Display:

Results

Viewing 121 to 150 of 10214
2015-04-14
Journal Article
2015-01-1579
Jun Nakahara, Koji Yamazaki, Yusuke Otaki
Abstract In many cars, ride is less comfortable on smooth roads. This is because when the hysteresis in the suspension components rises steeply, the increase of the equivalent spring constant at small amplitude deteriorates the vibration isolation of the suspension. Therefore suspension components should be designed to prevent a steep rises in hysteresis. Investigating the influence of hysteresis, component models, which can reproduce such hysteresis characteristics, should be installed with model parameters in the vehicle model. Using conventional methods, these parameters can be accurately identified if measurement data is provided; however, it is difficult at the earlier phase of vehicle development. Then, if conflicting performances, such as ride and handling, are to be improved, both should be considered concurrently as early in a phase of vehicle development as possible and the design specifications for suspension components should be determined to satisfy both performances.
2015-04-14
Journal Article
2015-01-1589
Michael W. Neal, Walter Cwycyshyn, Ibrahim Badiru
Abstract The goal of this paper is to discuss the critical aspects of damper tuning for production vehicles. These aspects include ride and handling performance attributes, damper basics, conflicts in achieving desirable results, tuning philosophies, and the influence of the damper design. The marketplace has become increasingly competitive. Customer preference, cost, mass and regulatory pressures often conflict. Yet each year more vehicles are required to do all these things well. Damper tuning can play a significant role in resolving these conflicts. Although many papers have been written on the theory behind damper design and capabilities, there has been very little written about the techniques of tuning dampers for production vehicles. This paper attempts to discuss the critical aspects of damper tuning for production vehicles in four sections. The first section discusses the performance attributes of ride and handling. The second section provides a basic understanding of dampers.
2015-04-14
Technical Paper
2015-01-1598
Milad Jalaliyazdi, Amir Khajepour, Shih-Ken Chen, Bakhtiar Litkouhi
Abstract In this paper, the problem of stability control of an electric vehicle is addressed. To this aim, it is required that the vehicle follows a desired yaw rate at all driving/road conditions. The desired yaw rate is calculated based on steering angle, vehicle speed, vehicle geometric properties as well as road conditions. The vehicle response is modified by torque vectoring on front and/or rear axles. This control problem is subject to several constraints. The electric motors can only deliver a certain amount of torque at a given rotational speed. In addition, the tire capacity also plays an important role. It limits the amount of torque they can transfer without causing wheel to slip excessively.
2015-04-14
Journal Article
2015-01-1755
Atsushi Hirano
Abstract This paper studies various wheel stiffness configurations, with the aim of enhancing driving stability while minimizing the increase in weight associated with an increase in stiffness. Reinforcement was added to the wheel disk and the wheel rim of standard aluminum wheels for passenger vehicles in order to produce four wheels with different stiffness configurations. The effects of disk stiffness and rim stiffness on tire contact patch profiles and driving stability were quantitatively evaluated. From the results of tests with the four wheels, it was observed that disk stiffness and rim stiffness have differing effects on tire contact patch profiles, and on driving stability. Disk stiffness influences especially tire contact patch length, and tire contact patch length influences especially maneuverability in driving stability. Rim stiffness influences especially tire contact patch area, and tire contact patch area influences especially stability in driving stability.
2015-04-14
Technical Paper
2015-01-0607
Xincheng Liang, Jingshan Zhao
Abstract This paper proposes a theoretical model to interpret the heat generation mechanism and thermal failure of shock absorber. For a common structure of double-tube shock absorber, all frictions between two contacting components of shock absorber are calculated particularly. The heat generation mechanism and heat distribution can be explained with the theoretical model. Thermal failure is a recurrent malfunction for traditional shock absorbers, which leads to shorten the service lives of vehicle components. Heat generation experiments are accomplished to validate the thermal degeneration of shock absorber. So this study is meaningful to develop a new system of vibration attenuation with satisfying reliability, which is essential to improve the riding comfort and handling stability of vehicles.
