Criteria

Display:

Results

Viewing 61 to 90 of 9979
2014-09-28
Technical Paper
2014-01-2509
N. Prabhakar, J. Suresh Gayakwad, K. Muthumanickam, E. Nagaraj
Abstract The present investigation deals with the failure load prediction during the wrong procedure of unlocking the hand brake valve. The design of the hand brake valve top cover should have adequate strength such that the driver cannot move the lever without lifting the sleeve during brake off condition. The objective of this work is to design the top cover with higher strength such that it requires more load during wrong procedure of unlocking the valve. In this study, the nonlinear analysis is conducted (which includes three types of nonlinearities namely material, geometry and contact) in order to study the strength of the top cover during abuse condition. The design adequacy of the top cover is estimated by elasto plastic analysis. The maximum load carrying capacity of the top cover is determined from Force Vs Deformation plot which is good in agreement with the experimental results. Various design iterations are carried out to propose the appropriate design. The computer simulation of the nonlinear analysis significantly reduces the time and cost required to design the top cover according to the customer requirement.
2014-09-28
Technical Paper
2014-01-2510
Jung Hoon Woo, Jeongkyu Kim, Kwang Yun Kim, Daekyung Ko
Abstract Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
2014-09-28
Technical Paper
2014-01-2507
Guoling Wang, Xuexun Guo, Quan Zhou
Abstract Air disc brake (ADB) is the execution unit of automobile brake, which plays a vital role in traffic safety. Lever is a very important driving as well as stress part of ADB. However, seldom periodical or thesis has given specifications about the lever. In this paper, working principle of the lever is illustrated in detail. Finite element analysis (FEA) of the lever is conducted and some structural problems of the lever are found out. Finally, for the condition that the lever doesn't meet the strength requirement, topography optimization is introduced to improve the shape of lever. Simulation results show that the strength of the lever improved obviously with the optimization, and analysis method as well as optimization method in this paper is feasible.
2014-09-28
Technical Paper
2014-01-2505
Ashesh Shah, Sanjay Patil, Umesh Abhyankar
Abstract The customer satisfaction index is higher for disc brake systems because of the advantages like less reaction time, shorter stopping distance and improved pedal feel compared to drum brake system. In current competitive market scenario and as per customer requirements, front disc brake module is becoming necessary. The brake system design is challenging task due to stringent performance meeting criteria and packaging constraints with weight optimization. Brake disc is very important component in the brake system which is expected to withstand high braking torque and dissipate heat during braking event. In existing car to replace front drum brake with disc brake module, vehicle needs to undergo legislative verifications and certifications with respect to pedal effort, stopping distance and circuit failed conditions etc. This paper explains development of disc brake system with novel brake disc during transition to switch from drum to disc brake with respect to packaging constraints, which has met all the performance in competitive price.
2014-09-28
Technical Paper
2014-01-2508
Stanislav I. Pliassounov
Abstract The article discusses the common shortcomings of contemporary standardized automotive brake tubing connectors (tube joints) against the modern requirements. These shortcomings are originated in the inborn disadvantages of currently utilized cone-to-cone sealing surfaces' mating. During last decade modern production excellence mindset and lean manufacturing practice have developed additional requirements to the tube joints, with the focus on their assembly process. Correspondingly, at least 99.9% probability to assemble and seal each connector from the very first attempt at the designated assembly station is necessary to resolve the challenge. The article deliberates that 99.9% probability as the design target in pursuing connectors' excellence. The article also discusses the pathway to the connectors' design perfection via replacement of the existing cone-to-cone mating type between the sealing surfaces with a sphere-to-cone one. Operational windows' comparison provides the evidences of feasibility and superiority of the latter.
2014-09-28
Technical Paper
2014-01-2504
Can Wang, Gangfeng Tan, Xuexun Guo, Ming Chen, Chuizong Huang, Wei Liu
Abstract The retarder is an important auxiliary braking device of heavy vehicles. However, the stirring air in the working wheels of the idle retarder would cause the transmission loss when the vehicle is traveling in non-braking state [1]. For certain driving conditions, the air-friction characteristics in the working wheels of the idle retarder are analyzed first. Then the relationship between the air density and the torque produced by stirring air is studied. The thermal characteristics of the retarder in the idle condition are also concerned according to the energy flow and heat transfer. Meanwhile, the increased transmission loss caused by the rising temperature of the stirring air and its inference on the transmission stability are also studied. Finally, the optimal range of air vacuum degrees in the working wheel of the idle retarder is determined and the evaluations for the air-friction and the heat transfer characteristics are given for the vacuum degrees. The result shows that, the transmission loss could be reduced by 90% and the transmission stability is verified by kinds of driving conditions, while idle retarder could be operated in a good thermal condition.
