Display:

Results

Viewing 151 to 180 of 10612
2016-04-05
Technical Paper
2016-01-0445
Brian Paul Wiegand
Abstract Evaluation of the performance potential of an automotive conceptual design requires some initial quantitative estimate of numerous relevant parameters. Such parameters include the vehicle mass properties, frontal and plan areas, aero drag and lift coefficients, available horsepower and torque, and various tire characteristics such as the rolling resistance coefficient(s)… A number of rolling resistance models have been advanced since Robert William Thomson first patented the pneumatic rubber tire in 1845, most of them developed in the twentieth century. Most early models only crudely approximate tire rolling resistance behavior over a limited range of operation, while the latest models overcome those limitations but often at the expense of extreme complexity requiring significant computer resources.
2016-04-05
Technical Paper
2016-01-0446
Chen Liang, Guolin Wang, Zhou Zheng
Abstract A 3D finite element (FE) model of a radial tire 205/55R16, established using ABAQUS software, is utilized to simulate tire force and moment properties. Drum tests are designed to validate the FE model’s reliability. To investigate the impacts of PCR contour design theory on tire force and moment, a modified string balance contour theory is presented. Based on string balance contour theory, it simplifies the shape of belt pressure share ratio as a trapezium. Besides, a program for calculating tire contour curve is compiled using MATLAB software. Applying different belt pressure share ratios, diverse tire contours are designed. One of the contours is selected according to its positive effect on cornering stiffness in simulation.
2016-04-05
Technical Paper
2016-01-0447
Manfred Baecker, Axel Gallrein, Francesco Calabrese, Remco Mansvelders
Abstract Sudden pressure loss can lead to vehicle instability and - without aid of systems such as e.g. Electronic Stability Control (ESC) - to an emergency situation, possibly resulting in an accident. But also with an ESC system such a situation is an unusual (unstandardized) application case, because the vehicle system (car+tires) properties change very rapidly during the sudden pressure loss, which leads to a very high dynamic response in the system and moreover to a very fuzzy and unclear description of the vehicle system. From this point of view, a proper validation and verification of an ESC system for such an application seems to have a high safety relevancy. The authors have set up a simulation case to simulate a sudden tire inflation pressure loss and its consequences to the car stability. Using this simulation setup enables a CAE engineer to pre-develop ESC systems and/or to validate and test these for a realistic and relevant use case.
2016-04-05
Technical Paper
2016-01-0451
Fu Wenkui, Liu Ligang, Shu Jin, Wang Dawei, Xu Long
Abstract Virtual Road Load Data Acquisition (vRLDA) is to replace traditional Road Load Data Acquisition (RLDA) thus becomes the important method to obtain the load for the fatigue analysis of the vehicle components. Pothole event, which is a typical loadcase among vehicle durability test in the development process, is simulated based on Adams/Car in this paper. Flex-body is adopted in the full vehicle model in order to improve the simulation accuracy. Flexible ring tire model, FTire, is used for the benefit of validity in higher frequency domain. The result shows that simulation result correlated well both in wheel center travel and load of tire and suspension parts. Consequently, it is available to predict the max effective jounce travel and body max load in the early phase of vehicle development thus decrease the potential risk in the later phase and the total research cost. vRLDA is also proven as a reliable and effective method to obtain the load.
2016-04-05
Journal Article
2016-01-0433
Tao Sun, Eungkil Lee, Yuping He
Abstract This paper presents nonlinear bifurcation stability analysis of articulated vehicles with active trailer differential braking (ATDB) systems. ATDB systems have been proposed to improve stability of articulated vehicle systems to prevent unstable motion modes, e.g., jack-knifing, trailer sway and rollover. Generally, behaviors of a nonlinear dynamic system may change with varying parameters; a stable equilibrium can become unstable and a periodic oscillation may occur or a new equilibrium may appear making the previous equilibrium unstable once the parameters vary. The value of a parameter, at which these changes occur, is known as “bifurcation value” and the parameter is known as the “bifurcation parameter”. Conventionally, nonlinear bifurcation analysis approach is applied to examine the nonlinear dynamic characteristics of single-unit vehicles, e.g., cars, trucks, etc.
