Display:

Results

Viewing 121 to 150 of 10518
2016-01-04
WIP Standard
J510
This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters. NOTE: For leaf springs made to metric units, see SAE J1123.
2016-01-04
WIP Standard
J1528
Test Material: Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
2016-01-04
WIP Standard
J217
This SAE Recommended Practice covers a high-quality corrosion resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
2016-01-01
Technical Paper
2015-01-9084
Seyedmohammad Shams, Peng Yang, Rani Elhajjar
Abstract The disk spring offers the potential of significant weight savings when designed with continuous fiber reinforced composite materials. The internal stresses in a disk spring are ideally suited for composite material application due to their superior resistance to in-plane and bending stresses. In this study, a composite laminate disk spring is designed, analyzed and fabricated to take advantage of the low specific strength and weight and high damage tolerance of composite laminates. The design of the disk composite spring considers effects of the laminate stacking sequence and the geometric variables on the disk spring's mechanical performance. A continuum damage finite element analysis approach is used to understand the damage initiation and evolution as a function of applied load. Experimental analysis and a progressive damage analysis based on virtual crack closure technique are performed to evaluate the damage tolerance of the disk spring under fatigue loadings.
2015-12-31
WIP Standard
J670
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response.
2015-12-20
Standard
AMS7304F
This specification covers coiled springs fabricated from carbon-steel wire.
2015-12-17
Standard
J1604_201512
This SAE Standard covers molded rubber boots used as end closures on drum-type wheel brake actuating cylinders to prevent the entrance of dirt and moisture, which could cause corrosion and otherwise impair wheel brake operation. The document includes performance tests of brake cylinder boots of both plain and insert types under specified conditions and does not include requirements relating to chemical composition, tensile strength, or elongation of the rubber compound. Further, it does not cover the strength of the adhesion of rubber to the insert material where an insert is used. The rubber material used in these boots is classified as suitable for operation in a temperature range of -40 to +120 °C ± 2 °C (-40 to + 248 °F ± 3.6 °F).
2015-12-17
Standard
J2315_201512
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
2015-12-14
WIP Standard
J3001
This procedure is applicable to modes between 1500 and 15 000 Hz. The parameters measured with this procedure are defined as the damping factor, ξ for first three bending modes of the beam. The procedure will focus on bending modes only.
2015-12-02
Magazine
Improving heavy-duty engine component efficiencies Cylinder deactivation can improve fuel economy by using a reduced number of cylinders that operate at higher loads and thermal efficiency, while other cylinders are turned off, when the engine operates at partial load conditions. A switching roller finger follower is one of the technologies that help make it work. Pumping up hydraulic capabilities Electrohydraulic advances keep coming as distributed electronics flex their muscle. Tracking the trends in commercial vehicle communications Industry insiders at Molex offer what they think the future may hold for heavy-duty components in 24/7 communications systems. ADAS system validation It is crucial that different advanced driver assistance systems functionalities interact seamlessly with existing electronic control unit (ECU) networks.
2015-12-01
Magazine
Uncertainty quantification The technique is a must for next-generation simulation tools. Oil-pump sizing Researchers from Hinduja Tech investigate options for low friction and power consumption. The future of Indian commercial aviation The growth in traffic that airport modernization has supported has also made a significant contribution to the local and national economies, while the improved infrastructure has been positive for the perception of India in the global market. Driving EVs toward lower cost The race ison to reduce battery and electric-drive systems cost while improving efficiency. Powering on Rolls-Royce's Chief Engineer discusses new technologies that inspire current R&D design and evaluation work as part of its strategic roadmap for future big commercial programs. HMIs extend beyond the cab Telematic functions are being integrated into multi-function user interfaces.
2015-12-01
Journal Article
2015-01-9115
Peter Koch, Christian Angrick, Denise Beitelschmidt, Günther Prokop, Peter Knauer
Abstract In ride comfort as well as driving dynamics, the behavior of the vehicle is affected by several subsystems and their properties. When analyzing the suspension, especially the characteristics of the main spring and damper but also rubber bushings are of main importance. Still, the properties of the different components are dependent on the present operating conditions. Concerning rubber bushings, several effects have already been investigated, e.g. dependencies of the transfer function of frequency, amplitude or load history. In this context influences of changes in temperature are often neglected. However, in the following research, the focus specifically lies on determination and analysis of the temperature dependency of rubber bushings. For this purpose, initially the relationship between properties of pure rubber and rubber bushings is described, which serves as a basis for correlating respective temperature dependencies.
2015-12-01
Journal Article
2015-01-9114
Hendrik Abel, Sebastiaan van Putten, Andreas Wagner, Günther Prokop
Abstract The aim of this investigation is the improvement of the lateral vehicle dynamics by optimizing the rim width. For that purpose, the rim width is considered as a development tool and configured with regard to specified targets. Using a specifically developed method of simulation, the influence of the rim width is analysed within different levels - starting at the component level “tyre” and going up to the level of the whole vehicle. With the help of substantial simulations using a nonlinear two-track model, the dimensioning of the rim width is brought to an optimum. Based on both, tyre and vehicle measurements, the theoretical studies can be proved in practice. As a result, the rim width has a strong influence on the behaviour of the tyre as well as on the overall vehicle performance, which emphasises its importance as a potential development tool within the development of a chassis.