2014-09-28
Technical Paper
2014-01-2518
Diego Masotti, Ney Ferreira, Patric Neis, Ademir Menetrier, Luciano Matozo, Paulo Varante
Abstract Creep groan is a low-frequency (20-300Hz) self-excited brake vibration caused by stick-slip phenomena at the friction interface observed at very low vehicle speed. The creep groan propensity of friction materials is closely related with the difference (Δμ) between the static (μs) and the kinetic (μk) coefficients of friction. In this study, a NAO brake pad material was used as a base formulation and the abrasives tested were commercial grade of black iron oxide, chromite, zirconium oxide, magnesium oxide and aluminum oxide. Experimental results were obtained by testing seven different friction material formulations, in which the type of abrasives or its hardness or its particle size was changed in order to explore the impact of these variables on the stick-slip occurrence. A laboratory-scale tribometer was used to investigate the influence of different types of abrasives and their physical properties in the stick-slip. The results showed that abrasive particle size and hardness significantly affect the propensity of stick slip.
2014-09-28
Technical Paper
2014-01-2515
Jin kuk Park, Hyun Bum Jung, Min Gyu Han, Nam ill Jeon
Abstract Prediction of noise and vibration of a gear train is important to achieve a competitive design. Objective of this paper is to develop a dynamic simulation model for vibration analysis and a synthesis process to predict vehicle interior noise using TPA (Transfer Path Analysis). The hybrid gear model is developed to simulate the stiffness of teeth and meshing characteristics in a gear pair. It is modeled by using the teeth stiffness map which is following real contact characteristics of a gear pair. The teeth stiffness is obtained by structural analysis. The multi-body model is composed of flexible bodies, shafts and nonlinear bearings. Input forces at the mounting point (input point) of the gear train are calculated by accelerations from dynamic analysis under real operating conditions. Calculated forces are used to synthesize a vehicle interior noise. Predicted noise is compared with experiment data.
2014-09-28
Technical Paper
2014-01-2516
Katsuhiro Uchiyama, Yuji Shishido
Abstract Last year, we presented the “spring - mass model” FEA simulation from stick-slip phenomenon standpoint for improvement of “creep groan”. “Creep groan” is one of representative groan of brake system for automobile and it is clarified by µ vs velocity (µ−V) property of friction material. This time, we will present our study for reduction of creep groan by pad shape parameter (chamfer and slot) with “advanced” spring - mass model” FEA simulation which used actual pad shape as mass model. In addition, this paper was revised based on oral presentation which we presented at SAE 2013.
2014-09-28
Technical Paper
2014-01-2513
Taeho Jung, Jeongkyu Kim
Abstract Rust accumulated on disc surfaces causes brake judder and grind noise. This paper deals with grind noise(wire brush brake noise) in vehicles which is a low frequency vibration and broadband noise problem at 100∼1kHz that appears in low vehicle speed. Recently, the customer complaints have increased for grind and creep groan noise more than squeal noise. Low frequency brake noise is a combined effect of brake and suspension systems working with each other. The noise transfer path is also important. Experimental results are confirmed through ODS, Modal, TPA and 3D acoustic camera for noise transmission path. Finally, reduction methods of grind noise are presented.
2014-09-28
Technical Paper
2014-01-2514
Prashant Mahale, Aziz Bohari, Raajha M P
Abstract Brake noise is an emerging concern in Indian Auto-industry; with brake squeal being the most evident form of brake NVH. Squeal noise generation attributes to many parameters including kinematics of braking parts during pressure application, structural dynamic behavior which in turn depends on coupling at resonant frequencies of different parts of a brake assembly, material of brake parts, operating clearances in the mating parts etc. The genesis of brake squeal lies in the generation of unstable frictional forces during braking event. These frictional forces induce uncontrolled amplification of brake parts vibration, which in turn tend to produce perceivable sound or noise. The magnitude this vibration induced squeal depends on co-efficient of friction, braking pressure, speed and temperature of friction material. It is known from typical squeal evaluations on dynamometer that at different temperatures of friction, the ability/ occurrence, of squeal is different, typically in the range of 50°C to 200°C.
