Criteria

Display:

Results

Viewing 151 to 180 of 9918
Technical Paper
2014-04-01
Mario Milanese, Ilario Gerlero, Carlo Novara
Abstract The vehicle sideslip angle is one of the most important variables for evaluating vehicle dynamics. The potential value of such a variable for obtaining significant improvements over current stability control systems is widely recognized. However, its direct measurement requires the use of complex and expensive devices which cannot be used in production cars. Large research efforts has been devoted to the problem of estimating the sideslip angle from other variables currently measured by standard Electronic Stability Control (ESC) sensors. However, at the best of author's knowledge, until now no application to production cars is known. In this paper, a new sideslip angle estimation technology is presented. Based on the innovative DVS methodology recently developed by the authors, a software algorithm, indicated as DVS/SA (Direct Virtual Sensor of Sideslip Angle), is designed, which estimates the sideslip angle from measurements of the yaw rate, lateral and longitudinal acceleration, wheel speed, steering angle, available from ESC sensors of most present production cars.
Technical Paper
2014-04-01
Ken Archibald, William Schnaidt, Rick Wallace, Kyle Archibald
Abstract SAE J2562 defines the background, apparatus and the directions for modifying the Scaled Base Load Sequence for a given a wheel rated load for a wheel design. This practice has been conducted on multiple wheel designs and over one hundred wheel specimens. All of the wheels were tested to fracture. Concurrently, some of the wheel designs were found to be unserviceable in prior or subsequent proving grounds on-vehicle testing. The remainder of the wheel designs have sufficient fatigue strength to sustain the intended service for the life of the vehicle. This is termed serviceable. Using the empirical data with industry accepted statistics a minimum requirement can be projected, below which a wheel design will likely have samples unserviceable in its intended service. The projections of serviceability result in a recommendation of a minimum cycle requirement for SAE J2562 Ballasted Passenger Vehicle Load Sequence.
Technical Paper
2014-04-01
Christian Angrick, Sebastiaan van Putten, Günther Prokop
In investigation and development of road tires within passenger car development, temperature dependency of tire characteristics is often neglected. This research however explicitly focuses on investigation and identification of temperature dependency of tire characteristics and its interaction with other inner tire states. To this extent, a novel method using a thermographic camera for measurement of both tire core and surface temperature is used. On the basis of these measurements, the dependency of cornering stiffness, relaxation length and lateral coefficient of friction on either core or surface temperature is presented. Moreover, the effect of tire core temperature on inner pressure is investigated. By choice of appropriate operating conditions, the effects of temperature and inner pressure on tire characteristics is investigated separately. A mechanical-analytical analysis forms the basis for derivation of the relationship between material attributes and tire characteristics. Material measurements of a sample taken from the tire under investigation are performed utilizing a hydropulser test rig.
Technical Paper
2014-04-01
Jongchol Han, Zong Changfu, Zhao Weiqiang
Abstract This article focuses on the research of control algorithm and control logic for the pneumatic EBS (Electronic Braking System) of commercial vehicle. An overall technical program was proposed which develops conventional braking and emergency braking for commercial vehicle EBS. According to the overall scheme, the methods of vehicle state estimation and driver's braking intention were determined, modeling and simulation for key components of commercial vehicle EBS were then carried out. This lead to the development of deceleration control, braking force distribution, brake assist and ABS control. Simulation models for key components of EBS and control strategy were validated through hardware-in-the-loop simulation tests. Simulation results show that the control strategy improves vehicle braking stability and vehicle active safety.
Technical Paper
2014-04-01
Ben Wen, Gregory Rogerson, Alan Hartke
Abstract Tire rolling resistance is one of tire performance indicator that represents a force needed to maintain the constant rolling of a tire. There are quite few methods and standards to measure tire rolling resistance, such as ISO-28585, ISO-18164, SAE-J1269, SAE-J2452, …. These tests have been used by tire companies, vehicle manufactures, and government agencies to evaluate tire rolling resistance performance. SAE-J1269 and SAE-J2452 are two popularly used multi-condition rolling resistance tests for passenger and light truck tires. Examining the test conditions and procedures of these two test standards showed that some key procedures and conditions from both standards are similar although there are many difference as well. The study presented here is to analyze test results from both tests and their correlation under certain conditions. If the correlation exists, one test may provide test results for both test conditions, therefore, test efficiency can be improved.
