Display:

Results

Viewing 61 to 90 of 10024
2014-10-08
Article
Among the new products WABCO displayed at the IAA Hanover CV Show was an electrically driven compressor for heavy duty air-braking systems and a new energy saving engine driven compressor.
2014-10-03
Article
Polymer composites reinforced with the "wonder material" graphene could cut structural weight by a third or more, researchers claim.
2014-10-03
WIP Standard
J3080
This Recommended Practice applies to air disc brakes fitted in commercial vehicles with a Gross Axle Weight Rating of 4536.0 kg or above.
2014-10-01
Standard
J2902_201410
This SAE recommended practice provides procedures and methods for testing service, spring applied parking and combination brake actuators for air disc brake applications. Methods and recommended samples for testing durability, function and environmental performance are listed in 1.1 and 1.2.
2014-10-01
Journal Article
2014-01-9026
Christopher Gill, Christopher Knight, Scott McGarry
Vehicle shock absorbers are designed to dissipate kinetic energy through frictional viscous forces. In some circumstances, this can be in the order of kilowatts of instantaneous power dissipation. This study quantitatively assesses the vehicle damper system energy dissipation of a low-mass utility vehicle and a high-mass hauling vehicle, using empirically derived regression models of the working dampers and custom data logging equipment. The damper force and power is derived from post-processing of the measurement of critical damper metrics, including linear velocity and temperature. Under typical operating conditions, the low-mass utility vehicle showed an average power dissipation of 39 W for a single shock absorber, and approximately 150 W for a complete vehicle-damper model. The high-mass hauling vehicle demonstrated an average power dissipation of 102 W for a single shock absorber, and approximately 600 W for a complete vehicle-damper model under laden operating conditions.
2014-10-01
Journal Article
2014-01-9028
Theodoros Kosmanis, Georgios Koretsis, Athanasios Manolas
Abstract The implementation of an electronic differential system in a delta-type, electrically assisted, three wheel Human Powered Vehicle is the subject of this paper. The electronic differential algorithm is based on the turning angle of the vehicle and its geometrical characteristics. The theoretical analysis is applied in a realistic human powered tricycle constructed in the premises of the Alexander Technological Educational Institute of Thessaloniki. The system's efficiency is validated through test measurements performed on the rear wheels during vehicle's operation in appropriately selected routes. The measurements are performed for both typical cornering and oversteering.
2014-09-30
Article
The industry outlook for 2021 underscores engineering efficiency and flexible, modular architectures, according to industry forecasters IHS Automotive.
2014-09-30
Standard
J2932_201409
This document provides test performance requirements for air disc brake actuators for service and combination service parking brake actuators with respect to function, durability and environmental performance when tested according to SAE J2902.
2014-09-30
WIP Standard
J3081
This document is written to address acceleration and deceleration contol issues related to Heavy Duty Trucks and Bueses greater than 10,000 GVW.
2014-09-30
Journal Article
2014-01-2408
Mehdi Ahmadian
The 2014 SAE Buckendale Lecture will address the past developments and challenges of electromechanical “smart” systems for improving commercial vehicles' functionality. Electromechanical systems combine traditional mechanical devices with electrical components to provide far higher degree of functionality and adaptability for improved vehicle performance. The significant advances in microprocessors and their widespread use in consumer products have promoted their implementation in various classes of vehicles, resulting in “smart” devices that can sense their operating environment and command an appropriate action for improved handling, stability, and comfort. The chassis and suspension application of electromechanical devices mostly relate to controllable suspensions and vehicle dynamic management systems, such as Electronic Stability Control.
2014-09-30
Technical Paper
2014-01-2405
Jiaqi Xu, Bradley Thompson, Hwan-Sik Yoon
Abstract Hydraulic excavators perform numerous tasks in the construction and mining industry. Although ground grading is a common task, proper grading cannot easily be achieved. Grading requires an experienced operator to control the boom, arm, and bucket cylinders in a rapid and coordinated manner. Due to this reason, automated grade control is being considered as an effective alternative to conventional human-operated ground grading. In this paper, a path-planning method based on a 2D kinematic model and inverse kinematics is used to determine the desired trajectory of an excavator's boom, arm, and bucket cylinders. Then, the developed path planning method and PI control algorithms for the three cylinders are verified by a simple excavator model developed in Simulink®. The simulation results show that the automated grade control algorithm can grade level or with reduced operation time and error.
