Display:

Results

Viewing 181 to 210 of 10325
2015-04-14
Technical Paper
2015-01-0634
Adebola Ogunoiki, Oluremi Olatunbosun
Abstract This paper presents a statistical characterisation of the effects of variations in vehicle parameters on vehicle road load data using a quarter vehicle as a case study. A model of a quarter vehicle test rig constructed from a commercial SUV is created in a multi-body dynamics (MBD) simulation environment to reproduce the real-life behaviour of the SUV. The model is thereafter validated by correlating the response data collected from both the model and laboratory test rig to the same road input. In order to ensure that only the effects of the variation of the vehicle parameters are captured, a time domain drive signal for a kerb strike road event on the physical vehicle is generated from the proving ground data collected during durability testing of the vehicle.
2015-04-14
Technical Paper
2015-01-1117
Yang Liu, Zechang Sun
Abstract Regenerative braking control for a four-wheel-drive (4WD) electric vehicle (EV) equipped with a decoupled electro-hydraulic brake system was studied. The energy flow of the 4WD electric vehicle was analyzed during braking, and the brake force distribution strategy between the front-rear axles, regenerative braking and hydraulic braking was studied. Considering ECE R13 regulations, motors and battery pack characteristic constraints, the optimal regenerative braking control strategy using Genetic Algorithm (GA) was proposed. A Hardware-in-loop (HIL) test was built to verify the proposed regenerative braking control strategy. The results show that the optimal regenerative braking control strategy for the 4WD electric vehicle was advantageous over the comparison program, and regenerative energy efficiency reaches 78.87% under the Shanghai Urban Driving Cycle (SUDC).
2015-04-14
Technical Paper
2015-01-1514
Deepak Tiwari, Japveer Arora, Rakesh Khanger
Abstract A typical wheel development process involves designing a wheel based on a defined set of criteria and parameters followed by verification on CAE. The virtual testing is followed by bench level and vehicle level testing post which the design is finalized for the wheel. This paper aims to establish the learning which was accomplished for one such development process. The entire wheel development process had to be analyzed from scratch to arrive at a countermeasure for the problem. This paper will not only establish the detailed analysis employed to determine the countermeasure but also highlight its significance for the future development proposals. The paper first establishes the failure which is followed by the detailed analysis to determine the type of failure, impact levels and the basic underlying conditions. This leads to a systematic approach of verification which encompasses the manufacturing process as well as the test methodology.
2015-04-14
Technical Paper
2015-01-1210
Bharat Singh, Naveen Kumar, Amaya Kak, Satya Kaul
Abstract At present, vast numbers of problems are triggered due to growing global energy crisis and rising energy costs. Since, on-road vehicles constitute the majority share of transportation; any energy losses in them will have a direct effect on the overall global energy scenario. Most of the energy lost is dissipated from the exhaust, cooling, and lubrication systems, and, most importantly, in the braking system. About 6% of the total energy produced is lost with the airstream in form of heat energy when brakes are applied. Thus, various technological systems need to be developed to conserve energy by minimize energy losses while application of brakes. Regenerative Braking is one such system or an energy recovery mechanism causing the vehicle to decelerate by converting its kinetic energy into another form (usually electricity), which further can be used either immediately or stored until needed.
2015-04-14
Technical Paper
2015-01-0624
Mustafa Arat, Emmanuel O. Bolarinwa
Abstract The increasing demand of energy use in transportation systems combined with the limited supply of fossil hydrocarbons to support conventional engines has led to a strong resurgence in interest for electric vehicles (EVs). Although EVs offer the possibility of decoupling the issue of energy source from the primary torque generator in an automobile, the current technology is yet to match the well-developed internal combustion (IC) systems, especially in terms of energy capacity and travel range. In this study, the influence of rolling-resistance on the energy efficiency and road holding of electric vehicles is investigated. Rolling resistance is taken in the context of energy loss (e.g. the mechanical energy converted into other sources of energy) for a unit distance traveled by the tire.