2015-04-14
Journal Article
2015-01-1521
Kanwar Bharat Singh, Srikanth Sivaramakrishnan
Abstract Tread depth, inflation pressure, tire temperature, and road surface condition are among the most notable factors that have a noticeable effect on the tire force and moment characteristics. They can vary significantly during the operation of a tire and can effectively modify tire (and thus vehicle) performance. This study presents details of an adaptive magic formula (MF) tire model capable of coping with changes to the tire operating condition. More specifically, extensions have been made to the magic formula expressions for tire cornering stiffness and peak grip level, to account for variations in the tire inflation pressure, load, tread-depth and temperature. As a next step, the benefits of using an adaptive tire model for vehicle control system applications is demonstrated through simulation studies for enhanced vehicle control systems using an adaptive tire model in comparison to traditional control systems based on a non-adaptive tire model with fixed model parameters.
2015-04-14
Journal Article
2015-01-0655
Francesco Calabrese, Manfred Baecker, Carlos Galbally, Axel Gallrein
Abstract Currently used tire models have shown a certain lack of accuracy in some advanced handling applications. This lack of accuracy is believed to be partly due to thermal effects. In reality, the tire rubber temperature is not constant during the normal operating conditions and it's really well known that the tire friction coefficient strongly depends on the temperature level. The temperature generation, propagation and evolution are the result of a dynamic energy equilibrium between phenomena of different natures. Various mechanisms create a non-uniform temperature distribution in various parts of the tire structure: heat is generated in zones with large cyclic deformations due to the energy dissipated from the rubber strains and in the sliding part of the contact patch due to friction. The rubber cools down because the heat energy transferred to the air (internally and externally) and to the asphalt in the stick zone of the contact patch.
2015-04-14
Technical Paper
2015-01-1117
Yang Liu, Zechang Sun
Abstract Regenerative braking control for a four-wheel-drive (4WD) electric vehicle (EV) equipped with a decoupled electro-hydraulic brake system was studied. The energy flow of the 4WD electric vehicle was analyzed during braking, and the brake force distribution strategy between the front-rear axles, regenerative braking and hydraulic braking was studied. Considering ECE R13 regulations, motors and battery pack characteristic constraints, the optimal regenerative braking control strategy using Genetic Algorithm (GA) was proposed. A Hardware-in-loop (HIL) test was built to verify the proposed regenerative braking control strategy. The results show that the optimal regenerative braking control strategy for the 4WD electric vehicle was advantageous over the comparison program, and regenerative energy efficiency reaches 78.87% under the Shanghai Urban Driving Cycle (SUDC).
2015-04-14
Technical Paper
2015-01-1118
Fengyu Liu, Li Chen, Jian Yao, Jianlong Zhang, Chengliang Yin, Dongxu Li, Chunhao Lee, Ying Huang
Abstract Dry dual clutch transmission (DCT) has played an important role in the high performance applications as well as low-cost market sectors in Asia, with a potential as the future mainstream transmission technology due to its high mechanical efficiency and driving comfort. Control system simplification and cost reduction has been critical in making dry DCT more competitive against other transmission technologies. Specifically, DCT clutch actuation system is a key component with a great potential for cost-saving as well as performance improvement. In this paper, a new motor driven clutch actuator with a force-aid lever has been proposed. A spring is added to assist clutch apply that can effectively reduce the motor size and energy consumption. The goal of this paper is to investigate the feasibility of this new clutch actuator, and the force-aid lever actuator's principle, physical structure design, and validation results are discussed in details.
2015-04-14
Technical Paper
2015-01-1601
Long Chen, Mingyuan Bian, Yugong Luo, Keqiang Li
Abstract This paper proposes an estimation method of road-tire friction coefficient for the 4WID EV(4-wheel-independent-drive electric vehicle) in the pure longitudinal wheel slip, lateral sideslip and combined slip situations, which fuses both estimated longitudinal and lateral friction coefficients together, compared with existing methods based on a tire model in one single direction. Unscented Kalman filter (UKF) is introduced to estimate one-directional friction coefficient based on a modified Dugoff tire model. Considering the output results for each direction as a signal for the same target with different noise, MSE-weighted fusion method is proposed to fuse these two results together in order to reach a higher accuracy. The tire forces are estimated with the benefits of the 4WID EV that the driving torque and rolling speed of each wheel can be accurately known. The sideslip angles and slip ratios of each tire are calculated with a vehicle kinematic model.