2014-09-28
Technical Paper
2014-01-2511
Nils Gräbner, Merten Tiedemann, Utz Von Wagner, Norbert Hoffmann
Abstract Industry and academia agree that brake squeal is a nonlinear phenomenon. Consequently, using solely linear finite-element (FE) models and assessing the tendency of a brake system to squeal exclusively on the stability of the trivial solution is not appropriate. However, the latter approach - in the brake community known as complex eigenvalue analysis (CEA) - is extensively used in industry. Until now, nonlinear simulation approaches considering existence and stability of periodic solutions are mostly limited to minimal models. Among the variety of reasons for this the complexity of large-scale nonlinear models as well as the identification of nonlinear material and system parameters are crucial. This contribution discusses the relevance of nonlinearities in friction brake noise, vibration, harshness (NVH) and presents a novel simulation approach for brake squeal. On the basis of experimental results it is pointed out that the consideration of nonlinearities in simulation as well as new methods for numerical studies are necessary to cope with the system-inherent phenomena.
2014-09-28
Technical Paper
2014-01-2512
Hidetoshi Shimizu, Yasunori Oura, Tatsuya Suzuki, Yoshinori Sano
Abstract SAE J2521 noise tests are conducted to examine the impact of shim and grease on brake squeal generation. The impact of adhesive (bonded) shim, clip-on shim and grease for noise generation are examined. Low frequency squeal is eliminated by the application of grease on both adhesive (bonded) shims and clip-on shims. The role of shim and grease for reducing brake squeal is discussed. Adhesive (bonded) shims were found to be effective for high frequency squeal (pad bending mode) by increasing damping. Grease is effective for low frequency squeal (pad rigid mode). The mechanism to eliminate low frequency squeal by the application of grease is investigated. Friction between the shim and caliper piston/finger is reduced. Pads contact directly to the anchor bracket. As a result the contact stiffness is increased. The mechanism is confirmed by experiments.
2014-09-28
Technical Paper
2014-01-2526
Kenneth D. Norman, Amandeep Singh
Abstract Assessment of braking performance that includes brake fade is a critical part of the evaluation of military light tactical vehicles as it is for conventional light cars and trucks. These vehicles are sometimes called upon to operate in severe mountain regions that challenge the braking performance well beyond the environment in which these vehicles are normally operated. The U.S. Army Test Operating Procedure (TOP) 2-2-608 includes a test schedule conducted in the mountainous region near Jennerstown, Pennsylvania. While this test procedure represents a typical mountain environment, it does not represent the most severe mountain descents that can be encountered across the United States. As a preliminary step to developing a representative severe mountain descent braking test, mountain roads throughout the United States were evaluated analytically to identify potential test venues. A literature search was first undertaken to identify test procedures and test sites that were utilized by automobile manufacturers, independent automotive testing companies, U.S.
2014-09-28
Technical Paper
2014-01-2522
Tobias Schramm, Georg Peter Ostermeyer
Abstract There are few principal excitation mechanisms that brake system NVH simulations are based on, especially the high frequency squeal simulations. These mechanisms can be described by some simple mechanical models that exhibit excitation or self-excitation effects induced by friction [1, 2]. These models use very simple friction laws of Coulomb type, described by a friction coefficient that is either a constant or simple functions of some state variables, taking into account a Stribeck characteristic. Measurements from the AK-Master or SAE J2521, however, show that the friction coefficient is not a simple function of some state variables, describing a steady state behavior of friction. In the past several years, material dependent descriptions of the frictional brake interface have started attracting attention [3]. These aspects are greatly influenced by the tribological effects at the frictional interface, which can be characterized by typical wear patterns. To get a better understanding of the friction mechanisms between the brake pad and the disk, the topography of the disk must be measured using in-situ nondestructive methods, which must be very fast because of the size of the data set and also highly accurate to attain, for example, the wear properties of ceramic disks.