2015-04-14
Technical Paper
2015-01-1524
Ping Chen, Nan Xu, Konghui Guo, Rongsheng Liu
Abstract The tire lateral force is essential to the vehicle handling and stability under cornering. However, it is difficult for engineers to get the tire lateral force under high loading condition due to the limitation of loading ability for most tire test machine in the world. The widely used semi-empirical tire lateral force models are obtained by curve-fitting experiments data and thus unable to predict the load dependent lateral force. The objective of this paper is to predict the tire lateral force under high-load condition based on the low-load tire data. The nonlinear characteristics of the tire cornering stiffness with the load are greatly affected by the tire carcass compliance. In this paper, a theoretical tire lateral model was built by considering carcass complex deformation. Combined with the relationship between the half-length of the tire contact patch and the load, the non-linear characteristics of the tire cornering stiffness with load were obtained.
2015-04-14
Technical Paper
2015-01-1518
Emmanuel O. Bolarinwa, Oluremi Olatunbosun
Abstract Three-dimensional (3D) Finite element (FE) tyre models have been widely used for tyre design, vehicle design and dynamic investigations. Such tyre models have the inherent advantage of covering a wide range of tyre modelling issues such as the detailed tyre geometry and material composition, in addition to an extensive coverage of tyre operational conditions such as the static preload, inflation pressure and driving speed. Although tyre vibration behaviour, in different frequency ranges are of general interest, both for the vehicle interior and exterior noise, the present study is limited to a frequency of 100 Hz which is prevalent in most road induced (Noise, Vibration, Harshness) NVH ride and handling problems. This study investigates tyre vibration behaviour using a proprietary FE code. Such investigation plays an important role in the study of vehicle dynamics.
2015-04-14
Technical Paper
2015-01-1501
Ryusuke Hirao, Kentaro Kasuya, Nobuyuki Ichimaru
Abstract New ride control and handling control are developed, and installed in a system using only vehicle height sensor as dedicated sensors and pressure control type semi-active damper. Bi-linear optimal control is applied for controlling ride comfort control constructed observer which is inputted vehicle height sensor for calculating state quantity then used output of the observer. Behavior of vehicle was investigated by vehicle experiment and formalized to further improve the feeling of roll generated by handling control and devised and applied semi-active suspension control method which transiently realize the behavior. Proposed semi-active suspension system not only achieves damping performance as well as skyhook control, but also improves smooth ride comfort and handling performance including roll feeling. In this report, we describe aim, feature and effect of this system.
2015-04-14
Technical Paper
2015-01-1513
Anudeep K. Bhoopalam, Kevin Kefauver
Abstract Indoor laboratory tire testing on flat belt machines and tire testing on the actual road yield different results. Testing on the machine offers the advantage of repeatability of test conditions, control of the environmental condition, and performance evaluation at extreme conditions. However, certain aspects of the road cannot be reproduced in the laboratory. It is thus essential to understand the connection between the machine and the road, as tires spend all their life on the road. This research, investigates the reasons for differences in tire performance on the test machine and the road. The first part of the paper presents a review on the differences between tire testing in the lab and on the road, and existing methods to account for differences in test surfaces.
2015-04-14
Technical Paper
2015-01-1120
Siddhartha Singh, Sudha Ramaswamy
Abstract 1 The modern engine is capable of producing high torque and horsepower. Now the customer wants state of the art comfort and ergonomics.Thus the manufacturers are focusing on reducing the clutch pedal effort and providing a pleasurable driving experience. In heavy traffic conditions where the clutch is used frequently, the pedal effort required to disengage the clutch should be in comfortable range. Often drivers who drive HCV complain about knee pain which is caused due to high pedal effort, this occurs when ergonomics of ABC (accelerator, brake and clutch) pedals is not designed properly. Thus there is a need to reduce the driving fatigue by optimizing the clutch system. Latest technologies like turbo charging and pressure injection have increased the engine power and torque but have also led to increase the clamp load of clutch. Thus the release load required to disengage the clutch has also increased.
