Display:

Results

Viewing 31 to 60 of 10923
2017-04-02
WIP Standard
J974
This SAE Standard covers the general requirements and the test requirements for a flashing warning lamp for agricultural equipment.
2017-03-30
Magazine
Thought leadership at WCX17 Proliferating electrification and performance. Clarity of purpose Honda's 2017 Clarity Fuel Cell has impressive performance, zero emissions and zero range anxiety. Clarity is ready for the mainstream, but is hydrogen fuel? Lightweighting hinges on the details Multi-material design approaches require careful integration of all adjacent constituents. Haptic feedback for gesture-control HMI Mid-air gesture controls rely on sophisticated sensing to aid the human-machine interface and help keep drivers' eyes on the road. Road-efficient mud machine Jeep's new Compass benefits from a trick AWD system co-developed with GKN. Past as prelude to the future SAE's Mobility History Committee brings a trove of knowledge- and cool technology. The new Fellow from Ricardo Prof. Neville Jackson will be recognized as an SAE Fellow at WCX17.
2017-03-28
Collection
The papers in this collection are to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers address new approaches as well as advances in application of steering, suspension related technologies.
2017-03-28
Collection
This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2017-03-28
Technical Paper
2017-01-1176
Hafiz S. Khafagy
Abstract Auto stop-start (Engine stop-start, ESS) has become a widely used feature to reduce fuel consumption and CO2 emissions particularly in congested cities. Typically, vehicles equipped with such systems include two DC power sources that are coupled in parallel: a primary and a secondary power source. The primary power source supplies energy to the starter to crank the engine, while the secondary power source supplies energy to the rest of the vehicle electric loads. During an auto-stop event, a controllable switch decouples the two power sources. Moreover, operating current, voltage and the State of Charge (SOC) are monitored to ensure enough energy for the next auto-start event. When any of these operating parameters are below the threshold values, the controllable switch opens to isolate the two batteries and then the engine is automatically started.
2017-03-28
Technical Paper
2017-01-1113
Yulong Lei, Pengxiang Song, Hongpeng Zheng, Yao Fu, Zhenjie Liu, Xuanyi Fu
Abstract Hydraulic retarders have been widely used in heavy-duty vehicles because of its advantages such as large braking torque and long operating hours. They can be used instead of service brakes in non-emergency braking conditions and can also reduce frequency and time of driver’s actions in braking process, thereby minimizing heat-related problems. In order to accurately produce braking torque needed for the vehicle in time by using hydraulic retarder, which enable the vehicle to travel stably and safely during downhill driving, aiming at the constant-speed function of hydraulic retarder, the research of constant-speed control method is conducted in this paper. The structure and working principle of hydraulic retarder is introduced and the dynamic characteristic is analyzed. And the theoretical model of vehicle and hydraulic retarder are established based on dynamic analysis of the vehicle downhill driving.
2017-03-28
Technical Paper
2017-01-1284
Khushal Ahmad, Monis Alam
Abstract With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
2017-03-28
Technical Paper
2017-01-1058
L.V. Pavan Kumar Maddula, Ibrahim Awara
Abstract Increased focus on fuel efficiency and vehicle emissions has led the automotive industry to look into low weight alternative designs for powertrain system components. These new design changes pose challenges to vehicle attributes like NVH, durability, etc. Further, the requirement of high power applications produces even more complexities. The present work explains how a potential design change of half shafts driven by a desire to reduce weight and cost can lead to NVH problems caused by half shaft resonances and explains how using multiple dynamic vibration absorbers can solve the issue to meet customer expectation while improving efficiency. With the aid of Finite Element Analysis (FEA) & optimization software, interactions between multiple DVA’s on a system was understood and optimal damper parameters for effective damping was identified. The final DVA design was tested and verified on the vehicle for optimal attribute performance.