2014-09-30
Technical Paper
2014-01-2385
Linlin Wang, Hongyu Zheng
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads.
2014-09-30
Technical Paper
2014-01-2409
C Venkatesan, R DeepaLakshmi
Abstract The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time.
2014-09-30
Technical Paper
2014-01-2386
Takahiko Yoshino, Hiromichi Nozaki
Abstract It has been reported that steering systems with derivative terms have a heightened lateral acceleration and yaw rate response in the normal driving range. However, in ranges where the lateral acceleration is high, the cornering force of the front wheels decreases and hence becomes less effective. Therefore, we applied traction control for the inner and outer wheels based on the steering angle velocity to improve the steering effectiveness at high lateral accelerations. An experiment using a driving simulator showed that the vehicle's yaw rate response improved for a double lane change to avoid a hazard; this improves hazard avoidance performance. Regarding improved vehicle control in the cornering margins, traction control for the inner and outer wheels is being developed further, and much research and development has been reported. However, in the total skid margin, where few margin remains in the forward and reverse drive forces on the tires, spinout is unavoidable.
2014-09-30
Technical Paper
2014-01-2383
Takahiko Yoshino, Hiromichi Nozaki
Abstract In recent years, the conversion of vehicles to electric power has been accelerating, and if a full conversion to electric power is achieved, further advancements in vehicle kinematic control technology are expected. Therefore, it is thought that kinematic performance in the critical cornering range could be further improved by significantly controlling not only the steering angle but also the camber angle of the tires through the use of electromagnetic actuators. This research focused on a method of ground negative camber angle control that is proportional to the steering angle as a technique to improve maneuverability and stability to support the new era of electric vehicles, and the effectiveness thereof was clarified. As a result, it was found that in the critical cornering range as well, camber angle control can control both the yaw moment and lateral acceleration at the turning limit.
2014-09-30
Journal Article
2014-01-2382
Hongyu Zheng, Linlin Wang
Abstract At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
2014-09-30
Journal Article
2014-01-2380
Joshua L. Every, M. Kamel Salaani, Frank S. Barickman, Devin H. Elsasser, Dennis A. Guenther, Gary J. Heydinger, Sughosh J. Rao
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
2014-09-30
Technical Paper
2014-01-2379
Yang Li, JianWei Zhang, Konghui Guo, Dongmei Wu
Abstract This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
2014-09-30
Journal Article
2014-01-2387
Hongyu Zheng, Linlin Wang
Abstract The active safety and stability of tractor and trailer (heavy-duty vehicle) have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research differential braking force distribution control algorithm to improve braking safety of heavy-duty vehicle. The ideal braking force of each wheel axle should be proportional to vertical load of vehicle that is also related to the road adhesion coefficient, the load and the braking intensity. Reasonable braking force distribution can enhance its braking stability and shorten the braking distance by making full use of the road adhesion condition of each wheel. A braking force distribution algorithm is proposed, in which the objective braking force change with the axle load of vehicle.
2014-09-30
Technical Paper
2014-01-2425
L. Joseph Bachman, Anthony Erb, Jeffry Sellers
Abstract Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline.
2014-09-30
Journal Article
2014-01-2292
Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri
Abstract Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
2014-09-30
Technical Paper
2014-01-2297
Mehmet Bakir, Murat Siktas, Serter Atamer
Abstract In today's world, there are a prominent number of weight and cost reduction projects within the vehicle engineering development activities. Regarding this phenomenon, a complete optimization study is applied to a leaf spring assembly, which has 4 leaves and which is used in heavy duty trucks, by reducing the number of leaves down to 3 together with weight and cost reductions. At the first step of the project, the stiffness of the leaf spring is calculated with in-house software based on mathematical calculations using the thickness profile of the leaves. Then the results of these calculations are compared with non-linear elastic leaf spring calculations which are conducted with FEA. This elastic leaf spring finite element model is transferred into Multi-Body-Simulation (MBS) model in order to determine the forces acting on the leaf spring.