2015-04-14
Technical Paper
2015-01-0637
Mohammed K Billal, Guilherme Carneiro, Renan Ozelo, Makarand Kulkarni
Abstract During the service life, the impacts of vehicle against potholes result in damage for the wheel and suspension components. Knowing the internal forces generated in the suspension components during this event would helpful to design the critical components. Measurement of these loads in physical test is more costly and not feasible for new designs. There are several virtual tools and methods available to predict the loads during this event. Using the ABAQUS FE solver, the non-linear dynamic behavior could be captured accurately during the impact. The tire model plays an important role during this event by absorbing energy during the impact. The CAE tire model is validated with some physical tests results and it is used in the vehicle pothole impact simulation. In vehicle pothole physical test, the force and acceleration measurement are taken and compared with the CAE results. The effect of the tire pressure variations and the vehicle speed at pothole impact is also studied.
2015-04-14
Technical Paper
2015-01-1572
L. Daniel Metz, J. Sneddon
Abstract Deteriorated roadway surfaces (potholes) encountered under everyday driving conditions may produce external vehicle disturbance inputs that are both destabilizing and highly transient. We examine vehicle behavior in response to such inputs through simulation. Idealized pothole geometry configurations are used to represent deteriorated roadway surfaces, and as environments in the HVE simulation suite of programs. Differences in vehicle response and behavior are cataloged, and the potential for destabilized vehicle behavior is examined, particularly under conditions in which only one side of the vehicle contracts the pothole. Vehicle types used in the simulation ensemble represent three classes of vehicles: a sedan, a sports car and an SUV. Results show that many combinations of vehicle speed, vehicle type and pothole configuration have essentially no destabilizing effects on the vehicle trajectory.
2015-04-14
Technical Paper
2015-01-0591
Karan R. Khanse, Eric Pierce, Michael Ng, Saied Taheri
Abstract Outdoor objective evaluations form an important part of both tire and vehicle design process since they validate the design parameters through actual tests and can provide insight into the functional performances associated with the vehicle. Even with the industry focused towards developing simulation models, their need cannot be completely eliminated as they form the basis for approving the performance predictions of any newly developed model. An objective test was conducted to measure the ABS performance as part of validation of a tire simulation design tool. A sample vehicle and a set of tires were used to perform the tests- on a road with known profile. These specific vehicle and tire sets were selected due to the availability of the vehicle parameters, tire parameters and the ABS control logic. A test matrix was generated based on the validation requirements.
2015-04-14
Technical Paper
2015-01-1414
Jitendra Shah, Mohamed Benmimoun
Abstract The focus of this paper is the threat assessment of perceived threat by drivers in collision avoidance situations. The understanding of the decision making process with regards to the initiation of a driver intervention is a crucial step to gain insight into driver's steering and braking behavior in case of an imminent threat (rear-end collision). Hence a study with various test subjects and a test vehicle has been conducted. The study has helped to understand how drivers behave in potential rear-end collision situations arising from the traffic situation (e.g. start of a traffic jam). This information is of major importance for designing autonomous collision avoidance systems and an important step towards autonomous driving. Autonomous driving in vehicles require system interventions to be initiated as early and safely as possible in order to avoid the collision and to avoid unstable vehicle dynamics situations.
2015-04-14
Technical Paper
2015-01-1598
Milad Jalaliyazdi, Amir Khajepour, Shih-Ken Chen, Bakhtiar Litkouhi
Abstract In this paper, the problem of stability control of an electric vehicle is addressed. To this aim, it is required that the vehicle follows a desired yaw rate at all driving/road conditions. The desired yaw rate is calculated based on steering angle, vehicle speed, vehicle geometric properties as well as road conditions. The vehicle response is modified by torque vectoring on front and/or rear axles. This control problem is subject to several constraints. The electric motors can only deliver a certain amount of torque at a given rotational speed. In addition, the tire capacity also plays an important role. It limits the amount of torque they can transfer without causing wheel to slip excessively.