Technical Paper
2014-04-01
Hiroki Taniguchi, Takeshi Kimura, Yuya Takeda, Taku Suzuki, Akihiro Kaneko, Tomohiro Jinbo
Abstract This paper describes a control method to improve straight-line stability without sacrificing natural steering feel, utilizing a newly developed steering system controlling the steering force and the wheel angle independently. It cancels drifting by a road cant and suppresses the yaw angle induced by road surface irregularities or a side wind. Therefore drivers can keep the car straight with such a little steering input adjustment, thus reducing the driver's workload greatly. In this control method, a camera mounted behind the windshield recognizes the forward lane and calculate the discrepancy between the vehicle direction and the driving lane. This method has been applied to the test car, and the reduction of the driver's workload was confirmed. This paper presents an outline of the method and describes its advantages.
Technical Paper
2014-04-01
Ralph S. Shoberg, Jeff Drumheller
Abstract Reliable wheel attachment must start with proper tightening of the lug nuts in order to achieve the clamping force necessary to hold the vehicle's wheels securely for all operating conditions. It is the purpose of this paper to provide a complete overview of the theory and practice of using torque-angle signature analysis methods to examine the installation and audits of wheel lug nuts. An accurate estimate of clamp load can be determined without actually measuring the clamp load. The torque-angle signature analysis, known as “M-Alpha”, performed on tightening and loosening curves provides a powerful tool to understand the integrity of a bolted joint when clamp load data is not available. This analysis technique gives insight into the frictional effects, material properties, and geometric factors that can affect the clamp load attained during the installation process.
Technical Paper
2014-04-01
Andrew Nevin, Eric Daoud
Abstract Traditional tread depth measurements require manual utilization of a mechanical device to acquire measurements at each location of interest on a tire. Drive-over machine-vision sensors are becoming available as a means for measuring tread depth. These sensors typically consist of a laser and a camera contained in an environmentally-sealed sensor housing. Tires approach the sensor over the supporting surface, while a laser projects an illuminating line across the tread surface for capture in a digital image. This scan is evaluated to provide a single 2D contour of tread depth at the illuminated line. Advanced machine-vision sensors acquire a sequence of images, which results in a multitude of data points over a 3D region of the tread surface. Post-processing of the acquired images illustrates the observed tread pattern and establishes multiple tread depth measurements. Measurements determined by the advanced sensors from hundreds of tires were compared to manual measurements acquired with analog and digital mechanical gauges.
Technical Paper
2014-04-01
Akihito Yamamoto, Haruhiko Sugai, Ryo Kanda, Shuuichi Buma
Abstract This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Technical Paper
2014-04-01
Sangzhi Zhu, Haiping Du, Nong Zhang, Lifu Wang
In this paper, a more sophisticated mathematical linear model for a roll-plane active hydraulically interconnected suspension (HIS) system was developed. Model parameters tuning were then carried out, which resulted in a model that is capable of producing rather accurate estimation of the system, with significant improvements over models built previously. For the verification of the new model, two simulations and corresponding experiments are conducted. Data comparisons between the simulations and experiments show high consistent responses of the model and the real system, which validated the robustness and accuracy of the new mathematical model. In this process, the characteristics of the pressure response and the rise time inside the actuators have been revealed due to the presence of the flow.
Technical Paper
2014-04-01
Yutaka Horiuchi, Takashi Yanagi
Honda has developed an “Independent Left and Right Rear Toe Control System” that can achieve stable cornering performance and agile handling. We believe the issue that should be resolved in the next generation of ESC is the expansion of stability and agility into the general operation area. We examined how to accomplish this aim, and control of the independent rear toe angle was decided to be an appropriate method. In addition, a method for mounting the system without using a dedicated suspension was proposed. If left and right toe angles can be controlled independently, toe angle control and normal 4WS control become possible at the same time. In this paper, we will discuss the fundamental principle of independent toe angle control and the system configuration. Also, “INOMAMA Handling” (at driver's will) achieved by this system, as well as the fun and safe driving that are achieved as a result will be shown.
