Display:

Results

Viewing 181 to 210 of 10963
2017-01-10
Technical Paper
2017-26-0299
Mahesh Kishore Patekar, Jeevan Patil, Sivakumar Palanivelu, Bhupendra Bhat
Abstract Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
2017-01-10
Technical Paper
2017-26-0292
Irshad Mahammad, Vinay Nagaraj, Saurabh Prabhakar
Abstract To replicate on-road brake test cycle of cooling or heating through Computational Fluid Dynamics (CFD) simulations, the vehicle model with brake assembly must be solved in transient mode. However, such simulations require significant computational time owning to the physics involved in computing the variation of temperature with time. A methodology developed using commercial CFD tools to predict the Heat Transfer Coefficient (h), Cooling Coefficient (b) and rotor temperatures is described in this paper. All the three modes of heat transfer: conduction, convection and radiation are considered in the current method. Heat transfer coefficients from the CFD simulations are exported to Computer Aided Engineering (CAE) tools to validate the Brake Rotor Thermal Coning caused by high thermal gradients in brake rotor.
2017-01-10
Technical Paper
2017-26-0293
Sachin lambate, Kedar Shrikant Joshi, Gautam Diwan, Pratap Daphal
Abstract Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
2017-01-10
Technical Paper
2017-26-0313
Manoj Kumar Rajendran, Srinivasa Chandra V, Manikandan Rajaraman, Dinesh Kumar Rajappan, Agathaman Selvaraj
Abstract In today competitive world, gaining customer delight is the most vital part of an automotive business. Customers’ expectations are high which need to be satisfied limitless, to stay in the business. The major expectation of a commercial vehicle customer is a vehicle without failures which involves lower spares cost and downtime. The significance of a suspension system in the new age automobiles is getting advanced. There have been many improvements in the suspension system especially in leaf springs to provide a better ride comfort, and one such modern era implementation is the Parabolic Spring which comprises of fewer leaves with varying thickness from the center to the ends without inter-leaf friction. Study reveals that parabolic spring exhibits better ride comfort, but less life compared to a conventional leaf spring which leads to the increase in downtime of the vehicle.
2017-01-10
Technical Paper
2017-26-0315
Jyoti Kale, Satish Kumar, Pravin Lavangare, Anand Subramaniam
Abstract The Steering system is one of the most safety critical systems in an automobile. With time the durability, reliability and the fine-tuning of the parameters involved in this subsystem have increased along with the competitiveness of the market. In a competitive market, accelerated testing is the key to shorter development cycles. It is observed that the majority of component manufacturers have a preference on vehicle level testing to achieve their development goals. The vehicle level trials are time consuming and lack the control and repeat-ability of a laboratory environment. This paper describes the development of a steering test rig designed to simulate the disturbances experienced on road within a controlled laboratory environment. The five axis steering rig would allow simulation of individual road wheel displacement along with steering wheel angle input and lateral steering rack displacements. The rig also is designed to be adaptable to a range of vehicle categories.
2017-01-10
Technical Paper
2017-26-0310
Vyankatesh Madane, Sameer Shivalkar, Chandrakant Patil, Sanjeev Annigeri
Abstract In rubber industry, different techniques are used to enhance durability. This paper gives complete design, development and testing methodology of rubber bush in which pre-compression of rubber is used to enhance rubber bush life. In bogie suspension, axle to torque rod join is critical as it has to transfer lateral and longitudinal load with flexibility. This makes challenging to design joint which need to carry more than 6 ton load and having flexibility of more than 10 degree articulation. In this torque rod to axle joint called as End bush, compressed rubber is used to carry high load with flexibility. Other possible material for bush can be brass bush which able to carry high load however not able to give high flexibility Design and finite element calculations are done to design pre-compression and rubber volume to get desired strength and stiffness to carry required load with flexibility.
2017-01-10
Technical Paper
2017-26-0339
Jagankumar Mari, Egalaivan Srinivasan
Abstract In heavy commercial vehicle segment in India, driver comfort and feel was largely ignored. Fierce competition in the recent years and buyer’s market trend is compelling the designers of heavy truck to focus more on the finer aspects of attribute refinements. Steering is one driver-Vehicle interface which the driver is engaged throughout. Comfort and feel in steering wheel is defined by parameters like steering effort, manoeuvrability, on-center feel & response, cornering feel & response, Torque dead band, return-ability etc. and is influenced by a long list of components and systems in the truck. This study focuses on the influences of jacking torque and steering system friction on the on-center driving performance. Experiments to measure the Jacking torque and steering system friction were conducted in the lab and subjective and objective assessments of on-center driving performance were later conducted at test track in two similar 12 Ton truck to correlate their effects.