2017-03-28
Technical Paper
2017-01-1480
Zhenfeng Wang, Mingming Dong, Yechen Qin, Feng Zhao, Liang Gu
Abstract The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1483
Jia Mi, Lin Xu, Sijing Guo, Mohamed A. A. Abdelkareem, Lingshuai Meng
Abstract Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
2017-03-28
Technical Paper
2017-01-1466
Claudia De La Torre, Ravi Tangirala, Michael Guerrero, Andreas Sprick
Abstract Studies in the EU and the USA found higher deformation and occupant injuries in frontal crashes when the vehicle was loaded outboard (frontal crashes with a small overlap). Due to that, in 2012 the IIHS began to evaluate the small overlap front crashworthiness in order to solve this problem.A set of small overlap tests were carried out at IDIADA’s (Institute of Applied Automotive Research ) passive safety laboratory and the importance of identifying the forces applied in each structural element involved in small overlap crash were determined. One of the most important structural elements in the small overlap test is the wheel. Its interaction in a small overlap crash can modify the vehicle interaction at the crash, which at the laboratory the interaction is with a barrier. That interaction has a big influence at the vehicle development and design strategy.
2017-03-28
Technical Paper
2017-01-1371
Hao Pan, Xuexun Guo, Xiaofei Pei, Xingzhi Dong
Abstract Brake pedal feel plays an important role in the driver's comprehensive subjective feeling when braking, which directly affects the active safety and riding comfort of passenger car. A systematical mathematical model of the vehicle brake system is built in according with the structure and system characteristics of hydraulic servo brake system. A complete hydraulic servo brake system simulation model composed of brake pedal, vacuum booster, brake master cylinder, brake pipe, brake wheel cylinders, brake calipers is established in AMESim. The effects of rubber reaction plate stiffness, rubber valve opening, brake master cylinder piston, brake caliper, brake pipe deformation and friction liner deformation on brake pedal feel are considered in this model. The accuracy of this model is verified by real road vehicle tests under static and dynamic two different conditions.
2017-03-28
Technical Paper
2017-01-1396
Sarah S. Sharpe, Robyn Brinkerhoff, Caroline Crump, Douglas Young
Abstract Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies show that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in older drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to variable traffic light conditions. Three different sedans and a pick-up truck were utilized.
2017-03-28
Technical Paper
2017-01-1405
Tzu-Sung Wu
Abstract Autonomous Emergency Braking Systems (AEBS) usually contain radar, (stereo) camera and/or LiDAR-based technology to identify potential collision partners ahead of the car, such that to warn the driver or automatically brake to avoid or mitigate a crash. The advantage of camera is less cost: however, is inevitable to face the defects of cameras in AEBS, that is, the image recognition cannot perform good accuracy in the poor or over-exposure light condition. Therefore, the compensation of other sensors is of importance. Motivated by the improvement of false detection, we propose a Pedestrian-and-Vehicle Recognition (PVR) algorithm based on radar to apply to AEBS. The PVR employs the radar cross section (RCS) and standard deviation of width of obstacle to determine whether a threshold value of RCS and standard deviation of width of the pedestrian and vehicle is crossed, and to identity that the objective is a pedestrian or vehicle, respectively.
2017-03-28
Technical Paper
2017-01-1509
L. Daniel Metz
Abstract We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-1495
Srinivas Kurna, Ruchik Tank, Krishna Srikanth Achanta
1. Abstract At the time of invention of road coaches, the vehicle consisted only of an axle with wheels and a body attached. Smooth roads were built for a better ride comfort however they were not consistent. The road coaches were too bumpy and uncomfortable for the passenger along with the driver who was not able to control the vehicle. That's why the engineers had to shift their attention to the suspension system for a better ride comfort and handling. The technology has advanced with time so as the suspension system. Rubber ended type leaf spring is one of the suspension system types available in the industry. The main function of a suspension in order of importance is as below: 1 Acts as a cushioning device ensuring the comfort of the driver and passengers;2 Maximizes the contact between the tires and the road surface to provide steering stability with good handling;3 Protects the vehicle itself and any cargo or luggage from damage and wear.
