Display:

Results

Viewing 31 to 60 of 10252
2015-05-13
Technical Paper
2015-36-0009
Evandro Benincá, Mauricio da Silva, Ruy Alberto Bueno Jr., Vagner do Nascimento
Abstract One effect which is present in drum and disc brakes is the temperature. This effect significantly changes the vehicle and semi-trailer combinations performance, mainly in drum brakes that is more susceptible to this factor. High temperatures mean loss of efficiency, higher lining wear, brakes and rolling systems components life reduction and could be caused by many factors, which can be mentioned, overload, error in design and choice of brake system, speeding, over adjustment (dragging) and environment heat exchange. The challenge is to comprehend the relation between different brake configuration and how these configurations affects the temperatures generation on brake system, allowing that this factors can be evaluated during the project design. This paper aims to show a case study for a new brake family to be used in city bus application where the fleets are looking for better, safety, performance and low lining wear reduce the to increase the maintenance time.
2015-05-13
Technical Paper
2015-36-0027
Silvia F. Iombriller, Wesley B. Prado, Claudio R. Herrero
Summary It is very important and unquestionable that we need to have a clear technical requirement for Air Brake Systems and its components, since it is one of most important regarding safety. Looking to heavy commercial vehicles and possible air brake system failures, everything becomes clearly to pay total attention for these normative and regulatory requirements. Historically, the development of Brakes technology has started on EUA and Europe and consequently two strong and distinct requirements were structured: FMVSS 121 and ECE-R13. From decades people are trying to harmonize these requirements and for passenger cars, the evolution was faster. However, for commercial vehicles there are more peculiarities considering regional applications and some of them cultural and implementation time.
2015-05-12
Standard
J694_201505
This SAE Recommended Practice contains dimensions and their tolerances concerning disc wheel to hub or drum interface areas for truck and bus applications. Disc wheels designed only for single wheel applications (not dual wheels) for light trucks and special or less common applications are not covered in this document.
2015-05-12
Standard
J1939DA_201505
This document is intended to supplement the J1939 documents by offering the J1939 information in a form that can be sorted and search for easier use. The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. It also includes the supporting descriptions and figures previously published in the SAE J1939-71 document.
2015-05-07
Article
Researchers from Tsinghua University propose a new type of EHPS system suitable for heavy-duty commercial vehicles, with the purpose of reducing the power demand of an electric motor while guaranteeing sufficient power assist. The motor is only activated on-demand, which also helps to improve fuel economy.
2015-05-07
Standard
ARP597E
This document recommends supplementary design criteria to enhance endurance and reliability of transport aircraft wheels and brakes.
2015-05-07
Standard
J2975_201505
This procedure describes a method for generating, preparing and analyzing samples of new and unused brake friction materials for their chemical constituents.
2015-05-05
Magazine
Democratizing hybrid technologies Engineers continue to wring efficiency and mass out of their latest electrified propulsion systems with the aim of mainstreaming the technology. Automakers see possibilities, limits for gesture controls Recent concepts have shown the possibilities of gesture for controlling infotainment functions but the need for industry standards and control simplification complicate development. Ferrari massages 458 to create 488 GTB Ferrari engineers have further refined the 458 Italia model with a new turbocharged and downsized engine and revised aerodynamics to create the 488 GTB.
2015-05-05
Journal Article
2015-01-9107
Zhiyun Zhang, Miaohua Huang, Meixia Ji, Shuanglong Zhu
Abstract In the field of active safety, the active four-wheel-steering (4WS) system seems to be an attractive alternative and an effective tool to improve the vehicles' handling stability in lane-keeping control performance. Under normal using condition, the vehicle's lateral acceleration is comparatively small, and the mathematic relationship between the small side force excitation and the small slip angle of the tire is in the linear region. Furthermore, the effects of roll, heave, and pitch motions are neglected as well as the dynamic characteristics of the tires and suspension system in this work. Therefore, the linear quadratic control (LQC) theory is used to ensure that the output of the 4WS control system can keep track of the desired yaw rate and zero-sideslip-angle response can also be realized at the same time.