2017-01-10
Technical Paper
2017-26-0312
Sagar Polisetti, Ganeshan Reddy
Abstract Twist beam is a type of suspension system that is based on an H or C shaped member typically used as a rear suspension system in small and medium sized cars. The front of the H member is connected to the body through rubber bushings and the rear portion carries the stub axle assembly. Suspension systems are usually subjected to multi-axial loads in service viz. vertical, longitudinal and lateral in the descending order of magnitude. Lab tests primarily include the roll durability of the twist beam wherein both the trailing arms are in out of phase and a lateral load test. Other tests involve testing the twist beam at the vehicle level either in multi-channel road simulators or driving the vehicle on the test tracks. This is highly time consuming and requires a full vehicle and longer product development time. Limited information is available in the fatigue life comparison of multi-axial loading vs pure roll or lateral load tests.
2017-01-10
Technical Paper
2017-26-0345
Bharat Kushwaha, Sanjay Chaudhuri, Sujatha Chandramohan
Abstract This paper investigates the yaw dynamic behaviour of a seven axle tractor semitrailer combination vehicle developed by VRDE (Vehicle Research & Development). The semitrailer has four steerable axles which follow command steering law i.e. all axles of semitrailer are steered in a particular relation with articulation of tractor. A 4 dof (degree of freedom) linear yaw plane model was developed for this combination vehicle. Yaw response characteristics such as lateral acceleration, yaw rate and articulation angle for step and sine steer is obtained from this model. Effects of speed on the above parameters are also studied to the same steering inputs. Lateral tyre forces due to semitrailer steering at various speeds are estimated to understand its distribution on each axle. Steady state yaw rate and articulation angle gain are obtained to predict the understeer / oversteer behaviour of combination vehicle.
2017-01-10
Technical Paper
2017-26-0344
Kartheek Nedunuri, Vivekanand Patnaik, Santosh Lalasure, K. Rajakumar, Rajiv Modi
Abstract A 4 wheeled vehicle with X-split brake configuration, in hydraulic circuit failed condition will have a behavior of induced sway due to braking force variation in the front and rear diagonally. With increasing vehicle speed, engine power & customer expectations, the situation becomes more critical and challenging in designing a brake system which caters in meeting the homologation requirement at an expense of vehicle sway within controllable limits of driver / customer. This paper proposes a novel approach & methodology to overcome the above situation by predicting the effect of brake force distribution variation on the vehicle swaying behavior during circuit failed braking condition. This study will quantify vehicle sway, caused due to imbalance in brake force distribution during a circuit failed braking event on X Split configuration vehicles.
2017-01-10
Technical Paper
2017-26-0342
Apoorva Radhakrishnan, Hem Rampal, Krishna Kumar Ramarathnam
Abstract Vehicle dynamic simulations demand tire models, which are computationally efficient and capable of reliably predicting the dynamics of the tire. Such simple steady state and transient reduced order models are also required by tire designers to make preliminary predictions concerning behavior and judge quantitatively the relative importance of each of the subcomponents. In the realm of three dimensional multi-body dynamics, most models used are semi-empirical, where the tire is characterized by a set of equations. While the highest hierarchy in the modeling regime is a full three dimensional finite element model, the ensuing deformable multi-body dynamics is not economical for simulation. In this paper we offer an exact methodology to extract tire physical properties in order to develop a reduced order model equivalent to a complete Finite Element tire.
2017-01-10
Technical Paper
2017-26-0341
Chaitanya Ashok Vichare, Sivakumar Palanivelu
Abstract The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
2017-01-10
Technical Paper
2017-26-0340
Sarang Bire, Prashant R Pawar, M Saraf
Abstract Air suspension systems had been introduced in automobiles since 1950s. These systems are being explored to improve the ride comfort, handling stability and also serve as a medium for better cargo protection. These system are well developed for buses and high end passenger sedans, also have feasibility for adapting for wide range of configurations of suspension system and axle. Passenger cars and Sports Utility Vehicle (SUV) pickup category of vehicle offers different challenges such as space availability, spring selection and characterization that need to be addressed for successful implementation of air suspension in these category vehicles. This work defines methodology to implement air suspension system in SUV Pickup category vehicle. Paper work includes concept study, mathematical co-relation, and prediction of air spring characteristics and integration of experimental and analytical tool for development of air suspension system.
