Criteria

Display:

Results

Viewing 121 to 150 of 9911
Technical Paper
2014-04-01
Axel Gallrein, Manfred Baecker, Michael Burger, Andrey Gizatullin
Abstract In the last two years, Fraunhofer has developed an advanced tire model which is real-time capable. This tire model is designed for ride comfort and durability applications for passenger cars and trucks, as well as for agricultural and construction machines. The model has a flexible belt structure with typically about 150 degrees of freedom and a brush contact formulation. To obtain sufficient computational efficiency and performance for real time, a dedicated numerical implicit time-integration scheme has been developed. Additionally, specific coordinate frames were chosen to efficiently calculate and use the needed Jacobian matrices. Independently from this, Fraunhofer ITWM has developed and installed the new driving simulator RODOS (RObot based Driving and Operation Simulator), which is based on the industrial robot KUKA KR1000. The main application area of this driving simulator are interactive human-in-the-loop simulations with agricultural and construction machines, but also with trucks and passenger cars.
Technical Paper
2014-04-01
Takamasa Shimodaira
Abstract The aim discussed in this paper is to show a technique to predict loads input to the wheels, essential to determining input conditions for evaluation of suspension durability, by means of full vehicle simulations using multi body analysis software Adams/Car. In this process, model environments were built to enable reproduction of driving modes, and a method of reproducing the set-up conditions of a durability test vehicle was developed. As the result of verification of the accuracy of the simulations in the target driving modes, good correlation for waveforms can be confirmed. And also confirm a good correlation in relation to changes of input load due to changes in suspension specifications.
Technical Paper
2014-04-01
Adam C. Reid, David Philipps, Fredrik Oijer, Inge Johansson, Moustafa EL-Gindy
Abstract The rigid-ring tire model is a simplified tire model that describes a tire's behaviour under known conditions through various in-plane and out-of-plane parameters. The complex structure of the tire model is simplified into a spring-mass-damper system and can have its behaviour parameterized using principles of mechanical vibrations. By designing non-linear simulations of the tire model in specific situations, these parameters can be determined. They include, but are not limited to, the cornering stiffness, vertical damping constants, self-aligning torque stiffness and relaxation length. In addition, off-road parameters can be determined using similar methods to parameterize the tire model's behaviour in soft soils. By using Finite Element Analysis (FEA) modeling methods, validated soil models are introduced to the simulations to find additional soft soil parameters. By determining the full FEA tire model's characteristics, a simplified rigid-ring model can replace the complex model in full vehicle model simulations to reduce computation time and effort.
Technical Paper
2014-04-01
Wenku Shi, Changxin Wang
Abstract In order to reasonably match the variable stiffness suspension and optimize the ride comfort and stability of a light bus, a virtual prototype model of the light bus was established in Adams-Car. Before the optimization, the tyre mechanical characteristics were tested by using a plate-type tyre tester, then the magic formula model of the tyre (Pac2002) was obtained by means of the global parameter identification method. The vertical vibration of the virtual model was simulated with the simulated B-class road profile, and its handling stability performance was also studied by simulation of the pylon course slalom test and steady static circular test. After that, an optimal method of the variable stiffness suspension was put forward. In the proposed method, the two-level stiffness (k1, k2) and the damping of the rear suspension and the torsional stiffness of the pre and post stabilizer bars were taken as the optimal variables. The Z-direction acceleration RMS of the bus frame, the yaw rate and the roll angle of the bus body were selected as the optimal target.
Technical Paper
2014-04-01
Edoardo Sabbioni, Federico Cheli, Matteo Riva, Andrea Zorzutti
Abstract For passenger cars, individual tyre model parameters, used in vehicle models able to simulate vehicle handling behavior, are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. Indoor experiments on agricultural tyres are instead more challenging and thus generally not performed due to tyre size and applied forces. However, the knowledge of their handling characteristics is becoming more and more important since in the next few years, all agricultural vehicles are expected to run on ordinary asphalt roads at a speed of 80km/h. The present paper presents a methodology to identify agricultural tyres' handling characteristics based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers, J-turns, etc.), instead than during indoor tests.