2015-05-01
Journal Article
2015-01-9109
Dzmitry Savitski, Valentin Ivanov, Barys Shyrokau, Jasper De Smet, Johan Theunissen
Anti-lock braking functions of electric vehicles with individual wheel drive can be effectively realized through the operation of in-wheel or on-board motors in the pure regenerative mode or in the blending mode with conventional electro-hydraulic anti-lock braking system (ABS). The regenerative ABS has an advantage in simultaneous improvement of active safety, energy efficiency, and driving comfort. In scope of this topic, the presented work introduces results of experimental investigations on a pure electric ABS installed on an electric powered sport utility vehicle (SUV) test platform with individual switch reluctance on-board electric motors transferring torque to the each wheel through the single-speed gearbox and half-shaft. The study presents test results of the vehicle braking on inhomogeneous low-friction surface for the case of ABS operation with front electric motors.
2015-05-01
Journal Article
2015-01-9141
Selim Oleksowicz, Keith Burnham, Navneesh Phillip, Phil Barber, Eddie Curry, Witold Grzegozek
Hybrid and electric vehicle (H/EV) technology is already well established in the automotive industry and a great majority of car manufacturers offer vehicles with alternative propulsion systems (hybrid or electric - H/E). This advancement, however, does not mean that all technical aspects of H/E propulsion systems have already been encapsulated or even fully understood. This statement is specifically valid for regenerative braking technology. In order to regenerate the maximum possible energy, which may be limited in real applications (e.g. by the charging ratio of the energy storage device(s)), the interaction of regenerative braking and the active driving safety systems (ADSSs) such as the anti-lock braking system (ABS) needs to be taken in to account. For maximum recaptured energy via electric motor (E-Motor) braking, the use of regenerative braking, which generates decelerations greater than 0.1g, should be deployed.
2015-05-01
Journal Article
2015-01-9106
Magnus Löfdahl, Arne Nykänen, Roger Johnsson
Abstract In the automotive industry, tire noise is an important factor for the perceived quality of a product. A useful method to address such NVH problems is to combine recordings with measurements and/or simulations into auralizations. An example of a method to create structure-borne tire noise auralizations is to filter recordings of hub forces and moments through binaural transfer functions experimentally measured from the hub of the car to an artificial head in the car cabin. To create authentic auralizations of structure-borne sound, all six degrees of freedom (DOFs) of hub forces and moments and transfer functions should be included. However, rotational DOFs are often omitted due to measurement difficulty, complexity, time, and cost. The objective was to find which DOF (or DOFs) is perceived as most prominent in structure-borne tire noise. An auralization model of interior structure-borne tire noise was used.
2015-04-22
WIP Standard
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
2015-04-21
Standard
ARP4834B
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the selection, inspection, retread and repair of worn civil aircraft tires, and the means to verify that the retreaded tire is suitable for continued service. This document is applicable to both bias ply and radial aircraft tires qualified subsequent to the adoption of this document.
2015-04-14
Collection
Topics of this technical paper collection include (but are not limited to) nonlinear behavior of tires and wheels, static/dynamic stress analysis, nonlinear material modeling, contact stress, impact, noise, vibration, traction, hydroplaning, effect of tires on vehicle performance, rolling resistance, and durability.
2015-04-14
Collection
This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2015-04-14
Collection
This technical paper collection provides information on steering and suspension related topics as it applies to ground vehicles. Papers address new approaches as well as advances in application of steering, suspension related technologies.
2015-04-14
Journal Article
2015-01-1755
Atsushi Hirano
Abstract This paper studies various wheel stiffness configurations, with the aim of enhancing driving stability while minimizing the increase in weight associated with an increase in stiffness. Reinforcement was added to the wheel disk and the wheel rim of standard aluminum wheels for passenger vehicles in order to produce four wheels with different stiffness configurations. The effects of disk stiffness and rim stiffness on tire contact patch profiles and driving stability were quantitatively evaluated. From the results of tests with the four wheels, it was observed that disk stiffness and rim stiffness have differing effects on tire contact patch profiles, and on driving stability. Disk stiffness influences especially tire contact patch length, and tire contact patch length influences especially maneuverability in driving stability. Rim stiffness influences especially tire contact patch area, and tire contact patch area influences especially stability in driving stability.