2017-03-28
Technical Paper
2017-01-1488
Srinivas Kurna, Ruchik Tank, Riddhish Pathak
Abstract The job of a suspension system is to maximize the friction between the tires and the road surface, to provide steering stability with good handling and to act as a cushioning device ensuring the comfort of the driver & passengers. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. Almost all heavy duty vehicles use inverted type suspension system which is also called as bogie type suspension system. The design of this type of suspension is a complex and difficult science which has evolved over many years. It was recognized very early in the development of suspensions that the interface between vehicle body and wheel needed some sort of cushioning system to reduce the vibration felt as the vehicle moved along. This was already part of road coach design and took the form of leaf (laminated) steel springs mounted on the axles, upon which the vehicle body rested.
2017-03-28
Technical Paper
2017-01-1487
Russ Norton, Ben Bulat, Ahmed Mohamed
Abstract A semi-active suspension system is designed to improve secondary ride by lowering damping levels while maintaining or enhancing primary ride control and vehicle handling. In order to provide optimized ride comfort, base damping levels are reduced. Reduced damping levels increase damaging loads through pothole events. The Road Load Mitigation (RLM) algorithm seeks to resolve the tradeoff of high damping levels required to control the vertical and horizontal spindle loads and the need for lower damping forces to improve secondary ride. As the base active damping forces are increased to control these loads, ride benefits or vehicle ride comfort is diminished. RLM looks at suspension velocity at all four corners independently to determine if a pothole signature is detected and requires compensation. Compensation is delivered quickly to reduce wheel drop into the pothole thereby reducing damaging loads.
2017-03-28
Technical Paper
2017-01-1537
Ananya Bhardwaj
Abstract Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies.
2017-03-28
Technical Paper
2017-01-1572
Wesley Kerstens
Abstract The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
2017-03-28
Technical Paper
2017-01-1626
Tomas Poloni, Jianbo Lu
Abstract This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
2017-03-28
Technical Paper
2017-01-1636
Lukas Preusser
Abstract Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
2017-03-28
Technical Paper
2017-01-1326
Santhoji Katare, Ravichandran S, Gokul Ram, Giri Nammalwar
Abstract Model based computer-aided processes offer an economical and accelerated alternative to traditional build-and-test "Edisonian" approaches in engineering design. Typically, a CAE based design problem is formulated in two parts, viz. (1) the inverse design problem which involves identification of the appropriate geometry with desired properties, and (2) the forward problem which is the prediction of performance from the product geometry. Solution to the forward problem requires development of an accurate model correlated to physical data. This validated model could then be used for Virtual Verification of engineering systems efficiently and for solving the inverse problem. This paper demonstrates the rigorous process of model development, calibration, validation/verification, and use of the calibrated model in the design process with practical examples from automotive chassis and powertrain systems.
2017-03-28
Technical Paper
2017-01-0436
Tianjun Zhu, Bin Li
Abstract A new extended planar model for multi-axle articulated vehicle with nonlinear tire model is presented. This nonlinear multi-axle articulated vehicle model is specifically intended for improving the model performance in operating regimes where tire lateral force is near the point of saturation, and it has the potential to extend the specific axles model to any representative configuration of articulated vehicle model. At the same time, the extended nonlinear vehicle model can reduce the model's sensitivity to the tire cornering coefficients. Firstly, a nonlinear tire model is used in conjunction with the 6-axle planar articulated vehicle model to extend the ranges of the original linear model into the nonlinear regimes of operation. Secondly, the performance analysis of proposed nonlinear vehicle model is verified through the double lane change maneuver on different road adhesion coefficients using TruckSim software.
2017-03-28
Technical Paper
2017-01-0433
Yang Xing, Chen Lv, Wang Huaji, Hong Wang, Dongpu Cao
Abstract Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
2017-03-28
Technical Paper
2017-01-0439
Joydeep Chatterjee, Yuva Kishore Vaddi, Chetan Prakash Jain
Abstract In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
2017-03-28
Technical Paper
2017-01-0428
Tianqi Lv, Yan Wang, Xingxing Feng, Yunqing Zhang
Abstract Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
2017-03-28
Technical Paper
2017-01-0430
Bangji Zhang, Kaidong Tian, Wen Hu, Jie Zhang, Nong Zhang
Abstract This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Viewing 31 to 60 of 10923

Filter