Technical Paper
2014-04-01
Barys Shyrokau, Dzmitry Savitski, Danwei Wang
Abstract Nowadays there is a tendency to implement various active vehicle subsystems in a modern vehicle to improve its stability of motion, handling, comfort and other operation characteristics. Since each vehicle subsystem has own limits to generate supporting demand, their potential impact on vehicle dynamics should be analyzed for steady-state and transient vehicle behavior. Moreover, the additional research issue is the assessment of total energy consumption and energy losses, because a stand-alone operation of each vehicle subsystem will provide different impact on vehicle dynamics and they have own energy demands. The vehicle configuration includes (i) friction brake system, (ii) individual-wheel drive electric motors, (iii) wheel steer actuators, (iv) camber angle actuators, (v) dynamic tire pressure system and (vi) actuators generating additional normal forces through external spring, damping and stabilizer forces. A passenger car is investigated using commercial software. The actuator models are defined using experimental test results and technical literature information.
Technical Paper
2014-04-01
Mustafa Ali Arat, Saied Taheri
Abstract A vehicle's response is predominately defined by the tire characteristics as they constitute the only contact between the vehicle and the road; and the surface friction condition is the primary attribute that determines these characteristics. The friction coefficient is not directly measurable through any sensor attachments in production-line vehicles. Therefore, current chassis control systems make use of various estimation methods to approximate a value. However a significant challenge is that these schemes require a certain level of perturbation (i.e. excitation by means of braking or traction) from the initial conditions to converge to the expected values; which might not be the case all the time during a regular drive. This study proposes an observer scheme that utilizes an instrumented tire (i.e. smart tire) as an additional sensor input and develops a sliding-mode observer based on tire force feedback to provide the estimated friction coefficient irrespective of the available excitation.
Technical Paper
2014-04-01
Deepak Tiwari, Anand Bhope, Akshay Hegde
Abstract Hardened steel is the majorly used raw material for automotive components. In spite of its abundance, its application is limited due to low fatigue life in dynamic loading. Shot peening is one of the identified processes to improve the fatigue life of the ductile steel by inducing the work hardening & surface improvement. The process of shot peening involves the bombardment of shots on the component surface. As the process & technique, the shot size selection plays very important role in the fatigue life improvement as it alters the results substantially. Also during the process, shot size decreases due to the normal wear of the shots after hitting the component surface. As a result, there is always a ratio of various sizes of the shots involved in the process. Therefore it becomes imperative to control the shot size ratio for obtaining the required work hardening & possible fatigue life improvement. This paper explains the effects of shot size ratio on the durability life of a component & the process of shot size ratio selection.
Technical Paper
2014-04-01
Sanghun Cho, Taewan Gu, Eunyoung Yoo, Youngkyu Jeong, Baegsu Joo
Abstract In automotive software developments, since the types of software functionalities are depending on automotive engineering domains such as powertrain, body, and chassis, software logic and data processing, code complexity, and its reliability are also depending on them. Therefore, it has some challenges that monolithic code quality measures are applied to software code for all domains. In addition, imprecise criteria for the measures also can make software developers and testers confused whether their code verifications are enough or not. This paper proposes domain-specific code quality measures and precise criteria by combining a new functionality model, named Abstract Function Model (AFM), and shows results of automotive software functionality analysis using the model. Using 8 real automotive software projects, we derived statistics of software code on specific automotive engineering domain and identified code quality measures from the statistics. For the identified code quality measures, we tactically modified the legacy software code quality measures to be more reasonable and suitable for domain-specific code verification in terms of coding rule checking, potential semantic error checking, and code structural metrics.
Technical Paper
2014-04-01
Suhas Kangde, Vishal Shitole, Ashish Kumar Sahu
Abstract Automotive Suspension is one of the critical system in load transfer from road to Chassis or BIW. Using flex bodies in Multi body simulations helps to extract dynamic strain variation. This paper highlights how the MBD and FE integration helped for accurate strain prediction on suspension components. Overall method was validated through testing. Good strain correlation was observed in dynamic strains of constant amplitude in different loading conditions. Combination of different direction loading was also tested and correlated. Method developed can be used in the initial phase of the vehicle development program for suspension strength evaluation. Suspension is one of the important system in vehicle which is subjected to very high loading in all the directions. To predict the dynamic stresses coming on the suspension system due to transient loads, faster and accurate method is required. To accelerate the suspension design process it become necessary to get good accuracy in the results.
