Display:

Results

Viewing 121 to 150 of 11060
2017-06-05
Journal Article
2017-01-1902
Guan Qiao, Geng Liu, Zhenghong Shi, Yawen Wang, Shangjun Ma, Teik Lim
Abstract Actuator and roller screw mechanism are key components of electromechanical brake (EMB) system in automotive and aerospace industry. The inverted planetary roller screw mechanism (IPRSM) is particularly competitive due to its high load-carrying capacity and small assembly size. For such systems, friction characteristic and friction torque generated from rolling/sliding contacts can be an important factor that affects the dynamic performance as well as vibration behavior. This paper investigates the modeling and simulation of the EMB system in early design stage with special attention to friction torque modelling of IPRSM. Firstly, a step-by-step system model development is established, which includes the controller, servo motor, planetary gear train and roller screw mechanism to describe the dynamic behavior of the EMB system.
2017-06-05
Technical Paper
2017-01-1904
Tan Li, Ricardo Burdisso, Corina Sandu
Abstract Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
2017-06-05
Technical Paper
2017-01-1819
Cyril Nerubenko, George Nerubenko
Abstract The problem of crankshaft torsional vibrations for heavy car engines is important for the V8 engines. The paper describes the results of the dynamical study of the new patented Torsional Vibration Dampers mounted on a crankshaft in V8 engines. Design and structure of Torsional Vibration Damper is based on author’s US Patent 7,438,165 having the control system with instantaneous frequencies tuner for all frequencies of running engine. Analysis and disadvantages of conventional rubber and viscous Crank Dampers are shown. The focus of the study is on Torsional Vibration Damper having the mechanical self-tuning structure applicable for V8 engines. Mathematical model based on the system of ordinary differential equations describing the rotation and vibration of mechanical components has been used for the analysis of the dynamic behavior of V8 engine crankshaft system having proposed Torsional Vibration Damper.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Abstract Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional DOF is brought in and the transverse stiffness is relatively weak. When the articulated vehicle runs in a high speed along a straight line, it is easy to cause the transverse swing and the poor handling stability. If it is serious enough, it will lead to "snakelike" instability phenomenon. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. The vehicle will have a lateral migration of center of gravity (CG) when steering, which will lead a higher probability of rollover accident. A dynamic mathematical model for a 35t articulated truck with four motor-driven wheels was established in this paper, to study the condition for its stable driving and the influence of the vehicle structural parameters.
2017-06-05
Technical Paper
2017-01-1837
Paul R. Donavan, Carrie Janello
Abstract Acoustic beamforming was used to localize noise sources on heavy trucks operating on highways in California and North Carolina at a total of 20 sites. Over 1,200 trucks were measured under a variety of operating conditions, including cruise on level highways, on upgrades, down degrades, low speed acceleration, and for various speeds and pavements. The contours produced by the beamforming measurements were used to identify specific source contributions under these conditions and for a variety of heavy trucks. Consistently, the highest noise levels were seen at the tire-pavement interface, with lesser additional noise radiated from the engine compartment. Noise from elevated exhaust stacks was only documented for less than 5% of the trucks measured. The results were further reduced to produce vertical profiles of noise levels versus height above the roadway. The profiles were normalized to the highest noise level at ground level.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
Abstract The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation… Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1879
Pranab Saha
Abstract Traditionally, the damping performance of a visco-elastic material is measured using the Oberst bar damping test, where a steel bar is excited using a non-contacting transducer. However, in an effort to reduce the weight of the vehicles, serious effort is put in to change the body panels from steel to aluminum and composite panels in many cases. These panels cannot be excited using a non-contacting transducer, although, in some cases, a very thin steel panel (shim) is glued to the vibrating bar to introduce ferrous properties to the bar so it can be excited. In the off highway vehicles, although the panels are made of steel, they are very thick and are difficult to excite using the Oberst bar test method. This paper discusses a measurement methodology based on mechanical impedance measurements and has the potential to be a viable/alternate test method to the Oberst bar testing. In the impedance method, the test bar is mounted to a shaker at the center (Center Point method).