2015-04-14
Technical Paper
2015-01-1522
Takahiro Yokoyama, Koji Hiratsuka, Shinya Notomi
Abstract Vehicle dynamic performance on snow-covered roads is one aspect of performance that is influenced by tire performance. Much research concerning a vehicle's performance on snow-covered roads has focused on being directed to vehicle control technology that increases control when the tire-slip ratio is larger, such as anti-lock braking systems (ABS) and electronic stability control (ESC). There has been little research, regarding performance when the slip ratio on a snow- covered road is smaller. We studied the friction performance of tires on snow-covered roads to predict vehicle performance within the grip range. We propose a technology for predicting vehicle performance within the small slipangle range and also verify its effectiveness. We established the tire characteristics that assure the grip range on a snow-covered road using performance indicators.
2015-04-14
Journal Article
2015-01-0691
Salah H. R. Ali, Sarwat Z. A. Zahwi, Hassan H. Dadoura
Abstract The main aim of this work is to develop an identification method to demonstrate the crucial surfaces of automotive braking system. Two brand new brake discs manufactured by two different manufacturers are tested. A typical disc to the one of them was put under working condition in actual braking system. Dimensional and geometrical deviations are investigated using advanced engineering metrological technique. Mechanical properties, tribological characteristics and chemical analyses are investigated. A coordinate measuring machine, universal hardness tester, mass comparator and XRF spectrometer are used in these diagnoses. Measurements of dimensional and geometrical deviations such as disc thickness variations, thickness deviations, straightness, parallelism, runout of disc surfaces are conducted. A comparison between form deviations in disc surfaces have been carried out and analyzed.
2015-04-14
Journal Article
2015-01-1481
Myles Wilson, David Aylor, David Zuby, Joseph Nolan
Abstract The Insurance Institute for Highway Safety (IIHS) evaluates autonomous emergency braking (AEB) systems as part of its front crash prevention (FCP) ratings. To prepare the test vehicles' brakes, each vehicle must have 200 miles on the odometer and be subjected to the abbreviated brake burnish procedure of Federal Motor Vehicle Safety Standard (FMVSS) 126. Other organizations conducting AEB testing follow the more extensive burnishing procedure described in FMVSS 135; Light Vehicle Brake Systems. This study compares the effects on AEB performance of the two burnishing procedures using seven 2014 model year vehicles. Six of the vehicles achieved maximum AEB speed reductions after 60 or fewer FMVSS 135 stops. After braking performance stabilized, the Mercedes ML350, BMW 328i, and Volvo S80 showed increased speed reductions compared with stops using brand new brake components.
2015-04-14
Journal Article
2015-01-1597
Kazuto Yokoyama, Masahiro Iezawa, Hideyuki Tanaka, Keiichi Enoki
Abstract Mitsubishi Electric has developed a concept car “EMIRAI 2 xEV” that features an electric vehicle (EV) powertrain for safe, comfortable, eco-friendly driving experiences in the future. The vehicle was exhibited during the 2013 Tokyo Motor Show and the 2014 Automotive Engineering Exposition. The xEV is a four-wheel-drive EV with three motors: a water-cooled front motor and two air-cooled rear motors with integrated inverters. The rear wheels can be driven independently. The degrees of freedom of the actuation can realize improved maneuverability and safety. The vehicle is also equipped with an onboard charger with a built-in step down DC/DC converter, an EV control unit, a battery management unit, and electric power steering. All of the instruments are developed by Mitsubishi Electric. Motion control systems for the xEV have been developed based on our proprietary motor control technology.
2015-04-14
Technical Paper
2015-01-1203
Subhashree Rajagopal, Sebastien Desharnais, Balamurugan Rathinam, Upendra Naithani
Abstract Electromagnetic brakes are found in a variety of applications. They offer tremendous advantages including: absence of fading, high braking torque and controllability. However they suffer from decreasing torque at low and high speeds. In this study, a novel concept of permanent magnet eddy-current brake is proposed that maintains a flat braking torque profile over a broad speed range. The principle is analytically investigated and numerically validated through finite element simulations using MAXWELL. It is demonstrated that a usably flat braking torque profile can be achieved by altering the path of eddy-currents by magnetic field orientation, thereby affecting the apparent rotor resistance.
2015-04-14
Technical Paper
2015-01-0492
Gaurav Paliwal, Naveen Sukumar, Umashanker Gupta, Ashutosh Dubey, Nitin Chopra
Abstract The need to develop products faster and to have designs which are first time right have put enormous pressure on the product development timelines, thus making computer aided optimization one of the most important tool in achieving these targets. In this paper, a design of experiments (DOE) study is used, to gain an insight as to, how changes to different parameters of front suspension and steering of a passenger bus affect its kinematic properties and thus to obtain an optimized design in terms of handling parameters such as bump steer, percent ackermann error and lock to lock rotation angle of steering wheel. The conventional hit and trial method is time consuming and monotonous and still is an approximate method, whereas in design of experiments (DOE), a model is repeatedly run through simulations in a single setup, for various combinations of parameter settings.
