluminum to manufacture a composite one. The first step was the development of a dynamic model of the vehicle to understand the suspension loads and to define the suspension weight and stiffness target with respect to the solution made on aluminum, because it was necessary to understand the tensil strain on the component to simplify and optimize the geometry.
Technical Paper
2014-04-01
Yoon Cheol Kim, Seong Jin Kim, Jaeyoung Lee, Jeongkyu Kim, SooHyuk Lee, Kyoungdon Yi, KiJeong Kim
Abstract Reducing unsprung mass of the car is a representative method to enhance the ride & handling performance and fuel efficiency. In this study, brake disc weight is reduced 15∼20% using a hybrid type material. The basis for this study is the separation of the friction surface and HAT(mounting part). Aluminum material is applied in the HAT for a light weight effect. Gray iron is applied in the friction surface section to maintain braking performance. Two types of joining between aluminum and cast iron are developed. One is the aluminum casting method utilizing a gray iron insert and the other is a bolted assembly method. Detailed structure, process and material are optimized using try-out & dynamometer experiments. The Reliability of this development is proved through durability (dynamometer and vehicle) testing.
Technical Paper
2014-04-01
Romeo Sephyrin Fono-Tamo
Abstract The development of a non-asbestos automotive brake pad using palm kernel shell (PKS) as friction filler material is presented. This was with a view to exploiting the characteristics of PKS, which are otherwise largely deposited as waste from palm oil production, to make substitution for asbestos which has been found to be carcinogenic. Two sets of brake pads with identical ingredients but using either PKS or asbestos as base material were produced, following standard procedures employed by a commercial brake pad manufacturer. The physical, thermal, mechanical and the wear characteristics of the PKS-based brake pads were evaluated, compared with the values for the asbestos-based brake pads, and weighted against established recommendations for friction materials for road vehicle brake pads. The PKS based brake pad was characterized by 32.34 Brinell hardness number; 0.62%, swell and growth; 3375 N/s, bonding to back plate, and phase change at 689.5°C. The coefficient of friction of the experimental brake pad on cast iron was 0.43; whilst, wear rate was 9.17 E-5 g/min and exhibiting a third order polynomial with run-in time.
Technical Paper
2014-04-01
Ovun Isın, Ilyas Istif, Deniz Uzunsoy, Feray Guleryuz
Abstract The brake friction materials in an automotive brake system play an important role in the overall braking performance of a vehicle. Metal Matrix Composites (MMCs) have been widely investigated and applied due to their advantages of improved strength, stiffness and increased wear resistance over the monolithic alloys in automobile industries. In this paper, Al/B4CP and Mg/B4CP composites were compared to find a suitable candidate material for automotive disk brake application, in terms of wear behavior results of the materials. In addition, the experimental data was also used to model this behavior by identification. The measured tangential force was considered as the input parameter, whereas the weight loss as the output parameter. Preliminary results of this work showed that B4CP addition improved wear resistance of both aluminum and magnesium matrix composites. Additionally, the study pointed out that identified models provide a reliable and cost effective tool for wear prediction.
Viewing 181 to 210 of 9956

Filter

  • Article
    329
  • Book
    60
  • Collection
    22
  • Magazine
    704
  • Technical Paper
    7427
  • Standard
    1414
  • Article
    1414