Technical Paper
2014-04-01
Dongmei Wu, Haitao Ding, Konghui Guo, Zhiqiang Wang
Abstract Pressure following control is the basic function of Electro-Hydraulic Braking system (EHB), which is also the key technology of stability control system and regenerative braking system for hybrid and electric vehicles. Experimental research is an important method for the control and application of EHB. This paper describes a method to test and control the EHB system through experiment on the Hardware-in-the-loop (HIL) test bench and wheel motor electric vehicle. First, the HIL test bench was established, in which the EHB was tested, including the characteristics of solenoid valves and motor. Then the wheel cylinder pressure was controlled to follow the specific signal input and the master cylinder pressure. Based on this, EHB and the pressure following control method were applied to the wheel motor electric vehicle. The results show that the braking pressure can follow the driver's braking intention to realize the conventional braking function of electric vehicles. This is the basis of stability control system and regenerative braking system for hybrid and electric vehicles.
Technical Paper
2014-04-01
Xinxin Shao
Abstract In this paper, a passive anti-pitch anti-roll hydraulically interconnected suspension is proposed for compromising the control between the pitch and roll mode of the sprung mass. It has the advantage in improving the directional stability and handling quality of vehicles during steering and braking manoeuvres. Frequency domain analysis of a 7-DOF full-car model with the proposed system is presented. The modeling of mechanical subsystem is established based on the Newton's second law. Then the mechanical-hydraulic system boundary conditions are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The hydraulic subsystem is modelled by using the impedance method, and each circuit are determined by the transfer matrix method. And then the modal analysis method is employed to perform the vibration analysis between the vehicle with the conventional suspension and the proposed HIS. Comparison analysis focuses on natural frequencies and modal shapes with identified eigenvalues and eigenvectors.
Technical Paper
2014-04-01
Andrew Hall, John McPhee
Abstract Physical rig testing of a vehicle is often undertaken to obtain experimental data that can be used to ensure a mathematical model is an accurate representation of the vehicle under study. Kinematics and Compliance (K&C) testing is often used for this purpose. The relationship between the hard point locations and compliance parameters, and K&C characteristics of a suspension system is complex, and so automating the process to correlate the model to the test data can make the exercise easier, faster and more accurate than hand tuning the model. In this work, such a process is developed. First, the model parameters are adjusted, next a simulation is run, before the results are read and post processed. This automation processed is used in conjunction with an optimization procedure to carry out the K&C correlation. MATLAB scripts are created to modify the model parameters, run simulations and read the results so that MATLAB optimization algorithms can be used to identify the most appropriate suspension parameter values.
Technical Paper
2014-04-01
Yoon Cheol Kim, Seong Jin Kim, Jaeyoung Lee, Jeongkyu Kim, SooHyuk Lee, Kyoungdon Yi, KiJeong Kim
Abstract Reducing unsprung mass of the car is a representative method to enhance the ride & handling performance and fuel efficiency. In this study, brake disc weight is reduced 15∼20% using a hybrid type material. The basis for this study is the separation of the friction surface and HAT(mounting part). Aluminum material is applied in the HAT for a light weight effect. Gray iron is applied in the friction surface section to maintain braking performance. Two types of joining between aluminum and cast iron are developed. One is the aluminum casting method utilizing a gray iron insert and the other is a bolted assembly method. Detailed structure, process and material are optimized using try-out & dynamometer experiments. The Reliability of this development is proved through durability (dynamometer and vehicle) testing.
Technical Paper
2014-04-01
Noboru Uchida, Akira Fukunaga, Hideaki Osada, Kazuaki Shimada
Abstract Heat loss reduction could be one of the most promising methods of thermal efficiency improvement for modern diesel engines. However, it is difficult to fully transform the available energy derived from a reduction of in-cylinder heat loss into shaft work, but it is rather more readily converted into higher exhaust heat loss. It may therefore be favorable to increase the effective expansion ratio of the engine, thereby maximizing the brake work, by transforming more of the enthalpy otherwise remaining at exhaust valve opening (EVO) into work. In general, the geometric compression ratio of a piston cylinder arrangement has to increase in order to achieve a higher expansion ratio, which is equal to a higher thermodynamic compression ratio. It is still necessary to overcome constraints on peak cylinder pressure, and other drawbacks, before applying higher expansion ratios to current high-boost, high brake mean effective pressure (BMEP), and high exhaust gas recirculation (EGR) diesel engines.