2017-06-05
Technical Paper
2017-01-1905
Kiran Patil, Javad Baqersad, Jennifer Bastiaan
Abstract Tires are one of the major sources of noise and vibration in vehicles. The vibration characteristic of a tire depends on its resonant frequencies and mode shapes. Hence, it is desirable to study how different parameters affect the characteristics of tires. In the current paper, experimental modal tests are performed on a tire in free-free and fixed conditions. To obtain the mode shapes and the natural frequencies, the tire is excited using a mechanical shaker and the response of the tire to the excitation is measured using three roving tri-axial accelerometers. The mode shapes and resonant frequencies of the tire are extracted using LMS PolyMax modal analysis. The obtained mode shapes in the two configurations are compared using Modal Assurance Criterion (MAC) to show how mode shapes of tires change when the tire is moved from a free-free configuration to a fixed configuration. It is shown that some modes of the tire are more sensitive to boundary conditions.
2017-06-05
Technical Paper
2017-01-1901
Christian Glandier, Stefanie Grollius
Abstract This paper presents the application to full vehicle finite element simulation of a steady state rolling tire/wheel/cavity finite element model developed in previous work and validated at the subsystem level. Its originality consists in presenting validation results not only for a wheel on a test bench, but for a full vehicle on the road. The excitation is based on measured road data. Two methods are considered: enforced displacement on the patch centerline and enforced displacement on a 2D patch mesh. Finally the importance of taking the rotation of the tire into account is highlighted. Numerical results and test track measurements are compared in the 20-300 Hz frequency range showing good agreement for wheel hub vibration as well as for acoustic pressure at the occupant’s ears.
2017-06-05
Technical Paper
2017-01-1903
Masami Matsubara, Nobutaka Tsujiuchi, Tomohiko Ise, Shozo Kawamura
Abstract The tire is one of the most important parts, which influence the noise, vibration, and harshness of the passenger cars. It is well known that effect of rotation influences tire vibration characteristics, and earlier studies presented formulas of tire vibration behavior. However, there are no studies of tire vibration including lateral vibration on effect of rotation. In this paper, we present new formulas of tire vibration on effect of rotation using a three-dimensional flexible ring model. The model consists of the cylindrical ring represents the tread and the springs represent the sidewall stiffness. The equation of motion of lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests.
2017-06-05
Technical Paper
2017-01-1804
Chulwoo Jung, Hyeon Seok Kim, Hyuckjin Oh, Kwang Hyeon Hwang, Hun Park
Abstract An efficient method to determine optimal bushing stiffness for improving noise and vibration of passenger cars is developed. In general, a passenger vehicle includes various bushings to connect body and chassis systems. These bushings control forces transferred between the systems. Noise and vibration of a vehicle are mainly caused by the forces from powertrain (engine and transmission) and road excitation. If bushings transfer less force to the body, levels of noise and vibration will be decreased. In order to manage the forces, bushing stiffness plays an important role. Therefore, it is required to properly design bushing stiffness when developing passenger vehicles. In the development process of a vehicle, bushing stiffness is decided in the early stage (before the test of an actual vehicle) and it is not validated until the test is performed.
2017-06-05
Technical Paper
2017-01-1836
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Abstract Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
2017-06-05
Technical Paper
2017-01-1851
Taewook Yoo, Ronald W. Gerdes, Seungkyu Lee, Daniel Stanley, Thomas Herdtle, Georg Eichhorn
Abstract Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
2017-06-05
Technical Paper
2017-01-1855
Ramakanta Routaray
Abstract The basic function of a motorcycle frame is somewhat similar to that of the skeleton in the human body, i.e. to hold together the different parts in one rigid structure. One of the major benefits (for a motorcycle enthusiast) of using an advanced frame design lies in the sporty handling characteristics of the bike. A well designed frame can add to the joy of riding a motorcycle as the bike would feel more stable, effortless, and confident around corners, in straight lines and while braking. A well approved modeling [2] techniques or adequate guide line principles have to be followed while designing the body and chassis in order to achieve the vibration within control. This paper depicts a methodological right approach (guide lines) while designing the body and chassis of a two wheeler in order to control noise and vibration of the body and chassis.