2015-11-25
WIP Standard
J3115
This document aims to establish best practices in equipment setup and measurement of brake rotor disk thickness variation (DTV) on vehicle.
2015-11-24
Article
TrelleborgVibracoustic announces two new decoupling solutions for RWD and AWD vehicles: a cord-reinforced elastomer coupling, and a tube-in-tube system that is suited for hybrid vehicles.
2015-11-19
Standard
J2224_201511
This SAE Information Report lists the symbols used by suppliers of truck, trailer, and bus wheel seals to identify their products. These symbols appear on seals and packaging. 1.1 Purpose The purpose of this document is to provide users of truck, trailer, and bus wheel seals a means of identifying the suppliers of all such components by use of the symbology utilized by the suppliers on their components and packaging.
2015-11-19
WIP Standard
J1817
This SAE Recommended Practice describes a marking system to distinguish long-stroke from standard stroke for service, parking, and combination air-brake actuators, roto-chambers, and components. Said actuators are used for applying cam and disc-type foundation brakes by slack adjuster means.
2015-11-17
Technical Paper
2015-32-0745
Yu-fan Chen, Cheng-ping Yang, I-ming Chen, Tyng Liu
A systematic modeling methodology using Function Power Graph (FPG) to analyze mechanical systems is proposed in this paper, and the novel Centrifugal Anti-lock Braking System (C-ABS) is used as the example. In this paper, a systematic modeling process combined with the FPG method and SimulationX-based modeling has been demonstrated. First, schematic diagram and working principle of the C-ABS model has been developed and illustrated. Based on the FPG method, several symbols (power unit, clutch/brake unit, and connection unit) for the C-ABS have been introduced. Second, system mode, operation, and function inspection of the C-ABS have been analyzed. Then, each component model of the C-ABS (wheel, disc brake, gearbox, and centrifugal braking device) has been established, and then the schematic diagram of the C-ABS has been transferred into practical image of the system structure (or physical model) through SimulationX to identify the dynamic characteristics of the C-ABS.
2015-11-17
Technical Paper
2015-32-0709
Barath Mohan, Venkata Mangaraju Karanam, Chandramouli Padmanabhan
The aim of the present study is to develop feasible test methods to measure tire parameters that can be used in two wheeler industry for tire development. In this work, test methods are developed to measure the longitudinal friction coefficient and stiffness characteristics of motorcycle tires. Using the measured longitudinal forces from the testing procedure, a fairly accurate tire model has been developed. Based on this tire model the braking performance of the motorcycle is estimated using an analytical model of the vehicle. These are validated with experimental data. It is found that there is a good match between the results. The test is conducted for various bias ply tires used in motorcycles and the results are presented. The test methods proposed are shown to be adequate to estimate tire characteristics that are important for tire development and is less expensive compared to the standard testing facilities available.
2015-11-17
Technical Paper
2015-32-0723
Hiroshi Ishii, Daisuke Saeki, Tomo Yamamoto, Manabu Morikawa, Eiji Sakurada, Kazuhiro Ichikawa, Seiichi Sonoda, Taku Nagata, Toshiyuki Kimura
In motorcycles, the size and output performance of the engine itself has a major effect on the maneuverability of the motorcycle. In particular for cases where a high output engine is mounted on a lightweight frame, these effects are even more of a concern. In the case of developing a racing motorcycle with a high power engine, the behavior of the motorcycle differs depending on the output range used and there are a lot of cases where changes to the basic dimensions of the motorcycle as well as the main components are required. Here, there are a lot of cases where the rider and drive-able courses are limited to compatibility with distinct specifications and when considering use as a general mass production motorcycle by riders with varying levels of skills and in various environments, it difficult to determine how to provide support.
2015-11-17
Technical Paper
2015-32-0810
Hisato Tokunaga, Kazuhiro Ichikawa, Takumi Kawasaki, Masato Kogirima, Eiji Sakurada, Tomo Yamamoto
High performance motorcycles require dynamic performance that encompasses superior handling, wherein the wheels are one of the key components that determine the dynamic performance of the motorcycle. In this paper, we will clarify the dynamic parameters for the wheels that have an impact on the handling while also constructing a design technique in which numerical shape optimization is applied.