2014-09-28
Technical Paper
2014-01-2520
Qiang Wang, Gang Qi, Guangrong Zhang, Xinyu Pu
Abstract A brake durability experimental method is proposed to simulate a brake durability vehicle road test. Brake judder and noise often occur in brake durability road testing. Brake judder is difficult to address because of its many potential causes, such as assembly run out, component stiffness, lining characteristics, thermal coning/hot spot/thermal instability and corrosion. There are currently several test procedures to predict brake thermal roughness and pad cleaning corrosion performance for preventing brake judder. Brake durability vehicle road testing is performed to check brake NVH and wear; examples include the Mojacar test in Spain and the Huangshan test in China. Brake energy intensity and road vibration are the significant factors that cause brake rotor thickness variation, which generates brake judder in public road testing. This study is focused on brake pad wear depending on brake energy intensity and brake rotor temperature to simulate brake durability road testing and brake rotor thickness variation (RTV) generation induced by wear.
2014-09-28
Technical Paper
2014-01-2535
Ning Pan, Liangyao Yu, Zhizhong Wang, Liangxu Ma, Jian Song, Yongsheng Zhang, Wenruo Wei
Abstract With the advantages of free from engine vacuum, wheel cylinder pressure decoupled from the brake pedal and can be regulated individually and precisely, the brake-by-wire system has a huge application potential in vehicles, especially in electric vehicles (EV) and hybrid electric vehicles (HEV). Electro-hydraulic Brake system is the first approach towards brake-by-wire technology. This paper proposed a new compact EHB, aiming at decreasing the size, volume and cost without compromise of performance. The main components of the proposed EHB are pedal simulator, motor pump, accumulator and eight solenoid valves. An authentic model of the EHB and other key components of the brake system were established based on the test data from the test bench. A control algorithm using Round-Robin scheduling was presented to regulate the fluid pressure. Some parameters of the components were discussed to research their effects on system performance. The effects of pressure regulation were examined in simulation, and the results showed that the response time and the control precision of the system are feasible for vehicle application.
2014-09-28
Technical Paper
2014-01-2534
Liangxu Ma, Liangyao Yu, Xuhui Liu, Zhizhong Wang, Ning Pan
Abstract The paper is focused on the research of the automotive magneto-rheological brake system whose braking force comes from the shear stress of magneto-rheological fluid under the condition of magnetic field. The MRF brake is designed for an electric passenger car to replace a conventional hydraulic disc-type brake. The braking torque of this system can be linearly adjusted by the current in just a few milliseconds with proper materials. Therefore this system has a quick response and precise control performance with a low hysteresis. Nowadays, most of the related research of MRF is about the construction of the prototype and the realization of the brake force. Main limitation of MRF brake lies in the braking torque cannot meet the actual needs and the power consumption may be too much if it is not well designed. The prototype introduced in the SAE Brake Colloquium-31nd Annual has been manufactured and assembled critically. Some necessary experiments that can show the performance of MRF have also been done to get some essential data.
2014-09-28
Technical Paper
2014-01-2532
Lu Xiong, Bing Yuan, Xueling Guang, Songyun Xu
Abstract In this paper, by analyzing multiple electro-hydraulic brake system schemes in detail, the idea of dual-motor electro-hydraulic brake system is proposed. As a new solution, the dual-motor electro-hydraulic brake system can actively simulate pedal feel, make the most of pedal power (from the driver), and reduce the maximum power output of each active power source remarkably, which is a distinctive innovation compared to most current electro-hydraulic brake systems. Following the proposed concept, a general research thought and method is conceived, and then a dual-motor electro-hydraulic brake system is designed. Finally, the simulation model is set up in AMESim software and its feasibility is simulated and verified.
2014-09-28
Technical Paper
2014-01-2530
Kyung-Jung Lee, Jae-Min Kwon, Jae Seung Cheon, Hyun-Sik Ahn
Abstract This paper proposes a design approach for the network configuration of brake-by-wire (BBW) systems using the FlexRay communication protocol. Owing to the absence of mechanical or hydraulic back-ups, the BBW system needs to be highly reliable and fault-tolerant. The FlexRay network is shown to be very effective for such requirements of BBW systems by using hardware in-the-loop simulation (HILS), which allows developing and testing various algorithms and faithfully reproduces the actual system. The FlexRay protocols are designed using the FIBEX configuration tool appropriately for the control of BBW systems, and they are analyzed using the FlexRay communication monitoring tool. The results of HILS illustrate that the braking performance of a controller area network (CAN)-based network and that of a FlexRay-based network for BBW systems are very similar, however, the FlexRay-based network system is more reliable and ensures better fault diagnosis by monitoring more variables.