Technical Paper
2014-04-01
Yosuke Tanaka, Yasuo Shimizu
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail. After that, an example of design guideline of the worm gear profile based on MUB theory is explained.
Technical Paper
2014-04-01
Prashanth KR. Vaddi, Sandeep Vinjamuri, Kumar Cheruvu
Abstract Advanced research in ABS (Anti-lock Braking System), traction control, electronic LSD's (Limited Slip Differential) and electrical powertrains have led to an architecture development which can be used to provide a controlled yaw moment to stabilize a vehicle. A steer assistance mechanism that uses the same architecture and aims at improving the vehicle response to the driver steering inputs is proposed. In this paper a feed-forward approach where the steering wheel angle is used as the main input is developed. An optimal control system is designed to improve vehicle response to steering input while minimizing the H2 performance of the body slip angle. The control strategy developed was simulated on a 14 DOF full vehicle model to analyze the response and handling performance.
Technical Paper
2014-04-01
Haohua Hong, Lifu Wang, Minyi Zheng, Nong Zhang
This paper employs the motion-mode energy method (MEM) to investigate the effects of a roll-plane hydraulically interconnected suspension (HIS) system on vehicle body-wheel motion-mode energy distribution. A roll-plane HIS system can directly provide stiffness and damping to vehicle roll motion-mode, in addition to spring and shock absorbers in each wheel station. A four degree-of-freedom (DOF) roll-plane half-car model is employed for this study, which contains four body-wheel motion-modes, including body bounce mode, body roll mode, wheel bounce mode and wheel roll mode. For a half-car model, its dynamic energy contained in the relative motions between its body and wheels is a sum of the energy of these four motion-modes. Numerical examples and full-car experiments are used to illustrate the concept of the effects of HIS on motion-mode energy distribution. The obtained simulation results show that the installed HIS system is able to reduce the energy level in the body-dominated roll motion-mode, and it has negligible effect in the bounce mode.
Technical Paper
2014-04-01
Anthony Barkman, Kelvin Tan, Arin McIntosh, Peter Hylton, Wendy Otoupal-Hylton
This paper discusses a project intended as a design study for a team of college students preparing for careers in motorsports. The project's objective was to conduct a design study on the possible redesign of the suspension for a dirt-track sprint car. The car examined was typical of those which race on one-quarter to one-half mile dirt oval tracks across the United States. The mission of this concept study was to develop a different configuration from the traditional torsion bar spring system, for the front end. The design included moving the dampers inboard with the addition of a rocker to relate the movement through the front suspension system. For the rear end, components were designed to allow the radius rod to be adjustable from the cockpit, thus providing the driver with adjustability to changing track conditions. The project goal was to design functional front end and rear end changes that could provide a positive impact on handling as well as keeping the system easy to replace in a short period of time.
Technical Paper
2014-04-01
Yugong Luo, Kun Cao, Yifan Dai, Wenbo Chu, Keqiang Li
The current global chassis control (GCC) frequently makes use of decoupled control methods which depend on driving condition partition and simple rule-based vertical force distribution, and are insufficient to obtain optimal vehicle dynamics performance. Therefore, a novel hierarchical global chassis control system for a distributed electric vehicle (DEV), which is equipped with four wheel driving/steering and active suspension systems, is developed in this paper. The control system consists of three layers: in the upper layer, the desired forces/moments based on vehicular driving demands are determined; in the middle layer, a coordinated control method of longitudinal/lateral/vertical tire forces are proposed; in the lower layer, the driving/steering/suspension control is conducted to realize each distributed tire force. As the most outstanding contribution of this paper, a non-convex optimization problem with multiple constraints for coordinated control of longitudinal/lateral/vertical tire forces is solved, in which (1) tire force distribution problem is theoretically concluded as a constrained non-convex optimization problem, (2) a unique objective function that combines the tire workload and the dynamic ratio of the vertical forces is designed to evaluate tire force distribution, (3) 14 constraints including vehicular driving demands, tire friction limitations and actuator natures are involved to bound each tire force reasonably, and (4) an algorithm that combines constrained optimization and feasible region planning is proposed to solve the constrained non-convex optimization problem.