2016-04-05
Journal Article
2016-01-0438
Ye Yuan, Junzhi Zhang, Chen Lv, Yutong Li
Abstract A novel type of regenerative braking system for electric vehicles is proposed in this paper. Four pressure-difference-limit valves, two relief valves and two brake pedal simulators, are added to the layout of a conventional four-channel hydraulic modulator. The cooperation of relief valves and hydraulic pumps provides a stabilized high-pressure source. Pressure-difference-limit valves ensure that the pressure in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of anti-lock braking system and electronic stability program are integrated in this regenerative braking system. The models of regenerative braking controller and vehicle dynamics are built in MATLAB/Simulink. Hydraulic brake model is built in AMESim through a parameterized and modularized method. Meanwhile, the control strategy of hydraulic brake modulation and brake force distribution are designed.
2016-04-05
Technical Paper
2016-01-0441
Aref M. A. Soliman
Abstract An active suspension system has better performance than a passive suspension. However, it requires a significant amount of energy and is constructed from high cost components. To solve the problem of the power required, a switchable damper suspension system has been studied. In this paper, control strategies for the switchable damper suspension system and passive are compared in terms of their relative ride performance capabilities. Practical limitations involving switching time delay and threshold delay values are modeled and their effect on the ride performance are evaluated. The four setting switchable damper is compared with the two and three setting switchable dampers. The control strategies are used to maintain suspension working space level within design limit and to minimize body acceleration level. The results showed that the four setting switchable damper gives better ride improvements compared with the two and three setting switchable dampers.
2016-04-05
Technical Paper
2016-01-0443
Han Zhang, Gang Li, Yu Wang, Yuchuan Gu, Xiang Wang, Xuexun Guo
Abstract A vehicular hydraulic electrical energy regenerative semi-active suspension(HEERSS) was presented, and its working principle and performance were analyzed. Firstly, configuration and working principle of the HEERSS were described; Secondly, kinetic equation of HEERSS was deduced, and a skyhook controller was designed for HEERSS. The traditional skyhook control strategy should be changed for the characteristic of HEERSS, because the damping force during extension stroke could be controlled, but not in compression stroke. Thirdly, the performance of HEERSS was compared with passive suspension(PS), traditional semi-active suspension(TSS). The simulation results indicated that the performance of HEERSS would be compromise between TSS and PS, but the HEERSS could harvest vibration energy which was advanced than TSS and PS.
2016-04-05
Technical Paper
2016-01-0442
Xing Xu, Zou Nannan
Interconnected air suspension system can change a vehicle’s operation characteristics by exchanging gas between air springs. In this paper, we analyze the structure and working principle of interconnected air suspension based on thermodynamics and vehicle dynamics. Then air suspension’s mathematical model including interconnected characteristics is established to study gas exchange principle of air suspension system. Interconnected pipeline parameters and excitation phase differences’ influence on characteristics of air suspension system in whole vehicle are calculated and analyzed. Simulation results show that the stiffness of air suspension is reduced when air springs of the suspension system are interconnected, as well as it decreases gradually with the increase of interconnected pipeline diameter; the stiffness of air springs is minimum if the excitation phase difference between both sides of air springs is 180 degrees.
2016-04-05
Journal Article
2016-01-0426
Francisco C. Cione, Armando Souza, Luiz Martinez, Jesualdo Rossi, Evandro Giuseppe Betini, Fabio Rola, Marco A. Colosio
Abstract Studying the formation and distribution of residual stress fields will improve the wheel safety operational criteria among other gains. Many engineering specifications, manufacturing procedures, inspection and quality control have begun to require that the residual stress of a particular component to be evaluated. It is known that these residual stress fields could be added to the effects of a system load (tare weight plus occupation of vehicle, traction, braking and torque combined). The mathematical tools for modeling and simulations using finite elements had evolved following the increasing computing power and hardware cost reduction. On the other hand, the experimental testing, offers specific physical component behavior and with the use of statistical tools, it is possible to predict the real behavior of the component when in operation. The experiments undertaken used the X-ray diffraction technique and the drilling method with rosette type strain gages.