2015-04-14
Technical Paper
2015-01-1522
Takahiro Yokoyama, Koji Hiratsuka, Shinya Notomi
Abstract Vehicle dynamic performance on snow-covered roads is one aspect of performance that is influenced by tire performance. Much research concerning a vehicle's performance on snow-covered roads has focused on being directed to vehicle control technology that increases control when the tire-slip ratio is larger, such as anti-lock braking systems (ABS) and electronic stability control (ESC). There has been little research, regarding performance when the slip ratio on a snow- covered road is smaller. We studied the friction performance of tires on snow-covered roads to predict vehicle performance within the grip range. We propose a technology for predicting vehicle performance within the small slipangle range and also verify its effectiveness. We established the tire characteristics that assure the grip range on a snow-covered road using performance indicators.
2015-04-14
Technical Paper
2015-01-1515
Kwangwon Kim, Hyeonu Heo, Md Salah Uddin, Jaehyung Ju, Doo-Man Kim
Abstract Due to the relatively high freedom of selection of materials associated with a simple manufacturing method, a nonpneumatic tire (NPT) can be manufactured with a low viscoelastic energy loss material. A highly increasing demand to reduce greenhouse gases drives engineers to explore NPTs. NPTs consisting of flexible spokes and the shear band are still at an early stage of research and development. An optimization study of NPTs' geometry needs to be conducted, which is the objective of this paper. Parametric studies and design of experiments (DOE) of an NPT are conducted with a hyper-viscoelastic finite element (FE) model to determine the effects of three design variables on rolling resistance: the thickness of cellular spokes, the cell angle, and the shear band thickness. Considering vehicle load carrying capacity and riding comfort, ranges of vertical deflection between 18 and 20mm and contact pressure between 0.6 and 0.8MPa are selected as constraints for the optimization.
2015-04-14
Technical Paper
2015-01-1516
Mohammed K Billal, Rizwan Basha, Anilkumar Nesarikar, Abdul Haiyum, Thomas Oery
Abstract Damages (fracture) in metals are caused by material degradation due to crack initiation and growth due to fatigue or dynamic loadings. The accurate and realistic modeling of an inelastic behavior of metals is essential for the solution of various problems occurring in engineering fields. Currently, various theories and failure models are available to predict the damage initiation and the growth in metals. In this paper, the failure of aluminum alloy is studied using progressive damage and failure material model using Abaqus explicit solver. This material model has the capability to predict the damage initiation due to the ductile and shear failure. After damage initiation, the material stiffness is degraded progressively according to the specified damage evolution response. The progressive damage models allow a smooth degradation of the material stiffness, in both quasi-static and dynamic situations.
2015-04-14
Technical Paper
2015-01-1518
Emmanuel O. Bolarinwa, Oluremi Olatunbosun
Abstract Three-dimensional (3D) Finite element (FE) tyre models have been widely used for tyre design, vehicle design and dynamic investigations. Such tyre models have the inherent advantage of covering a wide range of tyre modelling issues such as the detailed tyre geometry and material composition, in addition to an extensive coverage of tyre operational conditions such as the static preload, inflation pressure and driving speed. Although tyre vibration behaviour, in different frequency ranges are of general interest, both for the vehicle interior and exterior noise, the present study is limited to a frequency of 100 Hz which is prevalent in most road induced (Noise, Vibration, Harshness) NVH ride and handling problems. This study investigates tyre vibration behaviour using a proprietary FE code. Such investigation plays an important role in the study of vehicle dynamics.