2017-06-05
Technical Paper
2017-01-1857
Joshua R. Goossens, William Mars, Guy Smith, Paul Heil, Scott Braddock, Jeanette Pilarski
Abstract Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
2017-06-05
Technical Paper
2017-01-1900
Leiaixin Yang, Yinong Li, Peiran Ding, Parsa Zamankhan, John G. Cherng
Abstract Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
2017-06-02
Article
Kenworth and Peterbilt vehicles will feature a new proprietary front axle using an innovative tapered kingpin roller bearing, beginning in the third quarter of 2017.
2017-06-01
Magazine
Tackling NVH one dB per day New tools and technologies are helping engineers reduce vehicle Noise, Vibration and Harshness. Artificial intelligence becomes a reality Automakers could be among the leaders in deploying AI in free-standing, high-reliability environments. But developers must determine how to mitigate undesirable side-effects. Lidar: autonomy's mission-critical component Automated-driving capability likely won't happen without Lidar. But what technology-and at what price? Formula One goes longer, lower, wider for 2017 New rules make the cars faster and more aggressive-looking, with a wider track, wider tires and bigger wings. Editorial: Core Ford, New Ford...OneFord? SAE Standards News Seeking a common language for vehicle automation Supplier Eye Are you innovating for NVH?
2017-05-30
Technical Paper
2017-01-5002
James Bradley Skarie
Abstract Antilock braking systems (ABS) are inherently limited by the static coefficient of friction (µ) between a vehicle’s tires and the road surface. This paper explores a unique active safety concept, Integrated Coefficient Enhancement (ICE), which works to improve ABS well beyond their present limits. The ICE concept was developed using a basic physics principle: to change µ between two surfaces, at least one of the surfaces must be altered in some way. By quickly deploying a specially designed tractive medium (TM) to aid in directional stability and braking, hazardous situations can be greatly mitigated. This paper describes the features and testing results of this TM and its aerodynamic-mechanical-electronic deployment apparatus. Under all slippery road conditions tested, the developed TM mitigated skidding, with improvements that ranged from 20% to several hundred percent, depending on conditions and deployment rates.
CURRENT
2017-05-30
Standard
J2494/1_201705
This SAE Standard covers general and dimensional specifications for brass bodied reusable Push to Connect tube fittings for use in the piping of vehicular air brake systems. This type of fitting is intended for use with nylon tubing per SAE J844. See SAE J2494-3 for the Performance Requirements of Reusable (Push to Connect) Fittings Intended for Use in Automotive Air Brake Systems and U.S. Department of Transportation, National Highway Traffic Safety Administration (NHTSA) Federal Motor Vehicle Safety Standards (FMVSS) 571.
2017-05-25
WIP Standard
J551/16
1.1 Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
2017-05-24
Technical Paper
2017-36-0001
Luís Fernando Nuss de Souza, Antônio Carlos de Oliveira, Narã Vieira Vetter
Abstract After the anti-skid brake system (ABS) introduction, mandatory for all vehicles in the Brazilian market, manufacturers have given increasing attention to optimized systems which meet legal and safety requirements. For commercial vehicles, an alternative for the ABS, which presents feasibility, is the configuration 4S/3M (4 wheel-speed sensors and 3 modulator valves) in substitution to the configuration 4S/4M. In other words, application of just one modulator valve to control the brakes of the same axle, front or rear, instead of independent control per each brake of the vehicle. The aim of this paper is to present a performance comparison between a brake system fitted with ABS configuration 4S/3M and an ABS configuration 4S/4M. To this end, both configurations were tested on the same vehicle application in accordance with the Brazilian legislation, CONTRAN 519/15.