Technical Paper
2014-04-01
Xiaomin Lin, Nenggen Ding, Guoyan Xu, Feng Gao
Abstract Most tractor-semitrailers are fitted with multi-axle trailers which cannot be actively steered, and such vehicles with an articulated configuration are inclined to exhibit instability such as trailer swing, jack-knifing, and rollover at high speed. Proposed in this paper is an optimal control of the yaw stability of tractor-semitrailers at high speed by applying an active trailer's steering angle. An optimal control algorithm is designed by employing a 3-DOF vehicle model in the yaw plane. The optimal linear quadratic regulator (LQR) approach is used with a cost function including sideslip angles, yaw rates of both tractor and trailer, and trailer's steering angle. The yaw stability at the high speed is also quantified by the dynamic performance measurements of lateral path deviation, hitch angle and rearward amplification (RA). The algorithm is evaluated by co-simulations using TruckSim and Matlab/Simulink softwares. Simulation results under double lane change maneuvers show that trailer swing and jack-knifing are suppressed with a small path-tracking error and it is concluded that the optimal control of semi-trailer steering can improve the yaw stability at high speed.
Technical Paper
2014-04-01
Andrew Pennycott, Leonardo De Novellis, Aldo Sorniotti, Patrick Gruber
The combination of continuously-acting high level controllers and control allocation techniques allows various driving modes to be made available to the driver. The driving modes modify the fundamental vehicle performance characteristics including the understeer characteristic and also enable varying emphasis to be placed on aspects such as tire slip and energy efficiency. In this study, control and wheel torque allocation techniques are used to produce three driving modes. Using simulation of an empirically validated model that incorporates the dynamics of the electric powertrains, the vehicle performance, longitudinal slip and power utilization during straight-ahead driving and cornering maneuvers under the different driving modes are compared. The three driving modes enable significant changes to the vehicle behavior to be induced, allowing the responsiveness of the car to the steering wheel inputs and the lateral acceleration limits to be varied according to the selected driving mode.
Technical Paper
2014-04-01
Masashi Tsushima, Eiichi Kitahara, Taichi Shiiba, Takumi Motosugi
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation. A multibody kinematics model of strut suspension was developed for the tie rod axial force calculation.
Technical Paper
2014-04-01
Shinhoon Kim, John McPhee, Nasser Lashgarian Azad
Abstract A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim. The vehicle is driven by constant rotational input which is applied to the rear wheel.
Technical Paper
2014-04-01
Jianmin Dang, Hui Chen, Bolin Gao, Qi Li, Minhao Li, Takeshi Watanabe, Ryouhei Hayama, Liming Lou, Shirou Nakano
To overcome the shortcomings of subjective evaluation, there have been several studies to examine the correlations between subjective and objective evaluations of on-center steering feel, and some useful results are obtained. However, it is still not clear how to design the steering characteristic based on the correlations. In this paper, we propose a methodology of identifying the optimal on-center steering force characteristic based on the correlations between subjective and objective evaluations. Firstly, significant correlations between subjective and objective evaluations regarding on-center steering feel are established and verified. These verified correlations are then used to design the steering force characteristic. With desired ratings of the subjective evaluation items set as optimization goals, the ideal values of objective evaluation indices are obtained by use of an optimal design method. At last, the optimal steering force characteristic is designed based on the ideal objective indices.
Technical Paper
2014-04-01
Ibrahim A. Badiru
Abstract The automotive industry commonly uses two definitions of the suspension roll center, the Kinematic Roll Center (KRC) - of interest in studying suspension geometry, and the Force-based Roll Center (FRC) - of interest in studying steady-state vehicle dynamics. This paper introduces a third definition, the Dynamic Roll Axis (DRA) - of interest in studying transient vehicle dynamics. The location of each one of these roll centers has a unique application to vehicle design and development. Although the physical meaning of each roll center is significantly different, the generic term “roll center” is often used without proper specification. This can lead to confusion about how roll centers influence vehicle behavior. This paper hopes to clarify some of this confusion and is organized into three parts: (1) Describes calculation methods for each of the three vehicle roll centers (for independent suspensions) as well as their relevance to vehicle dynamics; (2) Explains the relationship between the kinematic and force-based roll centers; (3) Offers recommendations on considerations for choosing roll center(s) location during vehicle design.