2015-04-14
Technical Paper
2015-01-1500
Marcus Ljungberg, Mikael Nybacka, Gaspar Gil Gómez, Diomidis Katzourakis
Abstract The automotive industry strives to develop high quality vehicles in a short period of time that satisfy the consumer needs and stand out in the competition. Full exploitation of simulation and Computer-Aided Engineering (CAE) tools can enable quick evaluation of different vehicle concepts and setups without the need of building physical prototypes. Addressing the aforementioned statements this paper presents a method for optimising the Electric Power-Assisted Steering (EPAS) ECU parameters employing solely CAE. The objective of the optimisation is to achieve a desired steering response. The developed process is tested on three specific steering metrics (friction feel, torque build-up and torque deadband) for two function parameters (basic steering torque and active return) of the EPAS. The optimisation method enabled all metrics to fall successfully within the target range.
2015-04-14
Journal Article
2015-01-0314
Junyung Lee, Beomjun Kim, Jongsang Seo, Kyongsu Yi, Jihyun Yoon, Bongchul Ko
Abstract This paper presents an automated driving control algorithm for the control of an autonomous vehicle. In order to develop a highly automated driving control algorithm, one of the research issues is to determine a safe driving envelope with the consideration of probable risks. While human drivers maneuver the vehicle, they determine appropriate steering angle and acceleration based on the predictable trajectories of the surrounding vehicles. Therefore, not only current states of surrounding vehicles but also predictable behaviors of that should be considered in determining a safe driving envelope. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, the safe driving envelope over a finite prediction horizon is defined in consideration of probabilistic prediction of future positions of surrounding vehicles.
2015-04-14
Journal Article
2015-01-1599
Bo Leng, Lu Xiong, Chi Jin, Jun Liu, Zhuoping Yu
Abstract For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
2015-04-14
Technical Paper
2015-01-1464
Qiang Chen, Miao Lin, Bing Dai, Jiguang Chen
Abstract In China, nearly 25% of traffic fatalities are pedestrians. To avoid those fatalities in the future, rapid development of countermeasures within both passive and active safety is under way, one of which is autonomous braking to avoid pedestrian crashes. The objective of this work was to describe typical accident scenarios for pedestrian accidents in China. In-depth accident analysis was conducted to support development of test procedures for assessing Autonomous Emergency Braking (AEB) systems. Beyond that, this study also aims for estimating the mitigation of potential crash severity by AEB systems. The China In-depth Accident Study (CIDAS) database was searched from 2011 to 2014 for pedestrian accidents. A total of 358 pedestrian accidents were collected from the on-site in-depth investigation in the first phase of CIDAS project (2011-2014).
2015-04-14
Technical Paper
2015-01-1578
Kaoru Kusaka, Nobuyuki Nagayama
Abstract The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH, and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance. In estimations of vehicle performance, computer simulation plays more of an important role, and simulated tire models are designed to reproduce the measured tire characteristics of existing tires.
2015-04-14
Technical Paper
2015-01-1498
Yuyao Jiang, Weiwen Deng, Sumin Zhang, Shanshan Wang, Qingrong Zhao, Bakhtiar Litkouhi
Abstract Steering torque feedback, or steering feel, is widely regarded as an important aspect of driver interface to road feel. To generate a steering feel with the appropriate level of fidelity required by a driver-vehicle system or a driving simulator, it is essential to gain a good understanding of various important influencing factors of steering torque feedback. This paper presents a comprehensive study and analysis of internal and external factors that strongly affect steering torque feedback. A steering torque feedback model with sufficient fidelity is established and verified as the base for this study. The individual- and collective-level influences of these factors on steering torque feedback are analyzed in both time domain and frequency domain, with guidelines provided on how to properly use these influencing factors to control their negative effects in modeling steering torque feedback.