2017-01-10
Technical Paper
2017-26-0363
Sathyadevi Jayaraman
Abstract The Insurance Institute for Highway Safety (IIHS) Small Overlap Frontal (SOF) impact assessment program is one of the latest challenges for the automotive development. The SOF load bypasses the primary crumple zone structure and concentrating the force in the front wheel, suspension and firewall - areas not traditionally designed to absorb and dissipate crash energy. Design changes of architectural components at later stages of product development is very difficult and expensive. This paper deals with the procedure to improve SOF performance through CAE as well as to develop the physical test cart to avoid the full vehicle SOF test. CAE procedure developed on chassis subsystem level to validate the SOF performance of front suspension. Using this procedure, design changes in the suspension components to improve the SOF performance can be done by keeping the suspension durability and other performance requirements as intact.
2017-01-10
Technical Paper
2017-26-0362
Arun Kumar Prasad, Babasaheb Shinde, V A Gopalakrishn
Abstract Hydraulic Load sensing brake valves are used in vehicles from a long time in the market. They proportionate the rear brake line pressure according to the rear axle load in order to avoid the rear wheel lock during braking. During the actual test of the Hydraulic load sensing valve on a subject vehicle, there was drop in performance against its expected peak brake performance. In the current work a detailed analysis is made to understand the sensitivity of the load sensing valve & its effect on the vehicle performance. The parameters affecting the valve sensitivity along with vehicle level factors affecting the performance are analysed during the work.
2017-01-10
Technical Paper
2017-26-0367
Prasad S. Warwandkar, Ashutosh Dubey, Sonu Paroche
Abstract Wheel end bearing is one of the critical components of the vehicle as it directly faces the road loads for harsh operating environment. Bearing being a precisely manufactured component and rotating at high speed, utmost care is required while assembling as well as during operation. In operating condition wheel end is directly exposed to outside environment making it prone to entry of contamination. This contamination if not prevented from entering into wheel end through proper sealing it would cause lubricant contamination and consequently bearing failure. Bearing replacement and overall wheel end service is time consuming activity reducing the turn out time of the vehicle. In wheel ends, one side is sealed with the help of seal while the other side is protected by cap and gasket. This cap-gasket interface is very critical from sealing perspective and utmost importance needs to be taken while designing the same.
2017-01-10
Technical Paper
2017-26-0369
R Muthuraj, Sundararajan Thiyagarajan, E Vignesh, C Kannan, Deepa Praphu
Abstract Overheating in commercial vehicles, even though if it’s in LCV segment, is a problem of high significance. There could be various level of problems that may arise due to heat generation resulting from braking (oversized brake drums left the wheels with lesser packaging clearances for air flow and cooling) and some of them are: 1. Early tire wear /reduction in tire life, 2. Air valve heat damage /air leak issues, 3. Frequent puncture problems, 4. Failure of other mating components and other heat initiated failures. However optimum the vent hole shape in a wheel may be, the air flow in the vicinity of drum periphery and wheel rim ID wouldn’t be sufficient enough because of the lesser clearance and packaging space as mentioned earlier. The basic construction of a wheel with disc welded to rim base ID was apparently modified to integrate the disc and gutter and weld it to rim OD.
2017-01-10
Technical Paper
2017-26-0194
Ramkumar Rajamanickam, Shriniwas Chivate, Gaurav Shinde, Nagesh Voderahobli Karanth, Shalil Akre, Kishor Desale
Abstract Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
2017-01-10
Technical Paper
2017-26-0217
Arvind Kumar Yadav, Mayur Birari, Vilas Bijwe, Dayanand Billade
Abstract Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
2017-01-10
Technical Paper
2017-26-0220
Ashutosh Dubey, Palish Raja, Nitin Chopra, Ashok Patidar, Manu Kaushik
Abstract With the increase in the sensitivity of power steering system in the competitive environment, it becomes essential to provide a trouble free steering system to the customer. Usually major concerns faced in the performance of steering system are related to noise like vane pump whining noise and steering gearbox erratic rubbing noise. Even though selected steering pump and reservoir are quite compatible to the steering gearbox. With the series of Computational Fluid Dynamics (CFD) simulations and field tests, it is found that the cavitation phenomena in steering oil routing lines is responsible for the steering turning noise. In this paper, a developed systematic approach for problem detection to implementation of design solution is discussed.