Technical Paper
2014-04-01
Flaura Winston, Catherine McDonald, Venk Kandadai, Zachary Winston, Thomas Seacrist
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill. The study included an inexperienced group (n=21): 16-17 year olds with 90 days or fewer of provisional licensure, and an experienced group (n=17): 25-50 year olds with at least 5 years of PA licensure, at least 100 miles driven per week and no self-reported collisions in the previous 3 years.
Technical Paper
2014-04-01
Matthew R. James, Simon Watkins, Matthew Watts
Abstract As open-wheeled racing cars frequently race in close proximity, a limiting factor on the ability to overtake is the aerodynamic performance of the vehicle while operating in a leading car's wake. Whilst various studies have examined the effectiveness of wings operating in turbulent flow, there has been limited research undertaken on the aerodynamic effect of such conditions on wheels. This study describes the influence of upstream turbulence on the wake flow features of an isolated wheel, since the flow field of a wheel will generally be turbulent (due to the wakes of upstream cars and/or bodywork). Pressure distributions and velocity vector plots are examined, which were obtained using a four-hole pressure-sensitive Cobra probe on a traverse 2.5 diameters downstream of the wheel axle line, in smooth and turbulent flow. This analysis also compares the effect of upstream turbulence on the wake for the rotating and stationary wheel; as well as investigating the sensitivity of the wake to the wheel-to-road gap in smooth and turbulent flow.
Technical Paper
2014-04-01
Sajjad Beigmoradi, Kambiz Jahani, Babak Ravaji
Abstract Efficient function of brake system is considered a crucial stage in the vehicle development process. Heat exchange reduction can decrease the operational condition of braking system. Although the rims patterns have a significant role on vehicle aerodynamics, they can also have effect on air flow around the brake disk. So, selecting a rim is vital from both a safety and an aerodynamic point of view. In this paper the effect of air flow around a brake disk for two different types of rims was studied; a steel casting and an aluminum alloy rim. Numerical simulation was used for this analysis. First, the flow field around brake disk with iron casting rim was investigated at different velocities. Second, the flow field around the same brake disk system with an aluminum alloy rim was modeled at the same velocities. Finally, the effect of rim design on flow pattern over brake disk was compared. It was found that changing rim design has significant influence on velocity distribution around brake disc and pads.
Technical Paper
2014-04-01
Masayuki Naito, Yasuhiro Koike, Shintaro Osaki, Shinichiro Morishita, Nanhao Quan
Abstract HEV and EV markets are in a rapid expansion tendency. Development of low-cost regenerative cooperation brake system is needed in order to respond to the consumers needs for HEV and EV. Regenerative cooperation brake system which HEV and EV are generally equipped with has stroke simulator. We developed simple composition brake system based on the conventional ESC unit without the stroke simulator, and our system realized a low-cost regenerative cooperation brake. The key technologies are the quiet pressurization control which can be used in the service application, which is to make brake force depending on brake travel, by gear pump and the master cylinder with idle stroke to realize regenerative cooperation brake. Thanks to the key technologies, both the high regenerative efficiency and the good service brake feeling were achieved.
Technical Paper
2014-04-01
Yuan Qu, Wang Hongbin, Dechao Zhang, Linbo Zhang, Shen Wu
Abstract The understeer of vehicle is desired for the vehicle's handling performance, and the roll rate of rear suspension is one of the key characteristics to achieve the understeer performance. A proper roll rate of the rear suspension is required to assure a certain level of understeer. Generally, in the vehicle dynamic tuning process, several methods are available for improving understeer performance, e.g., changing the hard-points of suspensions, adjusting stiffness of bushings, etc. On the other hand, structure optimization of components can be used in some case to improve the performance. In this paper, the optimization method is applied to the twist beam of rear suspension. The change in local geometry by optimized design leads to appropriate adjustment of the roll rate. Finally the vehicle understeer performance reaches design target.