2016-04-05
Technical Paper
2016-01-0428
Ruochen Wang, Renkai Ding, Qing Ye
Abstract For coordinating the ride comfort and driving safety, the “inerter-spring-damper” (ISD) system is proposed in this paper, and the “spring-adjustable damper” is adapted to connect with ISD in series, then, a new type of semi-active suspension system is established. In order to verify the system rationality, the ISD semi-active suspension model and robust controller model are established respectively in the AMESim and MATLAB/Simulink environment, which is based on two degrees of freedom suspension model. Then, the co-simulation of ISD semi-active suspension with robust control is analyzed. Compared with the conventional ISD suspension, the results show that, the ISD semi-active suspension with robust control can significantly reduce the body vertical vibration, restrain tire resonance and enhance the tire grounding, that is, this system can coordinate the conflicts between vehicle ride comfort and driving safety.
2016-04-05
Technical Paper
2016-01-0429
Paul Augustine, Timothy Hunter, Nathan Sievers, Xiaoru Guo
Abstract The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
2016-04-05
Technical Paper
2016-01-0431
Guangqiang Wu, Huwei Wu, Xiang Chen
Abstract The nonlinear characteristics impact of multi-staged stiffness clutch damper on the vehicle creeping is investigated by using the lumped-parameter modeling method as a certain mass-production passenger sedan is taken as the research subject. Firstly, a quasi-transient engine model of an inline four-cylinder and four-stroke engine, based on measured data of cylinder gas pressure versus crankshaft angle, is derived. Effective output torque is acquired and as the input excitation to the driveline system. Secondly, a 12-DOF (Degree of Freedom) nonlinear and branched powertrain system and vehicle longitudinal dynamics model is established. The differential mechanism characteristics and dynamic tire property based on the LuGre tire model are considered. Then, for a traditional two-staged stiffness clutch damper in consideration of hysteresis characteristics, vehicle powertrain system responses in both the time and frequency domain are obtained.
2016-04-05
Technical Paper
2016-01-0430
Joel Metz, Xin Zhang, Xiao Yu
The Front Lower Control Arm (FLCA) is a key part of the automotive suspension for performance and safety. Many FLCA designs attach to the front sub-frame using rubber handling and riding bushings, which determine the vehicle dynamics and comfort. In this paper, a design for a ride bushing using a metal pin structure is discussed. The inner portion of the ride bushing is a hollow metal collar with a layer of rubber, and the FLCA pin structure is pressed into the rubber. For safety requirements, the bushings must meet a pin push-in and push-out force requirement. During the development of the bushing design, different test groups conducted tests to determine if manufactured parts meet the push-out force specification. Each group tested at a different load rate and generated different maximum push out force values. The push-in/out speed was found to have a strong influence on the generated maximum load.
2016-04-05
Journal Article
2016-01-0477
Pu Gao, Yongchang Du, Yujian Wang, Yingping Lv
Abstract The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
2016-04-05
Journal Article
2016-01-0476
Yongchang Du, Yingping Lv, Yujian Wang, Pu Gao
Abstract Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
2016-04-05
Technical Paper
2016-01-0474
Shukai Yang, Bingwu Lu, Zuokui Sun, Yingjie Liu, Hangsheng Hou
Abstract A low frequency vibration issue around 3.2 Hz occurs during a commercial heavy truck program development process, and it is linked to extremely uncomfortable driving and riding experiences. This work focuses on an analytical effort to resolve the issue by first building a full vehicle MBS (multi-body-system) model, and then carrying out vibration response analyses. The model validation is performed by using full vehicle testing in terms of structural modes and frequency response characteristics. In order to resolve the issue which is excited by tire non-uniformity, the influence of the cab suspension, frame modes, front leaf spring system and rear tandem suspension is analyzed. The root cause of the issue is found to be the poor isolation of the rear tandem suspension system. The analytical optimization effort establishes the resolution measure for the issue.