2014-09-28
Technical Paper
2014-01-2531
Mandeep Singh Walia, Magnus Karlsson, Lars Hakansson, Gaurav Chopra
Abstract An analysis method to study the potentials of recovering the brake energy from Volvo articulated haulers has been developed. The study has been carried out with purpose to find out how and where possible hybrid solutions can be used. The method is based on the mapping of the peak brake power, brake energy and engine energy. This method was developed using adequate signals collected on haulers at three different customer sites. A conceptual study was also carried out concerning the brake energy to understand the actual amount of brake energy that may be stored in an Energy storage system (ESS). The results indicate that the analysis method developed can map the brake energy generated and also provide an overview of the actual amount of brake energy that can be accumulated in an ESS. Hence, the method may also providing guidelines regarding the selection of an ESS for a particular work site.
2014-09-28
Technical Paper
2014-01-2529
Klaus Augsburg, Dzmitry Savitski, Lukas Heidrich, Valentin Ivanov
Abstract The presented research discusses the experimental procedure developed for testing of friction brake systems installed on the modern electric vehicles. Approach of combined experimental technique utilizing hardware-in-the-loop platform and brake dynamometer is introduced. As the case study, an influence of brake lining coefficient of friction fluctuations on the anti-lock brake system (ABS) performance is investigated. The ABS algorithm is represented by the direct slip control aimed to the precise tracking of reference slip ratio by means of electric and friction brake system. Vehicle prototype is represented by RWD electric vehicle with in-wheel motors. Results, representing the investigated phenomenon, are derived using the developed combined test bench. The achieved results give a basis for further extension of standard brake testing procedures.
2014-09-28
Technical Paper
2014-01-2528
Dominic D. Scopacasa
Abstract This paper will discuss how different forms of producing supplemental vacuum have varying effects on overall vehicle efficiency. The once reliable source of vacuum from the engine is becoming increasingly scarce due to higher efficiencies from modern IC engines and the growing use of turbochargers. This need for supplemental vacuum has led to several solutions to support vacuum needs, particularly for supplying the booster for brake assist. Using simulated vehicle environments for the various forms of supplemental vacuum the behavior of each can be better understood. Using this simulated environment the actual power consumed by each method of supplemental vacuum production can be accurately measured over various drive cycles and conditions including engine speed and brake applications. Depending on the means of supplemental vacuum the respective energy consumption can be applied to a vehicle model to show the end effects of each solution on a number of levels.
2014-09-28
Technical Paper
2014-01-2527
Gunn Hwang, Axel Freiwald, Hyun-Sik Ahn
Abstract Currently major investments by Tier1 and vehicle manufacturers are made to implement and optimize safety critical automotive systems according to the ISO standard 26262 “Road vehicles functional safety”. The ISO 26262 standard describes methods to detect the safety critical faults of a system designed according to the rules of functional safety, but it does not describe how an actual implementation shall look like. Development of ISO 26262 standard compliant systems concentrates on optimizing and improving cost and performance in a competitive environment. More competitive and practical implementations use fewer additional hardware and software resources for safety control and error detection and have higher performance with less overhead. Microcontrollers already have implemented many safety related hardware functions, so called safety mechanisms to mitigate safety critical risks. Depending on how these safety mechanisms are used, functional safety compliant system can get optimized for cost and performance.
2014-09-28
Technical Paper
2014-01-2537
Zhizhong Wang, Liangyao Yu, Yufeng Wang, Kaihui Wu, Ning Pan, Jian Song, Liangxu Ma
Abstract The four-wheel-independent Electro-hydraulic Braking system (4WI EHB) is a wet type Brake-by-Wire system for passenger vehicle and is suitable for electric vehicle (EV) and hybrid electric vehicle (HEV) to cooperate with regenerative braking. This paper gives a review on the design concepts of the 4WI EHB from the following three aspects. 1. Hydraulic architectures. 2. Design concepts of the brake actuator. 3. Installation of the components on the vehicle. Simulations and experiments are carried out to further explore the performance of hydraulic backup and implicit hardware redundancy (IHR). A method to integrate the IHR with hydraulic backup without increasing the total amount of valves is proposed, making the IHR cost and weight competitive. By reviewing various design concepts and analyzing their advantages and drawbacks, a cost and weight competitive design concept of the 4WI EHB with good fail-safe and fault-tolerant performance is proposed.
