Display:

Results

Viewing 151 to 180 of 10253
2015-04-14
Journal Article
2015-01-0642
Per Hyldahl, Sebastian Andersen, Sebastian Mikkelsen, Ole Balling
Abstract This study concerns the modeling of the stabilizer bar in a car suspension. This is a crucial and difficult task if its non-linear behavior should be captured correctly. In this study, the modeling of a stabilizer bar is done using beam finite elements based on the absolute nodal coordinate formulation (ANCF). An ANCF beam element is reviewed and its implementation in a multibody dynamics framework is explained. The specific element is chosen since it is assumed to be appropriate for modeling stabilizer bars. To test the feasibility of using the chosen ANCF beam element for modeling stabilizer bars, several numerical studies have been performed. These include eigenfrequency and static analyzes where results obtained using ANCF beam elements are compared with results obtained using other methods.
2015-04-14
Journal Article
2015-01-0643
Dzmitry Savitski, Kristian Hoepping, Valentin Ivanov, Klaus Augsburg
Abstract The presented study demonstrates results of experimental investigations of the anti-lock braking system (ABS) performance under variation of tire inflation pressure. This research is motivated by the fact that the changes in tire inflation pressure during the vehicle operation can distinctly affect peak value of friction coefficient, stiffness and other tire characteristics, which are influencing on the ABS performance. In particular, alteration of tire parameters can cause distortion of the ABS functions resulting in increase of the braking distance. The study is based on experimental tests performed for continuous ABS control algorithm, which was implemented to the full electric vehicle with four individual on-board electric motors. All straight-line braking tests are performed on the low-friction surface where wheels are more tended to lock.
2015-04-14
Journal Article
2015-01-0645
Jian Zhao, Jin Zhang, Bing Zhu
Abstract The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions. In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS).
2015-04-14
Journal Article
2015-01-0649
Liangyao Yu, Shuhao Huo, WenWei Xuan, Lei Zuo
Abstract Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
2015-04-14
Journal Article
2015-01-0651
Mustafa Ali Arat, Saied Taheri, Edward Holweg
The road profile has been shown to have significant effects on various vehicle conditions including ride, handling, fatigue or even energy efficiency; as a result it has become a variable of interest in the design and control of numerous vehicle parts. In this study, an integrated state estimation algorithm is proposed that can provide continuous information on road elevation and profile variations, primarily to be used in active suspension controls. A novel tire instrumentation technology (smart tire) is adopted together with a sensor couple of wheel attached accelerometer and suspension deflection sensor as observer inputs. The algorithm utilizes an adaptive Kalman filter (AKF) structure that provides the sprung and unsprung mass displacements to a sliding-mode differentiator, which then yields to the estimation of road elevations and the corresponding road profile along with the quarter car states.
2015-04-14
Journal Article
2015-01-0655
Francesco Calabrese, Manfred Baecker, Carlos Galbally, Axel Gallrein
Abstract Currently used tire models have shown a certain lack of accuracy in some advanced handling applications. This lack of accuracy is believed to be partly due to thermal effects. In reality, the tire rubber temperature is not constant during the normal operating conditions and it's really well known that the tire friction coefficient strongly depends on the temperature level. The temperature generation, propagation and evolution are the result of a dynamic energy equilibrium between phenomena of different natures. Various mechanisms create a non-uniform temperature distribution in various parts of the tire structure: heat is generated in zones with large cyclic deformations due to the energy dissipated from the rubber strains and in the sliding part of the contact patch due to friction. The rubber cools down because the heat energy transferred to the air (internally and externally) and to the asphalt in the stick zone of the contact patch.
2015-04-14
Journal Article
2015-01-0656
Amir Soltani, Francis Assadian
Abstract A new control strategy for wheel slip control, considering the complete dynamics of the electro-hydraulic brake (EHB) system, is developed and experimentally validated in Cranfield University's HiL system. The control system is based on closed loop shaping Youla-parameterization method. The plant model is linearized about the nominal operating point, a Youla parameter is defined for all stabilizing feedback controller and control performance is achieved by employing closed loop shaping technique. The stability and performance of the controller are investigated in frequency and time domain, and verified by experiments using real EHB smart actuator fitted into the HiL system with driver in the loop.