Technical Paper
2014-04-01
Yong-Sub Yi, Joonhong Park, Kyung-Jin Hong
Abstract In the early stage of vehicle development process, it is customary to establish a set of goals for each kinematic and compliance (K&C) characteristic and try to find out design variables such as the location of hard points and bushing stiffness which can achieve these goals. However, since it is very difficult to find out adequate set of design variables which satisfy all the goals, many engineers should rely on their own experiences and intuitions, or repeat trial and error to design a new suspension and improve old one. In this research, we develop a suspension design process by which suspension K&C characteristic targets can be achieved systemically and automatically. For this purpose, design optimization schemes such as design of experiments (DoE) and gradient-based local optimization algorithm are adopted. Firstly, sensitivity analysis is carried out using DoE and then, according to the analysis results, the whole problem is divided into two partial problems which are independent of each other.
Technical Paper
2014-04-01
Mohamed Sithik, Rama Vallurupalli, Barry (Baizhong) Lin, Subash Sudalaimuthu
Abstract In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts. The optimized design is verified for detailed load case and life target.
Technical Paper
2014-04-01
Tae-Sang Park, Sungho Jin, Jeon IL Moon, Seung-Han Yang
Abstract As is well known, the brake systems of vehicles are used in order to decelerate or stop the vehicle while the driving. The operational principle of the brake is the conversion of kinetic energy into thermal energy. In this case, the thermal energy is released to the atmosphere. Recently, electromechanical brakes (EMB) were developed in order to replace hydraulic brake calipers. Such brake-by- wire systems are composed of an electronic pedal, electronic control unit (ECU), wire, and an electromechanical caliper. A typical electromechanical brake is similar to existing floating brakes. In other words, an inner pad pushes out one side of a disc driven by the energy of a motor; by means of a screw-thread gear. Then, the caliper slides in the opposite direction by reaction force and moves the outer pad toward the other side of the disc. Then pads clamp both sides of the rotating disc and stop the wheel. While effective, this design has the problem that there is a difference in the wear of the inner and outer pads.
Technical Paper
2014-04-01
Changxin Wang, Wenku Shi, Qinghua Zu
Abstract Aiming at the difficulty of sovling the stiffness calculation of taper-leaf spring with variable stiffness, a combined method was proposed, which combine superposition method and finite difference method. Then the calculation results of different differential segments were compared with experimental results. The compared results show that the proposed method is effective and simple. So it has some practical significance in designing the taper-leaf spring. In addition, based on the stiffness test of the taper-leaf spring, the proper adjustments to the correction factor of the single parabolic leaf spring stiffness formula was recommended(ξ =0.92-0.96).
Technical Paper
2014-04-01
Ovun Isın, Ilyas Istif, Deniz Uzunsoy, Feray Guleryuz
Abstract The brake friction materials in an automotive brake system play an important role in the overall braking performance of a vehicle. Metal Matrix Composites (MMCs) have been widely investigated and applied due to their advantages of improved strength, stiffness and increased wear resistance over the monolithic alloys in automobile industries. In this paper, Al/B4CP and Mg/B4CP composites were compared to find a suitable candidate material for automotive disk brake application, in terms of wear behavior results of the materials. In addition, the experimental data was also used to model this behavior by identification. The measured tangential force was considered as the input parameter, whereas the weight loss as the output parameter. Preliminary results of this work showed that B4CP addition improved wear resistance of both aluminum and magnesium matrix composites. Additionally, the study pointed out that identified models provide a reliable and cost effective tool for wear prediction.
Technical Paper
2014-04-01
Romeo Sephyrin Fono-Tamo
Abstract The development of a non-asbestos automotive brake pad using palm kernel shell (PKS) as friction filler material is presented. This was with a view to exploiting the characteristics of PKS, which are otherwise largely deposited as waste from palm oil production, to make substitution for asbestos which has been found to be carcinogenic. Two sets of brake pads with identical ingredients but using either PKS or asbestos as base material were produced, following standard procedures employed by a commercial brake pad manufacturer. The physical, thermal, mechanical and the wear characteristics of the PKS-based brake pads were evaluated, compared with the values for the asbestos-based brake pads, and weighted against established recommendations for friction materials for road vehicle brake pads. The PKS based brake pad was characterized by 32.34 Brinell hardness number; 0.62%, swell and growth; 3375 N/s, bonding to back plate, and phase change at 689.5°C. The coefficient of friction of the experimental brake pad on cast iron was 0.43; whilst, wear rate was 9.17 E-5 g/min and exhibiting a third order polynomial with run-in time.