2015-11-17
Technical Paper
2015-32-0785
Girish Kokane, Nizar Ahamed, Ravindra Kharul
Ride comfort and handling present conflicting requirements on damping properties of a suspension system. While ride comfort demands a softer damping, a higher damping force makes the ride handling better. Conventional dampers, being solely velocity dependent, are always a compromise between these two requirements. A damper can be made position sensitive, in addition to its velocity dependence, in order to obtain the best of both the worlds. A position-sensitive damper can have a softer damping force for low amplitude road excitations, as observed on highways and a higher damping force for higher amplitude road excitations, as observed in off-road conditions. Thus such a damper can be optimized not only for a good comfort, but for a good handling performance also. General designs for a position sensitive damper involve a bypass arrangement around the piston. This paper discusses an alternate arrangement for achieving position sensitive damping and its benefits.
2015-11-17
Technical Paper
2015-32-0786
Kishor Kothe, Nizar Ahamed, Girish Kokane, Ravindra Kharul
Vehicle suspension systems are designed keeping in mind the requirement for vehicle articulations and load transfer between chassis & tires. Another factor which is given due importance is the avoidance of extremities with end cushions. As such extremities result in generation of impact loads which could eventually lead to failure of end cushions and the vehicle chassis. Number of occurrences of these extremities is an indication of how good a vehicle suspension design is. This paper presents a methodology developed that converts a shock absorber to a potential sensor, that not only measures the travel and velocity, but also the different kind of loads generated at different events. It includes instrumentation, data acquisition and its analysis for evaluating the performance of the shock absorber and also to provide additional insights into its design.
2015-11-17
Technical Paper
2015-32-0829
Toshiki Yamashita, Tomoaki Kodama, Yasuhiro Honda, Toshio Otaka, Yuji Mizutani
The main purpose of Formula SAE Competition (hereafter called “FSAE”, “Formula Society of Automotive Engineering”) is to let students learn the basic ability necessary for engineers through design, fabrication and test projects. Higher running performance of a manufactured vehicle is one of the most important themes that should be studied in Student Formula Japan Competition (hereafter called SFJ Competition). Also, SFJ Competition is the series of the FSAE. the purpose of this study, the chassis must be required light weighting and high stiffness. The former can reduce the centrifugal force and the inertial force in the turning and the latter can contribute to demonstrate the suspension performance according to design [1], [2], [3], [4]. The SFJ Competition has Skid Pad event to compete for steerage responsiveness and high suspension performance on turning.
2015-11-17
Journal Article
2015-32-0834
Thomas Lich, Wilko Gordon Block, S N Prashanth, Brad Heiler
Anti-lock Braking Systems (ABS) for motorcycles have already contributed significantly to the safety of powered two-wheelers (PTW) on public roads by improving bike stability and controllability in emergency braking situations. In order to address further riding situations, another step forward has been achieved with Motorcycle Stability Control (MSC) system. By combining ABS, electronically combined braking system (eCBS), traction control and inertial sensors even in situations like braking and accelerating in corners the riders' safety can be improved. The MSC system controls the distribution of braking and traction forces using an algorithm that takes into account all available vehicle information from wheels, power train and vehicle attitude. With its ability to control fundamental vehicle dynamics, the MSC system will be a basis for further development and integration of comprehensive safety systems.
2015-11-13
Article
The mixed-materials construction and the new C1XX platform enabled the development team to reduce base curb weight by 278 lb versus its predecessor and undercut its closest competitor, the mass-efficient (and shorter) Audi Q5, by a claimed 100 lb.
2015-11-05
Standard
J3063_201511
This SAE Technical Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task on a sustained basis like those defined in SAE J3016 Automated Driving Systems.
2015-11-03
Magazine
Active in aero Several automakers-notably Mercedes-Benz and Audi - used the Frankfurt Motor Show stage to reveal sleek vehicles that aggressively employ active aerodynamic elements and other advances to reduce drag. Composites permeate inside and out Composite materials are gaining popularity for both unseen structural components and for exterior eye candy. Powertrain testing: coping with complexity With increasing use of electrical components to extend the performance of conventional combustion engines, powertrain development has never been more complicated. The good news is that test and development engineers are harnessing advanced simulation techniques and computer processing to develop the most efficient and fun powertrains ever. Can ads help in vehicle-to-vehicle rollout? Porsche unveils new downsized, boosted 3.0-L boxer six. Johnson Controls, Faurecia envision interiors for autonomous driving. Jaguar enters performance crossover SUV segment.
2015-11-02
Article
In collaboration with General Motors, ContiTech developed the fiberglass-reinforced polyamide strut mount for the new 2016 Cadillac CT6, reducing weight by 25% compared to an aluminum design.
2015-10-22
Standard
J3029_201510
This SAE Recommended Practice (RP) establishes uniform powered vehicle level test procedure for Forward Collision Avoidance and Mitigation (FCAM) systems (also identified as Automatic Emergency Braking (AEB) systems) used in highway commercial vehicles and coaches greater than 4535 Kg (10,000 lb.) GVWR. This RP does not apply to trailers, dollies, etc. and does not intend to exclude any particular system or sensor technology. These FCAM systems utilize various methodologies to identify, track and communicate data to the operator and vehicle systems to warn, intervene and/or mitigate in the longitudinal control of the vehicle.
Viewing 121 to 150 of 10518

Filter