2015-04-14
Journal Article
2015-01-0665
Yongchang Du, Yujian Wang, Pu Gao, Yingping Lv
Abstract Modelling of disc in brake squeal analysis is complicated because of the rotation of disc and the sliding contact between disc and pads. Many analytical or analytical numerical combined modeling methods have been developed considering the disc brake vibration and squeal as a moving load problem. Yet in the most common used complex eigenvalue analysis method, the moving load nature normally has been ignored. In this paper, a new modelling method for rotating disc from the point of view of modal is presented. First finite element model of stationary disc is built and modal parameters are calculated. Then the dynamic response of rotating disc which is excited and observed at spatial fixed positions is studied. The frequency response function is derived through space and time transformations. The equivalent modal parameter is extracted and expressed as the function of rotation speed and original stationary status modal parameters.
2015-04-14
Journal Article
2015-01-0667
Kei Ichikawa
Abstract Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
2015-04-14
Journal Article
2015-01-0668
Yongchang Du, Pu Gao, Yujian Wang, Yingping Lv
Abstract The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
2015-04-14
Journal Article
2015-01-1309
Hyunggyung Kim
Abstract This Study describes about the development of new concept' rear wheel guards for the reduction of Road Noise in the passenger vehicles. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance and vehicle tests. Through new developing process without vehicle test, Result of road noise will be expected if this concepts and materials of wheel guard are applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0dB. The proposed method of part reverberant absorption is similar to results of vehicle tests by part absorption index. Furthermore, optimization of frequency band in wheel guards will reduce more 0.5 dB noises.
2015-04-14
Journal Article
2015-01-1314
Max Sardou, Patricia Djomseu
Abstract SARDOU SAS has developed highly stressed composites parts for 35 years. SARDOU SAS and QUALITY INDUSTRIAL PRODUCT invented composite coils springs in 2002. Developing composite coils springs, we have faced a big challenge, how to increase the short life expectancy of this highly stressed structure? We have identified that the weak point, in composite coils springs, is its epoxy matrix. In fact, during heavy loading, the matrix undergoes micro cracks. Then, during fatigue, micro cracks propagate and merge, transforming the matrix into a fine powder. The composite coil suspension springs, using, classic epoxy, where ruined after only 100,000 cycles in the best cases. The fact to integrate “functionalized silica aggregates”, in the matrix, enable the springs to exceed 1,000,000 cycles, with the same spring design. In addition, the spring stiffness has increased by 6% and the thermal set has reduced by 1.6%.
2015-04-14
Journal Article
2015-01-1505
Ibrahim A. Badiru
Abstract Vehicle steering wheel pull is a condition experienced by customers where a constant torque at the steering wheel is required to maintain a straight path. Steering wheel pull may be accompanied by the secondary effects of steering wheel angle misalignment and vehicle thrust angle “dog-tracking.” EPS pull compensation is a feature that can automatically compensate vehicle steering wheel pull. This paper examines customer benefits, operating principles, effectiveness, and robustness of EPS pull compensation in vehicles. Vehicle road test data indicate EPS can correct a severe vehicle steering wheel pull. Using fundamental physics equations, an analysis tool is derived to support further investigation of steering wheel angle misalignment and vehicle thrust angle. The final section presents a designed experiment revealing parameters most influencing vehicle robustness to chassis and road characteristics.
2015-04-14
Journal Article
2015-01-1506
Bastian Scheurich, Tilo Koch, Michael Frey, Frank Gauterin
Abstract Today, body vibration energy of passenger cars gets dissipated by linear working shock absorbers. A new approach substitutes the damper of a passenger car by a cardanic gimbaled flywheel mass. The constructive design leads to a rotary damper in which the vertical movement of the wheel carrier leads to revolution of the rotational axis of the flywheel. In this arrangement, the occurring precession moments are used to control damping moments and to store vibrational energy. Different damper characteristics are achieved by different induced precession. From almost zero torque output to high torque output, this damper has a huge spread. Next to the basic principal, in this paper an integration in the chassis, including a constructive proposal is shown. A conflict with high torque and high angular velocity leads to a special design. Moreover concepts to deal with all vehicle situations like yawing, rolling and pitching are shown.
2015-04-14
Journal Article
2015-01-1507
Kentaro Komori, Takahito Nagataki
Abstract Research to respond to demands for improving usability of passenger vehicles has played important roles. Some aspects can be attributed to friction behavior of the steering and suspension components. In this study, we focus on an approach to improve handling, steering feel and ride-comfort of a vehicle by applying the appropriate friction behavior to tie-rod end ball joint. To control not only friction coefficient but also static-kinetic transient behavior, we investigate the potential use of diamond-like carbon (DLC) coatings. Different DLC coatings varied widely in hydrogen content, mechanical properties and micro-surface roughness are applied to the ball studs. Friction behavior corresponds to material characteristics and surface roughness of DLC.