Technical Paper
2014-04-01
Diana Hernandez-Alcantara, Luis Amezquita-Brooks, Ruben Morales-Menendez
Abstract Semi-active suspension systems aim to improve the vehicle safety and comfort. For these systems control laws are required to achieve the desired performance improvements. On the other hand, the instrumentation of the vehicle suspension typically consists only in accelerometers, which are used to measure the vertical accelerations. However, velocities and/or displacements are required to implement the most common control algorithms for semi-active suspension systems. For instance, Skyhook and Groundhook controllers require the knowledge of the suspension vertical velocities. In this article several vertical velocities estimation approaches are studied and compared. In practical applications, it is common to use simple integrators to estimate these variables; nonetheless, it is well known that integrator-based estimations present errors due to drift. In applications where high performance is required, a better estimation of the state variables of the suspension system is essential.
Technical Paper
2014-04-01
Masashi Terada, Takashi Kondo, Yukihiro Kunitake, Kunitomo Miyahara
Abstract In automobile development, steering vibrations caused by engine excitation force and suspension vibration input from the road surface are a problem. The conventional method of reducing vibrations and thereby securing marketability has been to dispose a dynamic damper inside the steering wheel. The resonance frequency of a steering system varies for each vehicle developed (as a result of the vehicle size, the arrangement of the stiff members of the vehicle body, and the like). As a result, the individual values of dynamic dampers that are used with vehicles must be adjusted for each developed vehicle type. To address this problem, we have developed a new structure in which, rather than using a conventional dynamic damper, we disposed a floating bush on the Supplemental Restraint System (SRS) module attachment section and used the SRS module itself as the weight for the dynamic damper. In this structure, the dynamic damper weight is approximately eight times greater than the conventional weight, the vibration reduction effect is enhanced, and the effective frequency range is widened.
Technical Paper
2014-04-01
Kun Diao, Lijun Zhang, Dejian Meng
Abstract Brake squeal shows a significant uncertainty characteristic. In this paper, a series of bench tests were carried out to study the uncertainty of brake squeal on a multi-function brake inertia dynamometer test bench. Then based on time-frequency analysis results, a creative squeal confirmation and determination method was presented, which can show the squeal variations in the domains of time, frequency and amplitude together. An uncertainty analysis method was also established, in which the statistical parameters of squeal frequency and sound pressure level (SPL), and probability density evaluation of frequency based on Quantile-Quantile Plot (QQ plot) were given. And a judgment method of the frequency doubling was devised based on numerical multiple and occurrence concurrence, as well as the uncertainty statistical analysis method considering frequency doubling. All the methods established were applied to the uncertainty analysis of brake squeal. It was found that, both the squeal frequency and SPL are dispersed, and each squeal has its own statistical results.
Technical Paper
2014-04-01
Swapnil S. Kulkarni, Muragendra Magdum, Ravi B.
Abstract Automotive shock absorber shims are subjected to deformation while generating the pressure differential across the rebound and compression chambers. Considering the contact, large deflection, and material this shim stack deformation will be nonlinear throughout the working velocity of shock absorbers. The deformation of shim stack mainly depends on number and geometry of deflection disk, number and geometry of ports, and clamping disk geometry on which shims are rested. During the rebound and compression stroke of the shock absorber, the oil flows through the piston and base valve ports. High pressure oil developed during mid and high velocity of shock absorber results in deflection of shim stack in piston and base valve assembly. This deflection leads to oil leakage through the shim stack which results in change in damping force by the shock absorber. The fluid pressure from the flow passage (well) acting over surface area of shim differs while causing an elastic bending of the shims.
Viewing 121 to 150 of 9911

Filter

  • Article
    320
  • Book
    59
  • Collection
    22
  • Magazine
    702
  • Technical Paper
    7401
  • Standard
    1407
  • Article
    1407