2014-09-28
Technical Paper
2014-01-2536
Alberto Boretti, Stefania Zanforlin
Abstract Real driving cycles are characterized by a sequence of accelerations, cruises, decelerations and engine idling. Recovering the braking energy is the most effective way to reduce the propulsive energy supply by the thermal engine. The fuel energy saving may be much larger than the propulsive energy saving because the ICE energy supply may be cut where the engine operates less efficiently and because the ICE can be made smaller. The present paper discusses the state of the art of hydro-pneumatic drivelines now becoming popular also for passenger cars and light duty vehicle applications permitting series and parallel hybrid operation. The papers presents the thermal engine operation when a passenger car fitted with the hydro-pneumatic hybrid driveline covers the hot new European driving cycle. From a reference fuel consumption of 4.71 liters/100 km with a traditional driveline, the fuel consumption reduces to 2.91 liters/100 km.
2014-09-28
Technical Paper
2014-01-2539
Dongmei Wu, Haitao Ding, Konghui Guo, Yong Sun, Yang Li
Abstract Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments. The simulation and experiment results show that the stability control system with in-wheel electric motors and EHB as actuators can improve the stability of the 4WD Evs effectively.
2014-09-28
Technical Paper
2014-01-2542
Liang Zhou, Chuqi Su
Abstract Recovering the braking energy and reusing it can significantly improve the fuel economy of hybrid electric vehicles (HEVs).The battery ability of recovering electricity limits the improvement of the regenerative braking performance. As one way to solve this problem, the technology of brake-by-wire can be adopted in the HEVs to use the recovery dynamically. The use of high-power electrical equipment, such as electromechanical brake (EMB), is working in the form of brake-by-wire. Due to the nature of EMB, there exists an obvious coupling relationship between the energy flow and brake force distribution. In this paper, a brake force distribution controller is proposed in HEV with EMB, which can maximize braking energy recovery, compared with the conventional distribution control without EMB. Meanwhile, an energy flow strategy working with the distribution controller is designed, which is less limited to the performance of the battery. In this strategy, the recovery transfers to the motor of EMB directly, rather than being stored statically in the battery, so it improves the efficiency of the braking energy recovery.
2014-09-28
Technical Paper
2014-01-2541
Michael Herbert Putz, Christian Wunsch, Markus Schiffer, Jure Peternel
Abstract The electro-mechanical brake (EMB) of Vienna Engineering (VE) uses a highly non-linear mechanism to create the high pressing force of the pad. The advantage is that the pad moves very fast when the pad pressing force is low and moves slower with increasing pressing force. The normal force in EMBs is often controlled by observing mechanical deformation to conclude to stress or force, commonly using strain gauges. It causes costs of the gauge itself and attaching them to e.g. the caliper and a sensitive amplifier. The full gauge equipment goes into the safety-related brake control system. The faintest damage (e.g. stone impacts, heat) gets the vehicle to the repair shop making expensive replacement necessary. To avoid the costs of the force measurement in the safety related system VE took the electrical motor measurements from the very beginning of the brake development for EMB control. These electrical values (position, rpm, current, voltage) are already present to operate the brushless DC motor and need no additional parts.
2014-09-28
Technical Paper
2014-01-2519
ByeongUk Jeong, Hoon Kim, Woochul Kim, Sang Do Kwak
Abstract Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Failure of doing this properly causes temperature rise in the brake disc which result in the brake fade, disc distortion, brake judder, etc. A cooling-air-duct was proposed as a solution to prevent these from happening. In this paper, we present our work based on experiments optimized parameters such as direction, location, shapes and the size of the duct for the cooling-air-duct installation in real cars. We installed the duct extended from a front bumper to a rear wheel guard. Experimental parameters were compared with theoretical analysis using the impinging jet analysis. The heat transfer coefficients were determined by using the finite elements method (FEM). We found that our experimental data is supportive of theoretical analysis. We believe that our results should serve an useful guideline for designing the cooling-air-duct for braking system.
Viewing 61 to 90 of 9979

Filter

  • Article
    334
  • Book
    60
  • Collection
    22
  • Magazine
    704
  • Technical Paper
    7434
  • Standard
    1425