2017-05-24
Technical Paper
2017-36-0003
Rafael Paini Pavlak, Patric Daniel Neis, Jean Carlos Poletto, Liu Yesukai de Barros, Ney Francisco Ferreira
Abstract The current study presents some testing procedures which have been designed for friction and noise measurements of brake friction materials using a laboratory-scale tribometer. The uncertainties (errors) and precision of the measurements are also described in this paper. Some case studies related to friction, wear and noise related issues in brake friction materials were chosen to show the respective testing procedures. Through the error study, it was shown that the uncertainties of the lab. test bench are mainly associated with 3 variables: torque, force and sliding radius. The combined uncertainty of the friction measurements is less than or equal to ±1%, considering the typical operating range of the machine. The possibility of using two samples from a single brake pad also contributes to the reliability of the machine test and procedures.
2017-05-24
Technical Paper
2017-36-0004
Wesley Bolognesi Prado, Silvia Faria Iombriller, Jonathan Orsi Chiu, Alexandre Roman
Abstract S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
2017-05-24
Technical Paper
2017-36-0005
Diego Severo Antunes, Diego Masotti
Abstract Analytical models used to design most of drum brake systems assume rigid body behavior of shoes and drum, resulting in sinusoidal pressure distribution in the friction interface. This approach leads to various limitations and sometimes incoherent results at typical applications since brake components are highly deformable and the contact pressure distribution plays an important role on the brake system efficiency. This study addresses a numerical analysis of drum brake pressure distribution, using Finite Element Method and considering shoes and drum as flexible bodies. The model validation from experimental procedure, where brake components were instrumented in an inertial dynamometer test. Once the pressure distribution can not be accurately measured, this research uses strain field measurements to calibrate the numerical model. This model is nonlinear, implying in convergence difficulties.
2017-05-24
Technical Paper
2017-36-0006
Claudio Jr. Ferreto, Ademir S. Carvalho, Robson D. A. Abreu, Pedro F. Marinho, Luiz R. Guimarães
Abstract Brake noise causes discomfort to passengers and a perception of reduced vehicle quality. Other types of vehicle noises have been significantly reduced and consequently brake noise and vibration are becoming more perceivable by owners, leading to high warranty costs. It is known in the Brake Industry that the natural frequencies of brake rotors may have a significant participation in disc brake squeal generation, and, a robust process control of this characteristic in the manufacturing gives an important contribution to reduce brake noise. However, recent studies have demonstrated a significant variation of natural frequencies due to manufacturing and this is the outcome of carbon equivalent content in gray cast iron. This paper is concerned with the understanding of this phenomenon and its influence on disc brake noise generation. For this research, it was manufactured two batches of this rotor from two different grades of carbon equivalent.
2017-05-24
Technical Paper
2017-36-0007
Luiz Roberto Guimarães, Robson Demétrius Araújo Abreu, Ademir Carvalho, Claudio Jr. Ferreto
Abstract The improvement of motor’s power requires consequently the improvement in brake system also. The kinetic energy of moving vehicles is transformed in a big part of heat, but there is a part that can be transformed in vibration and sound pressure. One of these vibration and sound pressure complain is known as howl noise. The howl noise complain is very intense and uncomfortable for passengers and pedestrians. Today, the customers spend a lot of money in his vehicles comfort and this disorder can’t occur. This paper presents a methodology which uses Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) to survey the dynamic behavior of suspension and brake systems at the howl noise occurrence condition.
2017-05-24
Technical Paper
2017-36-0010
André G. L. Suetti, Carlos Eduardo Correia
Abstract The knowledge of the elastic properties of friction materials is especially important in the development of brake systems. The stiffness of the system directly impacts on the consumption of the fluid during braking and the user interaction with the brake pedal, in addition to being strongly linked to the occurrence or not of certain types of noise. For the analysis of brake pad stiffness, is well known the compressibility equipment, which evaluates the deformation subject to a load in the axial direction. The first stage of the work proves that the compressive deformation of the pad has a non-linear behaviour as a function of the applied force. Based on this non-linearity, tests are carried out on 93 brake pads, where trends between the instantaneous deformation and the final compressibility result are sought.
2017-05-24
Technical Paper
2017-36-0011
J. Ocampo, S. Jelic, J. Han
Abstract Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Viewing 121 to 150 of 11060

Filter