2015-04-14
Technical Paper
2015-01-1524
Ping Chen, Nan Xu, Konghui Guo, Rongsheng Liu
Abstract The tire lateral force is essential to the vehicle handling and stability under cornering. However, it is difficult for engineers to get the tire lateral force under high loading condition due to the limitation of loading ability for most tire test machine in the world. The widely used semi-empirical tire lateral force models are obtained by curve-fitting experiments data and thus unable to predict the load dependent lateral force. The objective of this paper is to predict the tire lateral force under high-load condition based on the low-load tire data. The nonlinear characteristics of the tire cornering stiffness with the load are greatly affected by the tire carcass compliance. In this paper, a theoretical tire lateral model was built by considering carcass complex deformation. Combined with the relationship between the half-length of the tire contact patch and the load, the non-linear characteristics of the tire cornering stiffness with load were obtained.
2015-04-14
Journal Article
2015-01-1556
Mark E. Gleason, Bradley Duncan, Joel Walter, Arturo Guzman, Young-Chang Cho
Abstract One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
2015-04-14
Journal Article
2015-01-1554
Bastian Schnepf, Thomas Schütz, Thomas Indinger
Abstract Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
2015-04-14
Journal Article
2015-01-1481
Myles Wilson, David Aylor, David Zuby, Joseph Nolan
Abstract The Insurance Institute for Highway Safety (IIHS) evaluates autonomous emergency braking (AEB) systems as part of its front crash prevention (FCP) ratings. To prepare the test vehicles' brakes, each vehicle must have 200 miles on the odometer and be subjected to the abbreviated brake burnish procedure of Federal Motor Vehicle Safety Standard (FMVSS) 126. Other organizations conducting AEB testing follow the more extensive burnishing procedure described in FMVSS 135; Light Vehicle Brake Systems. This study compares the effects on AEB performance of the two burnishing procedures using seven 2014 model year vehicles. Six of the vehicles achieved maximum AEB speed reductions after 60 or fewer FMVSS 135 stops. After braking performance stabilized, the Mercedes ML350, BMW 328i, and Volvo S80 showed increased speed reductions compared with stops using brand new brake components.
2015-04-14
Journal Article
2015-01-0432
Xingxing Feng, Jinglai Wu, Yunqing Zhang, Ming Jiang
Abstract The optimization of vehicle suspension kinematic/compliance characteristics is of significant importance in the chassis development. Practical suspension system contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. However, in most suspension optimization processes these uncertainties are not accounted for. This study explores the use of Chebyshev polynomials to model complex nonlinear suspension systems with interval uncertainties. In the suspension model, several kinematic and compliance characteristics are considered as objectives to be optimized. Suspension bushing characteristics are considered as design variables as well as uncertain parameters. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established to approximate the suspension kinematic/compliance model.
2015-04-14
Journal Article
2015-01-1088
Tomohiko Usui, Tomoya Okaji, Tatsuya Muramatsu, Yoshiyuki Yamashita
Abstract By optimizing parameters related to damping performance and adopting a layout that incorporates the turbine into the damper components, a “Turbine Twin-Damper” lock-up damper was developed that achieves both damping performance and compactness. To reduce losses in the fluid flow channel, a smaller torus was developed that reduce the width of the torus by about 30%.Through the combination of this Turbine Twin-Damper and smaller torus, attenuation of the torque fluctuation transmitted to the transmission to 1/2 or less compared to a conventional product was achieved without increasing the overall width of the torque converter. As a result, the engine speed at cruise fell by 400rpm, and fuel economy improved.
2015-04-14
Technical Paper
2015-01-1096
Robert Lloyd
Abstract The frequent stops of the typical postal delivery vehicle make it an attractive application for regenerative braking. The hydro-mechanical automatic transmission described in SAE paper 2014-01-1717 contains all the functions necessary to implement hydraulic regenerative braking including the accumulator and reservoir. This paper describes the substitution of the hydro-mechanical transmission for the present transmission of the postal LLV vehicles and estimates the performance benefits. The result represents a low impact path for the US Postal Service to extend the useful life of the LLV vehicles and increase the mpg by approx. 100%. A cost comparison between a convention ICE mid-sized passenger sedan and a similar size gas/hydraulic hybrid vehicle illustrates the cost advantage of the hydraulic approach using the new transmission design. Besides lower cost, the vehicle will have greater initial acceleration and 25%+ better mpg.
Viewing 31 to 60 of 10252

Filter