2015-04-14
Journal Article
2015-01-1481
Myles Wilson, David Aylor, David Zuby, Joseph Nolan
Abstract The Insurance Institute for Highway Safety (IIHS) evaluates autonomous emergency braking (AEB) systems as part of its front crash prevention (FCP) ratings. To prepare the test vehicles' brakes, each vehicle must have 200 miles on the odometer and be subjected to the abbreviated brake burnish procedure of Federal Motor Vehicle Safety Standard (FMVSS) 126. Other organizations conducting AEB testing follow the more extensive burnishing procedure described in FMVSS 135; Light Vehicle Brake Systems. This study compares the effects on AEB performance of the two burnishing procedures using seven 2014 model year vehicles. Six of the vehicles achieved maximum AEB speed reductions after 60 or fewer FMVSS 135 stops. After braking performance stabilized, the Mercedes ML350, BMW 328i, and Volvo S80 showed increased speed reductions compared with stops using brand new brake components.
2015-04-14
Journal Article
2015-01-1225
Chen Lv, Junzhi Zhang, Yutong Li, Ye Yuan
Abstract Regenerative braking provided by an electric powertrain is far different from conventional friction braking with respect to the system dynamics. During regenerative decelerations, the nonlinear powertrain backlash would excite driveline oscillations, deteriorating vehicle drivability and blended brake performance. Therefore, backlash compensation is worthwhile researching for an advanced powertrain control of electrified vehicles during regenerative deceleration. In this study, a nonlinear powertrain of an electric passenger car equipped with a central motor is modeled using hybrid system approach. The effect of powertrain backlash gap on vehicle drivability during regenerative deceleration is analyzed. To further improve an electric vehicle's drivability and blended braking performance, an active control algorithm with a hierarchical architecture is studied for powertrain backlash compensation.
2015-04-14
Journal Article
2015-01-1680
David H. Myszka, Andrew Murray, Kevin Giaier, Vijay Krishna Jayaprakash, Christoph Gillum
Regenerative brake and launch assist (RBLA) systems are used to capture kinetic energy while a vehicle decelerates and subsequently use that stored energy to assist propulsion. Commercially available hybrid vehicles use generators, batteries and motors to electrically implement RBLA systems. Substantial increases in vehicle efficiency have been widely cited. This paper presents the development of a mechanical RBLA that stores energy in an elastic medium. An open differential is coupled with a variable transmission to store and release energy to an axle that principally rotates in a single direction. The concept applies regenerative braking technology to conventional automobiles equipped with only an internal combustion engine where the electrical systems of hybrid vehicles are not available. Governing performance equations are formulated and design parameters are selected based on an optimization of the vehicle operation over a simulated urban driving cycle.
2015-04-14
Technical Paper
2015-01-1203
Subhashree Rajagopal, Sebastien Desharnais, Balamurugan Rathinam, Upendra Naithani
Abstract Electromagnetic brakes are found in a variety of applications. They offer tremendous advantages including: absence of fading, high braking torque and controllability. However they suffer from decreasing torque at low and high speeds. In this study, a novel concept of permanent magnet eddy-current brake is proposed that maintains a flat braking torque profile over a broad speed range. The principle is analytically investigated and numerically validated through finite element simulations using MAXWELL. It is demonstrated that a usably flat braking torque profile can be achieved by altering the path of eddy-currents by magnetic field orientation, thereby affecting the apparent rotor resistance.
2015-04-14
Technical Paper
2015-01-0216
Ping-Min Hsu, Ming Hung Li, Kuo-Ching Chang
Abstract This paper discusses noise filtering in an autonomous emergency braking (AEB) system with a sensor fusion between a millimeter wave (MMW) radar and a camera. Three kinds of noise, namely twice harmonic noise, ground noise, and specular reflection noise, are then filtered. The former is caused by the reflection of a radar wave between a target object and the MMW radar; therefore, one of the sensing distances would be twice as longer as one of others. An object featuring this characteristic is treated as the noise and filtered. Next, detecting a ground metal as the target object generates the second noise with a focus of car-like objects. That is, an object-with the sensing distance from the MMW radar being smaller than that from the camera by a threshold value-is taken as the ground metal noise and ignored. Moreover, the third noise happens when there is a radar wave reflection between an object and its surroundings.