2015-04-14
Journal Article
2015-01-1511
Srikanth Sivaramakrishnan, Kanwar Bharat Singh, Peter Lee
Abstract Anti-lock Braking System (ABS) is a critical safety component and its performance is crucial for every vehicle manufacturer. The tire plays an important role during an ABS braking maneuver as it is the component that connects the vehicle to the ground and is responsible for generating braking force. The steady-state and transient properties of the tire affect the operation of the vehicle's ABS system and consequently affects its performance/ operational efficiency. The main objective of this study is to investigate how tire design changes influence its interaction with the ABS and its eventual effect on stopping distance. This was conducted through an experimental study where tires were built with three levels of variation in carcass stiffness, tread stiffness and tread compound. Following this, ABS braking maneuvers were performed on two instrumented vehicles including a mid-tier sedan and a high-performance sports car.
2015-04-14
Journal Article
2015-01-1517
David Stalnaker, Ke-Jun Xie, Terence Wei
Abstract Tire manufacturers need to perform various types of testing to determine tire performance under representative vehicle load conditions. However, test results are influenced by a number of external variables other than tire construction. Vehicle load distribution and suspension properties are some of those external variables which can have a significant effect on tire wear rate and durability. Therefore, in order to measure real world tire performance in a controlled and repeatable manner, a representative vehicle and associated tire load conditions are needed. Laboratory or indoor tire testing offers many advantages over vehicle fleet testing. It provides a well-defined test environment and repeatable results without influence from external factors. Indoor testing has been largely developed around the process of simulating tire wear performance on a specific reference vehicle, including its specific weight distribution, suspension characteristics, and alignment.
2015-04-14
Journal Article
2015-01-1520
Massimiliano Gobbi, Giampiero Mastinu, Federico Ballo, Giorgio Previati
Abstract A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
2015-04-14
Journal Article
2015-01-1521
Kanwar Bharat Singh, Srikanth Sivaramakrishnan
Abstract Tread depth, inflation pressure, tire temperature, and road surface condition are among the most notable factors that have a noticeable effect on the tire force and moment characteristics. They can vary significantly during the operation of a tire and can effectively modify tire (and thus vehicle) performance. This study presents details of an adaptive magic formula (MF) tire model capable of coping with changes to the tire operating condition. More specifically, extensions have been made to the magic formula expressions for tire cornering stiffness and peak grip level, to account for variations in the tire inflation pressure, load, tread-depth and temperature. As a next step, the benefits of using an adaptive tire model for vehicle control system applications is demonstrated through simulation studies for enhanced vehicle control systems using an adaptive tire model in comparison to traditional control systems based on a non-adaptive tire model with fixed model parameters.
2015-04-14
Journal Article
2015-01-1523
Takahiro Uesaka, Tatsuya Suma
Abstract Development of simulation technology for road noise while a vehicle is in operation has become an important issue. Because a fixed technological architecture has been established for simulation of the body and the suspension, the issue in realizing road noise simulation is how to accurately identify the force transmitted to the suspension through the tires and wheels by vibration input due to contact between the road surface and the tires. The issue here is that there are significant variations between static state characteristics, which are easy to measure, and vibration characteristics of tires in motion, which are challenging to measure. A variety of expertise regarding the sources of this discrepancy has been published. Among these, the effects of Coriolis and centrifugal forces resulting from the rolling motion are known.
2015-04-14
Journal Article
2015-01-1554
Bastian Schnepf, Thomas Schütz, Thomas Indinger
Abstract Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
2015-04-14
Journal Article
2015-01-1556
Mark E. Gleason, Bradley Duncan, Joel Walter, Arturo Guzman, Young-Chang Cho
Abstract One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
2015-04-14
Technical Paper
2015-01-1414
Jitendra Shah, Mohamed Benmimoun
Abstract The focus of this paper is the threat assessment of perceived threat by drivers in collision avoidance situations. The understanding of the decision making process with regards to the initiation of a driver intervention is a crucial step to gain insight into driver's steering and braking behavior in case of an imminent threat (rear-end collision). Hence a study with various test subjects and a test vehicle has been conducted. The study has helped to understand how drivers behave in potential rear-end collision situations arising from the traffic situation (e.g. start of a traffic jam). This information is of major importance for designing autonomous collision avoidance systems and an important step towards autonomous driving. Autonomous driving in vehicles require system interventions to be initiated as early and safely as possible in order to avoid the collision and to avoid unstable vehicle dynamics situations.