2017-01-10
Technical Paper
2017-26-0218
Chaitanya Chilbule, S B Phadke, R N Kulkarni, M P Raajha
Abstract As an automobile brake manufacturer, brake noise always been a prime concern as it define the degree of customer satisfaction and warranty claim. Brake squeal is a concern in the automotive industry that has challenged many researchers and engineers for years. In case of disc brake, brake-squeal (1 to 16 kHz) occurrence is predominant than the any other types of brake-noise (i.e. moan, grown, judder etc.), since squeal is a friction induced, self-excited, and self-sustained phenomenon from a nonlinear dynamics viewpoint. Due to the complexities involve squeal mechanism is not well understood yet, hence makes it one of the unresolved brake Noise, Vibration, and Harshness (NVH) problem till this date. Since squeal is a high-pitched and tonal noise, therefore it is very annoying and getting more attention by occupants. Brake squeal can occur at any temperature and with or without the presence of humid condition and therefore highly unpredictable.
2017-01-10
Technical Paper
2017-26-0246
Srinivas Kurna, Ruchik Tank
Abstract The job of a suspension system is to maximize the friction between the tires and the road surface, to provide steering stability with good handling and to act as a cushioning device to ensure the comfort of the driver and passengers. The suspension system also protects the vehicle and any cargo or luggage from damage and wear. Commonly the strength of these suspension systems is evaluated by endurance trials on field or Rig testing which are time consuming and costly. On the other hand, virtual testing methods for strength and stiffness evaluation provide useful information early in the design cycle and save significant time and cost. However, the virtual method also needs validation, which can be achieved by physical co-relations (via rig tests). A study has been done to predict the behavior of Leaf Spring Suspensions entirely through the FEA (Finite Element Analysis) route and correlating those results with physical test.
2017-01-10
Technical Paper
2017-26-0080
P. Ramani Ranjan Senapati, Soumyo Das, Prashantkumar B. Vora
Abstract The development of intelligent driver assistance mechanism ensures safety and comfort of passengers, the intelligent braking and maneuvering mechanism is proposed by transforming the anti-lock braking technology for a four wheeled vehicle. This paper presents an active safety mechanism which incorporates both steering and braking assistance system in a maneuvering vehicle. The algorithm of collision avoidance mechanism is featured and interfaced in an intelligent vehicle with short range radar to assist driving system of host vehicle based on predicted motion of sensed obstacles. The developed system will be activated for obstacles in front of the host vehicle within critical risk level. The intelligent braking mechanism plays a pivotal role at the time of emergency situation depending on the predicted collision time and relative velocity between host and target, it also provides assistance to avoid panic situation for driver.
2017-01-06
Article
Active flow control devices based on electric plasmas can smooth the turbulent wakes that sweep off the rear edges of truck trailers travelling at highway speeds.
CURRENT
2017-01-05
Standard
J1626/2_201701
This Recommended Practice provides a road test procedure for trucks and buses, to evaluate their compliance with Federal Motor Vehicle Safety Standard (FMVSS) 121; Air Brake Systems. Units of measure are English in lieu of metric to be consistent with FMVSS 121.
2016-12-17
WIP Standard
J2394
This SAE standard establishes the minimum construction and performance requirements for seven conductor 1/8 2/10 4/12 cable for use on trucks, trailers and converter dollies. Where appropriate, the standard refers to two types of cables, (Type F and S, described later in the standard), due to the variation in the performance demands of cables used in flexing and stationary applications. While the document’s title refers to ABS Power to differentiate the document from the SAE J1067 standard that it supersedes, the scope applies to both the primary green cable for powering ABS and lighting and the yellow auxiliary cable of the same construction.
CURRENT
2016-12-09
Standard
J1790_201612
The SAE Standard applies to self-propelled, driver-operated sweepers and scrubbers as defined in SAE J2130-1 and SAE J2130-2.
CURRENT
2016-11-21
Standard
J1102_201611
This SAE Standard covers the chemical, metallurgical, and mechanical requirements for two types of passenger car and truck wheel bolts, as follows: Nonserrated shank bolts which are heat treated Serrated shank bolts which are case hardened
CURRENT
2016-11-18
Standard
J1102M_201611
This SAE Standard covers the chemical, metallurgical, and mechanical requirements for two types of passenger car and truck wheel bolts, as follows: Nonserrated shank bolts which are heat treated Serrated shank bolts which are case hardened
CURRENT
2016-11-18
Standard
J2828_201611
This SAE Informational report applies to tires used on off-road, rubber-tired work machines as identified in SAE J1116. This SAE document provides general guidelines for proper handling of potential and actual off-road tire fires and possible related explosions.
Viewing 181 to 210 of 10963

Filter