2015-04-14
Journal Article
2015-01-0518
Hirokuni Fuchigami
Abstract In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
2015-04-14
Journal Article
2015-01-0643
Dzmitry Savitski, Kristian Hoepping, Valentin Ivanov, Klaus Augsburg
Abstract The presented study demonstrates results of experimental investigations of the anti-lock braking system (ABS) performance under variation of tire inflation pressure. This research is motivated by the fact that the changes in tire inflation pressure during the vehicle operation can distinctly affect peak value of friction coefficient, stiffness and other tire characteristics, which are influencing on the ABS performance. In particular, alteration of tire parameters can cause distortion of the ABS functions resulting in increase of the braking distance. The study is based on experimental tests performed for continuous ABS control algorithm, which was implemented to the full electric vehicle with four individual on-board electric motors. All straight-line braking tests are performed on the low-friction surface where wheels are more tended to lock.
2015-04-14
Journal Article
2015-01-0623
Jiaquan Chen, Min Qin, Yongfeng Jiang, Lingge Jin, Yin-Ping Chang
Abstract A twist beam rear suspension system is modeled, analyzed and optimized in this paper. An ADAMS model is established based on the REC (Rigid-Elastic Coupling) Theory, which is verified by FEM (Finite Element Method) approach, the effects of the geometric parameters on the twist beam suspension performance are investigated. In order to increase the calculation efficiency and improve the simulation accuracy, a neural network model and NSGA II (Non-dominated Sorting Genetic Algorithm II) are adopted to conduct a multi-objective optimization on a twist beam rear suspension system.
2015-04-14
Technical Paper
2015-01-1127
Wenbin Liu, Gangfeng Tan, Xiaoqing Tian, Zhiqiang Hu, Yuanqi Gao, Zhi Li, Junyi Yuan, Wei Liu
Abstract The hydraulic retarder is an important auxiliary braking device for the heavy vehicle, which has some characteristics, such as the big brake torque and long duration braking, when the vehicle is traveling in braking state. However, the transmission power loss will be produced when the vehicle is traveling in non-braking state. This transmission power loss is called Air-friction. Firstly, the air flow distribution characteristics of retarder cavity are studied by computational fluid mechanics, and the Air-friction characteristic in different conditions is analyzed. Then, according to the Air-friction characteristics for the condition of different filling density, a set of vacuum air loss reduction system is designed. Meanwhile, the test bench for retarder Air-friction is set up, the test data of the revolution speed, pressure in cavity and air loss resistance is obtained according to the test bench for hydraulic retarder.
2015-04-14
Technical Paper
2015-01-1410
Shotaro Odate, Kazuhiro Daido, Yosuke Mizutani
Abstract According to the North American National Automotive Sampling System Crashworthiness Data System (NASS/CDS), approximately one-half of all accidents during driving are of the secondary collision pattern in which the collision event involves the occurrence of secondary collision. Accidents involving impact to a stopped vehicle (chain-reaction collisions) have increased to approximately 3% of all accidents in North America, and although the rate of serious injury is low, cases have been reported of accidents in which cervical sprain occurs as an after-effect[1]. In order to mitigate these circumstances, research has been conducted on systems of automatic braking for collisions. These systems apply brakes automatically when a first collision has been detected in order to avoid or lessen a second collision. Research on automatic collision braking systems, however, has not examined the multiple collisions parked [1, 2].
2015-04-14
Technical Paper
2015-01-1328
Da-Wei Gao, Xing-Xing Huang, Jun Xu, Song-Lin Zheng
Abstract Taking a domestic brand car as example, this paper is about how to find out a three-point nonlinear stiffness characteristic curve which can meet the requirements of variable stiffness and three-load condition. The new coil spring gives the passive suspension a lot of improvements in riding and safety, changing the nonlinear stiffness characteristic from weak to strong. This paper summarizes the optimization design method for the rear suspension coil spring, which includes the fitting of ideal stiffness characteristic curve, quantitative method for figuring out how the change of vehicle load influences the load on rear suspension axle, the design method of variable stiffness coil spring which corresponds to the change of vehicle load. A new kind of modified ideal point solution for building the objective function was also put forward.