2015-04-14
Technical Paper
2015-01-1598
Milad Jalaliyazdi, Amir Khajepour, Shih-Ken Chen, Bakhtiar Litkouhi
Abstract In this paper, the problem of stability control of an electric vehicle is addressed. To this aim, it is required that the vehicle follows a desired yaw rate at all driving/road conditions. The desired yaw rate is calculated based on steering angle, vehicle speed, vehicle geometric properties as well as road conditions. The vehicle response is modified by torque vectoring on front and/or rear axles. This control problem is subject to several constraints. The electric motors can only deliver a certain amount of torque at a given rotational speed. In addition, the tire capacity also plays an important role. It limits the amount of torque they can transfer without causing wheel to slip excessively.
2015-04-14
Journal Article
2015-01-1584
Daniel E. Williams
Abstract The classic two-degree-of-freedom yaw-plane or “bicycle” vehicle model is augmented with two additional states to describe lane-keeping behavior, and further augmented with an additional control input to steer the rear axle. A simple driver model is hypothesized where the driver closes a loop on a projected lateral lane position. A rear axle steer control law is found to be a function of front axle steering input and vehicle speed that exhibits high speed stability and improved low speed maneuverability. The theoretically derived control law bears similarity to practical embodiments allowing a deeper understanding of the functional value of steering a rear axle.
2015-04-14
Technical Paper
2015-01-1500
Marcus Ljungberg, Mikael Nybacka, Gaspar Gil Gómez, Diomidis Katzourakis
Abstract The automotive industry strives to develop high quality vehicles in a short period of time that satisfy the consumer needs and stand out in the competition. Full exploitation of simulation and Computer-Aided Engineering (CAE) tools can enable quick evaluation of different vehicle concepts and setups without the need of building physical prototypes. Addressing the aforementioned statements this paper presents a method for optimising the Electric Power-Assisted Steering (EPAS) ECU parameters employing solely CAE. The objective of the optimisation is to achieve a desired steering response. The developed process is tested on three specific steering metrics (friction feel, torque build-up and torque deadband) for two function parameters (basic steering torque and active return) of the EPAS. The optimisation method enabled all metrics to fall successfully within the target range.
2015-04-14
Journal Article
2015-01-1567
Scott Bradley Zagorski, Tomoya Ushimura, James Post
Abstract In this research, a three degree-of-freedom (DOF) rack-type electric-based power steering (EPS) model is developed. The model is coupled with a three DOF vehicle model and includes EPS maps as well as non-linear attributes such as vibration and friction characteristics of the steering system. The model is simulated using Matlab's Simulink. The vibration levels are quantified using on-vehicle straight-line test data where strain-gauge transducers are placed in the tie-rod ends. Full vehicle kinematic and compliance tests are used to verify the total steering system stiffness levels. Frequency response tests are used to adjust tire cornering stiffness levels as well as the tire dynamic characteristics such that vehicle static gain and yaw natural frequency are achieved. On-center discrete sinusoidal on-vehicle tests are used to further validate the model.
2015-04-14
Journal Article
2015-01-1088
Tomohiko Usui, Tomoya Okaji, Tatsuya Muramatsu, Yoshiyuki Yamashita
Abstract By optimizing parameters related to damping performance and adopting a layout that incorporates the turbine into the damper components, a “Turbine Twin-Damper” lock-up damper was developed that achieves both damping performance and compactness. To reduce losses in the fluid flow channel, a smaller torus was developed that reduce the width of the torus by about 30%.Through the combination of this Turbine Twin-Damper and smaller torus, attenuation of the torque fluctuation transmitted to the transmission to 1/2 or less compared to a conventional product was achieved without increasing the overall width of the torque converter. As a result, the engine speed at cruise fell by 400rpm, and fuel economy improved.
2015-04-14
Journal Article
2015-01-0691
Salah H. R. Ali, Sarwat Z. A. Zahwi, Hassan H. Dadoura
Abstract The main aim of this work is to develop an identification method to demonstrate the crucial surfaces of automotive braking system. Two brand new brake discs manufactured by two different manufacturers are tested. A typical disc to the one of them was put under working condition in actual braking system. Dimensional and geometrical deviations are investigated using advanced engineering metrological technique. Mechanical properties, tribological characteristics and chemical analyses are investigated. A coordinate measuring machine, universal hardness tester, mass comparator and XRF spectrometer are used in these diagnoses. Measurements of dimensional and geometrical deviations such as disc thickness variations, thickness deviations, straightness, parallelism, runout of disc surfaces are conducted. A comparison between form deviations in disc surfaces have been carried out and analyzed.
2015-04-13
Article
The basic concept of the tire hasn’t changed since stone rollers used to help build the pyramids--it’s the way we make them and the design that has changed, says Ydo Doornbos of Trelleborg Wheel Systems Americas.
Viewing 151 to 180 of 10253

Filter