2015-04-14
Technical Paper
2015-01-1508
Lijiao Yu, Hongyu Zheng
Abstract As electric technique develops fast, steering system changes from conventional mechanic steering system to Hydraulic Power Steering (HPS). Flowing HPS, Electrically Controlled Steering (ECS) system, including Electric Power Steering (EPS) system, Active Front Steering (AFS) system and Steer-by-Wire (SBW) system. ECS makes it easy for a driver to control a steering wheel using a less torque at a low speed, which is usually called steering portability Besides, ECS could also help a driver steer a vehicle stably at a high speed, which is usually called steering stability ECS provides an optional method to solve the contradiction between steering portability and steering stability. [1] [2] The study of ECS involves mechanic design, detection of electric components, software design and so on. Researches of ECS need a lot of trials and errors. By now, the development of ECS mostly depends on experiments on Hardware-in-the- Loop (HIL) and real vehicles.
2015-04-14
Technical Paper
2015-01-1417
Jeffrey Muttart
Abstract Controlled studies identified several factors that influence drivers' swerving when responding to in an emergency situation. Specifically, driver age, time-to-contact, amplitude of the steering action (steer within lane or swerving into the next lane), distraction, fatigue, natural lighting and available buffer space were identified as factors that influence steering behaviors. The goal of the current research was to identify the extent to which each factor changed swerving performances of drivers who were faced with a crash or near crash. Results from crashes and near crashes were obtained from the InSight (SHRP-2) naturalistic driving study. The results from the controlled studies and the results from the naturalistic driving research were consistent in many ways. Drivers engaged in a visual-manual secondary task were much younger than were the drivers who had no distracting secondary task.
2015-04-14
Technical Paper
2015-01-0527
Pierre-Olivier Santacreu, Guillaume Badinier, Jean-Benoit Moreau, Jean-Marc Herbelin
Abstract A new Ni-free martensitic stainless steel (MSS) was developed for hot stamped automotive parts, especially in order to design lightweight chassis part. After hot stamping simulation, the material exhibited a 1.2 GPa ultimate tensile strength with a minimum of 10% total elongation, in the as-quenched condition (Q) without any tempering treatment (Q+T). Moreover the material's chemical composition was optimized to improve the ductility at low temperature and during high strain rate mechanical testing. As a result, no brittle fracture in impact testing at −40°C was observed, and a good behavior in crash was recorded. To further assess the material's performances, high cycle fatigue properties of the grade have been characterized including the effects of machining and surface treatments. Results show that the fatigue limits at 2 million cycles for a stress ratio of −1, for both bare and shot peened surface are quite high and in the range of 580 MPa to 640 MPa.
2015-04-14
Journal Article
2015-01-0691
Salah H. R. Ali, Sarwat Z. A. Zahwi, Hassan H. Dadoura
Abstract The main aim of this work is to develop an identification method to demonstrate the crucial surfaces of automotive braking system. Two brand new brake discs manufactured by two different manufacturers are tested. A typical disc to the one of them was put under working condition in actual braking system. Dimensional and geometrical deviations are investigated using advanced engineering metrological technique. Mechanical properties, tribological characteristics and chemical analyses are investigated. A coordinate measuring machine, universal hardness tester, mass comparator and XRF spectrometer are used in these diagnoses. Measurements of dimensional and geometrical deviations such as disc thickness variations, thickness deviations, straightness, parallelism, runout of disc surfaces are conducted. A comparison between form deviations in disc surfaces have been carried out and analyzed.
Viewing 181 to 210 of 10325

Filter