2015-04-14
Journal Article
2015-01-1517
David Stalnaker, Ke-Jun Xie, Terence Wei
Abstract Tire manufacturers need to perform various types of testing to determine tire performance under representative vehicle load conditions. However, test results are influenced by a number of external variables other than tire construction. Vehicle load distribution and suspension properties are some of those external variables which can have a significant effect on tire wear rate and durability. Therefore, in order to measure real world tire performance in a controlled and repeatable manner, a representative vehicle and associated tire load conditions are needed. Laboratory or indoor tire testing offers many advantages over vehicle fleet testing. It provides a well-defined test environment and repeatable results without influence from external factors. Indoor testing has been largely developed around the process of simulating tire wear performance on a specific reference vehicle, including its specific weight distribution, suspension characteristics, and alignment.
2015-04-14
Journal Article
2015-01-1566
Youngil Koh, Kyongsu Yi, Kilsoo Kim
Abstract This paper presents a tire slip-angle based speed control race driver model. In developing a chassis control system for enhancement of high-speed driving performance, analysis of the vehicle-driver interaction at limit handling is one of the main research issues. Thus, a driver model which represents driving characteristics in a racing situation is required to develop a chassis control system. Since a race driver drives a vehicle as fast as possible on a given racing line without losing control, the proposed driver model is developed to ensure a lateral stability. In racing situation, one of the reasons which cause the lateral instabilities is an excessive corner-entry speed. The lateral instability in that moment is hard to handle with only a steering control. To guarantee the lateral stability of the vehicle while maximizing a cornering speed, a desired speed is determined to retain a tire slip-angle that maximizes lateral tire forces without front tire saturation.
2015-04-14
Journal Article
2015-01-1594
Johannes Edelmann, Massimiliano Gobbi, Giampiero Mastinu, Manfred Ploechl, Giorgio Previati
Abstract The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic.
2015-04-14
Technical Paper
2015-01-1237
Xiaoming Chen, Jeff L. Conklin, Robert M. Carpenter, Jeff Wallace, Cynthia Flanigan, David A. Wagner, Vijitha Kiridena, Stephane Betrancourt, Jason Logsdon
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefits and fuel consumption reduction. As part of this project, several automotive chassis components were selected for development and evaluation on the MMLV C/D segment passenger sedan.
2015-04-14
Journal Article
2015-01-1314
Max Sardou, Patricia Djomseu
Abstract SARDOU SAS has developed highly stressed composites parts for 35 years. SARDOU SAS and QUALITY INDUSTRIAL PRODUCT invented composite coils springs in 2002. Developing composite coils springs, we have faced a big challenge, how to increase the short life expectancy of this highly stressed structure? We have identified that the weak point, in composite coils springs, is its epoxy matrix. In fact, during heavy loading, the matrix undergoes micro cracks. Then, during fatigue, micro cracks propagate and merge, transforming the matrix into a fine powder. The composite coil suspension springs, using, classic epoxy, where ruined after only 100,000 cycles in the best cases. The fact to integrate “functionalized silica aggregates”, in the matrix, enable the springs to exceed 1,000,000 cycles, with the same spring design. In addition, the spring stiffness has increased by 6% and the thermal set has reduced by 1.6%.
2015-04-14
Journal Article
2015-01-1554
Bastian Schnepf, Thomas Schütz, Thomas Indinger
Abstract Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
2015-04-14
Journal Article
2015-01-1556
Mark E. Gleason, Bradley Duncan, Joel Walter, Arturo Guzman, Young-Chang Cho
Abstract One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
2015-04-14
Technical Paper
2015-01-1501
Ryusuke Hirao, Kentaro Kasuya, Nobuyuki Ichimaru
Abstract New ride control and handling control are developed, and installed in a system using only vehicle height sensor as dedicated sensors and pressure control type semi-active damper. Bi-linear optimal control is applied for controlling ride comfort control constructed observer which is inputted vehicle height sensor for calculating state quantity then used output of the observer. Behavior of vehicle was investigated by vehicle experiment and formalized to further improve the feeling of roll generated by handling control and devised and applied semi-active suspension control method which transiently realize the behavior. Proposed semi-active suspension system not only achieves damping performance as well as skyhook control, but also improves smooth ride comfort and handling performance including roll feeling. In this report, we describe aim, feature and effect of this system.
Viewing 121 to 150 of 10214

Filter