2016-04-05
Technical Paper
2016-01-0471
Jian Zhao, Jun Huang, Bing Zhu, Jingwei Shan
In the past decades, the stability of vehicles has been improved significantly by use of variety of chassis control systems such as Antilock Braking System (ABS), Electric Stability Program (ESP) and Active Front Steering (AFS). Recently, in order to further improve the performance of vehicles, more and more researches are focused on the integration control of multiple degrees of freedom of vehicle dynamic. However, in order to control multiple degrees of freedom simultaneously, the nonlinear problems caused by the coupling between different degrees of freedom have to be solved, which is always a difficult task. In this paper, a three-degrees-of-freedom single track vehicle model, in which some nonlinear terms are considered, is built firstly. Then, the nonlinear model is processed by the fuzzy technique and the T-S fuzzy model is designed.
2016-04-05
Technical Paper
2016-01-0470
Wei Chen, Zhe Sun, Jun Zheng, Liang Pan, Xurong Yi
Abstract This paper presents the relationship between suspension and steering systems and wheels, and proposes the vehicle dynamics modeling method. A vehicle dynamics model combined with the suspension K&C test data of a concrete vehicle was built based on the method. The simulation results show that the method is correct and feasible, and the dynamics model performed characteristics of the suspension and steering systems with high precision can be used for the followup simulation and optimization.
2016-04-05
Technical Paper
2016-01-0469
Hyunkoo Kang, Wooyong Jung, Choon Lee
Abstract This paper presents payload estimation based on experimental friction coefficients identification. To estimate exact payload mass, dynamic mathematical model such as actuator dynamics and front linkage dynamics is derived by using Newton-Euler method. From the dynamic equation, nonlinear terms are analyzed and transformed. And a friction model is derived from the experiments with various conditions which have three states; boom joint angle, head and rod chamber pressures. It can identify friction coefficients and compensate friction forces. In addition, the accuracy of payload estimation system is verified through the field test.
2016-04-05
Journal Article
2016-01-0468
Jiageng Ruan, Paul Walker, Nong Zhang, Guangzhong Xu
Abstract Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking.
2016-04-05
Journal Article
2016-01-0467
Haizhen Liu, Weiwen Deng, Rui He, Jian Wu, Bing Zhu
Abstract This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
2016-04-05
Journal Article
2016-01-0466
Daan Roethof, Tarik Sezer, Mustafa Ali Arat, Barys Shyrokau
Research of the past century has demonstrated that wheel camber regulation provides great potential to improve vehicle safety and performance. This led to the development of various prototypes of the camber mechanisms over the last decade. An overview of the existing prototypes is discussed in the presented paper. Most of the investigations related to camber control cover open-loop maneuvers to evaluate a vehicle response. However, a driver’s perception and his reaction can be the most critical factor during vehicle operation. Therefore, the research goal of the presented study is to assess an influence of active camber control on steering feel and driving performance using a driving simulator. In the proposed investigation, a dSPACE ASM vehicle model has been extended by introducing advanced models of steering system and active camber regulation. The steering system describes dynamics of steering components (upper and lower columns, torsion bar, steering rack and others).
2016-04-05
Technical Paper
2016-01-0464
Lingyang Li, Wei Wu, Ji Chen, Jianpeng Shi, Xicheng Wang, Liuhua Qian
Abstract In order to expand the product design and development capabilities of Electric Power Steering (EPS) system, a passenger car’s simulation model integrated with EPS system model will be made. Some analytical investigation is conducted in this paper. Through simplifying the architecture model of EPS system, the mathematical equation expressions of steering wheel and column, worm gear reducer, rack and pinion, steer-wheels, brushed DC electrical motor, and ECU assistance and compensation laws will be described. A number of tests on the EPS full system and subsystems and components will be executed. The tests’ results will be used as the input parameters of the model, and then be used for model validations. After that, the EPS system model will be created. Since the most important part of control logic strategy is the top secret of steering assembly supplier and it could’t be provided to OEM in details or not even a black-box model directly.