2014-09-30
Technical Paper
2014-01-2290
Guoying Chen, Dong Zhang
Abstract Four-wheel independent control electric vehicle is a new type of x-by-wire EV with four wheels independent steering and four wheels independent drive/brake systems. In order to take full advantage of the vehicle's performance potential, this paper presents a novel integrated chassis control strategy. In the paper, the strategy is designed by the hierarchical control structure and divided into integrated control layer and allocation layer. By this method, the control logical can be modularized and simplified. In the integrated control layer, Model Prediction Control (MPC) is adopted to design the integrated control unit, which belongs to be a kind of local optimization algorithm with feedback correction features. Using this method could avoid the system performance degradation caused by the control model mismatch. The control allocation layer is to optimally distribute the vehicle control forces to the steering/driving/brake actuators on each wheel.
2014-09-30
Technical Paper
2014-01-2291
Dong Zhang, Changfu Zong, Guoying Chen, Pan Song, Zexing Zhang
Abstract A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
2014-09-30
Technical Paper
2014-01-2288
Boris Belousov, Tatiana I. Ksenevich, Vladimir Vantsevich, Sergei Naumov
An open-link locomotion module (OLLM) is an autonomous energy self-sufficient locomotion setup for designing ground wheeled vehicles of a given configuration that includes drive/driven and steered/non-steered wheels with individual suspension and brake systems. Off-road applications include both trucks and trailers. The paper concentrates on the module's electro-hydraulic suspension design and presents results of analytical and experimental studies of a trailer with four driven (no wheel torque applied) open-link locomotion modules. On highly non-even terrain, the suspension design provides the sprung mass with sufficient vibration protection at low level of normal oscillations, enhanced damping and stabilized angular movements. This is achieved by the introduction of two control loops: (i) a fast-acting loop to control the damping of the normal displacements; and (ii) a slow-acting control loop for varying the pressure and counter-pressure in the suspension system.
2014-09-30
Technical Paper
2014-01-2286
Ying Wan, Dong Zhang, Zhao Weiqiang, Changfu Zong, Jongchol Han
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
2014-09-30
Technical Paper
2014-01-2287
Hongyu Zheng, Linlin Wang
Abstract A brake pad wear control algorithm used under non-emergency braking conditions is proposed to reduce the difference in brake pad wear between the front and rear axles caused by the difference in brakes and braking force. According to the adhesion state of the pad wear, the control algorithm adjusted the braking force distribution ratio of front and rear wheel that balanced adhesion pad wear value. Computer co-simulations of braking with Trucksim and Matlab/Simulink using vehicle models with equal brake pad wear, greater wear on the front axle and greater wear on the rear axle respectively is performed. The computation simulation results show that meet the brake force distribution system regulatory requirements and total vehicle braking force unchanged.
2014-09-30
Technical Paper
2014-01-2284
Sunil Raj, S Ravi Shankar
Abstract Automotive component light weighing is one of the major goals for original equipment manufacturers (OEM's) globally. Significant advances are being made in developing light-weight high performance components. In order to achieve weight savings in vehicles, the OEM's and component suppliers are increasingly using ultra-high-strength steel, aluminum, magnesium, plastics and composites. One way is to develop a light weight high performance component through multi material concept. In this present study, a bimetal brake drum of inner ring cast iron and outer shell of aluminum has been made in two different design configurations. In two different designs, 40 and 26% weight saving has been achieved as compared to conventional gray cast iron brake drum. The component level performance has been evaluated by dynamometer test. The heat dissipation and wear behavior has been analyzed.
2014-09-30
Technical Paper
2014-01-2285
Dong Zhang, Changfu Zong, Ying Wan, Hongyu Zheng, Wei-qiang Zhao
Abstract Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
2014-09-30
Technical Paper
2014-01-2282
Dhiraj Dashrat Salvi
Braking system is having a key importance in vehicle safety & handling stability. In this research paper I had developed a circuit model of Antilock braking system where the operating medium is hydro-pneumatic. A solenoid operated modulator valve consisting of two 2/2 valves is connected in line with the air cylinder & hydraulic master cylinder assembly. Using methodology of response time calibration time taken to modulate hydraulic pressure against pneumatic pressure is evaluated. The signal input to the modulator valve is given by the Electronic controlled unit (ECU). All results obtained is exported to an excel file using Data Acquisition software with pressure myograph system. It gives easy and intuitive readings based on the signal program from ECU for various inputs (i.e. ramp, step). The signals are program for various inputs in order to check the fidelity of the circuit. These readings are easily customized to get the optimum graphs.
Viewing 61 to 90 of 10024

Filter