Technical Paper
2014-04-01
Shreesha Y. Rao, JongYun Jeong, Ryan M. Ashby, Gary J. Heydinger, Dennis A. Guenther
Abstract A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research. The RSC system was developed after a careful study of the field test data obtained from the vehicle manufacturer in which the ESC was activated.
Technical Paper
2014-04-01
Donald F. Tandy, Steven Beane, Robert Pascarella
Abstract There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few. Like in the development of passive suspensions and steering systems, a development engineer must take into account the mission of a vehicle.
Technical Paper
2014-04-01
Scott Varnhagen, Donald Margolis
The use of electric motors to independently control the torque of two or four wheels of a vehicle has the potential to significantly improve safety and handling. One virtue of electric motors is that their output torque can be accurately estimated. Using this known output torque, longitudinal tire force and coefficient of friction can be estimated via a controller output observer. This observer works by constructing a model of wheel dynamics, with longitudinal tire force as an unknown input quantity. A known wheel torque is input to the physical and modeled system and the resulting measured and predicted wheel speeds are compared. The error between the measured and predicted wheel speed is driven towards zero by a robust feedback controller. This controller modulates an estimate of longitudinal tire force used as an input by the wheel dynamics model. The resulting estimate of longitudinal tire force quickly converges towards the actual value with minimal computational expense. Using this estimate, a methodology for controlling tire slip ratio is presented.
Technical Paper
2014-04-01
Mingyuan Bian, Long Chen, Yugong Luo, Keqiang Li
Abstract A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper
2014-04-01
Ryan M. Ashby, JongYun Jeong, Shreesha Y. Rao, Gary J. Heydinger, Dennis A. Guenther
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper
2014-04-01
Yang Liu, Zechang Sun, Wenbin JI
Abstract A brake pedal stroke simulator for Electro-hydraulic Braking System (EHBS) was developed to ensure the comfort braking pedal feel for the brake-by-wire system. An EHBS with an integrated master cylinder was proposed, and a composite brake pedal stroke simulator was designed for the EHBS, which was comprised of two inline springs and a third parallel one. A normally closed solenoid valve was used to connect the master cylinder booster chamber and the stroke simulator. The suitable brake pedal stroke was achieved by three stages of these springs' compression, whereas the solenoid valve was shutdown to enable mechanical control of the service brakes when electrical faults appeared. The pedal stroke simulator and the EHBS were modeled in MATLAB/SIMULINK-AMESim, and then the pedal stroke characteristic including the depressing and releasing process and its influencing factors, namely the preload force of the return spring, the cross-sectional area of the solenoid valve orifice, piston damping coefficient, and the pressure booster ratio were analyzed during the normal and failsafe mode.
Technical Paper
2014-04-01
Jie Ni, Lifu Wang
Abstract In this paper, a torsion-eliminating Hydraulically Interconnected Suspension (THIS) is proposed for the first time to reduce the undesired articulation (warp) stiffness of a two-axis vehicle. The dynamic characteristics of a typical sport utility vehicle (SUV) fitted with the THIS is investigated in the frequency domain. The equations of motion of the coupled mechanical and hydraulic sub-systems are presented. The vehicle basic mechanical sub-system is modeled as a 7 degrees of freedom (DOF) mass-spring-damper system. The hydraulic impedance method is employed to model the fluid sub-system. The relationships between the dynamic fluid states, i.e. pressures and flows, are determined by transfer matrices. Then the mechanical and hydraulic sub-systems are coupled through the mechanical-fluid boundary conditions. Based on fluid hydraulic impedance method, the characteristic equations of this mechanically and hydraulically coupled system are derived with a state vector including the displacements and velocities of mechanical system and the pressure at the mechanical-hydraulic boundary section.
Technical Paper
2014-04-01
Narayanan Kidambi, R. L. Harne, Yuji Fujii, Gregory M. Pietron, K. W. Wang
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade. These include recursive least squares (RLS) with multiple forgetting factors; extended Kalman filtering (EKF); a dynamic grade observer (DGO); and a method developed by this research: parallel mass and grade (PMG) estimation using a longitudinal accelerometer.
Viewing 151 to 180 of 9918

Filter

  • Article
    326
  • Book
    59
  • Collection
    22
  • Magazine
    702
  • Technical Paper
    7397
  • Standard
    1412
  • Article
    1412