2016-04-05
Journal Article
2016-01-0462
Chunlei Wang, Xinjie Zhang, Konghui Guo, Fangwu Ma, Dong Chen
Abstract With the development of the advanced driver assistance system and autonomous vehicle techniques, a precise description of the driver’s steering behavior with mathematical models has attracted a great attention. However, the driver’s steering maneuver demonstrates the stochastic characteristic due to a series of complex and uncertain factors, such as the weather, road, and driver’s physiological and psychological limits, generating negative effects on the performance of the vehicle or the driver assistance system. Hence, this paper explores the stochastic characteristic of driver’s steering behavior and a novel steering controller considering this stochastic characteristic is proposed based on stochastic model predictive control (SMPC). Firstly, a search algorithm is derived to describe the driver’s road preview behavior.
2016-04-05
Technical Paper
2016-01-0463
Juan Sierra, Camilo Cruz, Luis Munoz, Santiago Avila, Elkin Espitia, Jaime Rodriguez
Abstract Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
2016-04-05
Journal Article
2016-01-0461
Wenfei Li, Haiping Du, Weihua Li
Abstract This paper proposes a new braking torque distribution strategy for electric vehicles equipped with a hybrid hydraulic braking and regenerative braking system. The braking torque distribution strategy is proposed based on the required braking torque and the regenerative braking system’s status. To get the required braking torque, a new strategy is designed based on the road conditions and driver's braking intentions. Through the estimated road surface, a robust wheel slip controller is designed to calculate the overall maximum braking torque required for the anti-lock braking system (ABS) under this road condition. Driver's braking intentions are classified as the emergency braking and the normal braking. In the case of emergency braking, the required braking torque is to be equal to the overall maximum braking torque. In the case of normal braking, the command braking torque is proportional to the pedal stroke.
2016-04-05
Technical Paper
2016-01-0460
Salem A. Haggag, Abraham Mansouri
Abstract The control of automotive braking systems performance and wheel slip is a challenging problem due to the nonlinear of the braking process, vehicle body dynamics during braking and the tire-road interaction. When the wheel slip is not between the optimal limits during braking, the desired tire-friction force cannot be achieved, which influences the braking distance, the loss in steerability and maneuverability of the vehicle. A simple and at the same time realistic vehicle longitudinal braking model is essential for such challenging problem. In this paper, a new longitudinal rolling/braking lumped-vehicle model that takes vehicle aerodynamic forces in consideration is presented. The proposed model takes the rolling resistance force, the braking force and the aerodynamic lift and drag forces in consideration and investigates their impact on the vehicle longitudinal dynamics especially vehicle braking distance and time.
2016-04-05
Technical Paper
2016-01-0518
Choonsoo Han
Abstract Thermoplastic polyester elastomer (TPEE) has the properties of both rubber and engineering plastic. The most important characteristics of this material are its high elasticity and rigidity. So, those properties are enable to high durability against fatigue and large deformation cycles. In this study, the rebound bumper of suspension system in vehicle, using thermoplastic polyester elastomer was conducted. The plastic elastomer rebound bumper allows cost reduction and light weight on by integrating several components, such as coil spring, spring guides, blocker, stop rubber etc. In order to satisfy several component requirements such as specific compression set and Load-Displacement curve etc, we evaluated the performance change according to the design and material of the component. This study shows that how to modify the design of the rebound bumper to meet the requirments, and to choose the optimum material through the verification comparing several materials.
2016-04-05
Technical Paper
2016-01-0508
Hyung Seok KIM
Abstract This study provides a tire puncture sealant including NR latex and acrylic emersion, which has a reduced viscosity at -40°C, and is also excellent storage stability at -40°C to 70°C, initial sealing performance. Also, this study provides device for sealing inflatable objects. 'One- Piece Tire Repair Kit' can reduce weight and operation steps.
Viewing 151 to 180 of 10612

Filter