Display:

Results

Viewing 271 to 300 of 11114
2017-03-28
Technical Paper
2017-01-1058
L.V. Pavan Kumar Maddula, Ibrahim Awara
Abstract Increased focus on fuel efficiency and vehicle emissions has led the automotive industry to look into low weight alternative designs for powertrain system components. These new design changes pose challenges to vehicle attributes like NVH, durability, etc. Further, the requirement of high power applications produces even more complexities. The present work explains how a potential design change of half shafts driven by a desire to reduce weight and cost can lead to NVH problems caused by half shaft resonances and explains how using multiple dynamic vibration absorbers can solve the issue to meet customer expectation while improving efficiency. With the aid of Finite Element Analysis (FEA) & optimization software, interactions between multiple DVA’s on a system was understood and optimal damper parameters for effective damping was identified. The final DVA design was tested and verified on the vehicle for optimal attribute performance.
2017-03-28
Technical Paper
2017-01-1727
Yumin Lin, Bo-Chiuan Chen, Hsien-Chi Tsai, Bi-Cheng Luan
Abstract A model-based sensor fault detection algorithm is proposed in this paper to detect and isolate the faulty sensor. Wheel speeds are validated using the wheel speed deviations before being employed to check the sensor measurements of the vehicle dynamics. Kinematic models are employed to estimate yaw rate, lateral acceleration, and steering wheel angle. A Kalman filter based on a point mass model is employed to estimate longitudinal speed and acceleration. The estimated vehicle dynamics and sensor measurements are used to calculate the residuals. Adaptive threshold values are employed to identify the abnormal increments of residuals. Recursive least square method is used to design the coefficients of the expressions for adaptive threshold values, such that the false alarms caused by model uncertainties can be prevented. Different combinations of estimations are employed to obtain 18 residuals.
2017-03-28
Technical Paper
2017-01-1636
Lukas Preusser
Abstract Along with the development and marketability of vehicles without an internal combustion engine, electrically heated surfaces within these vehicles are getting more and more important. They tend to have a quicker response while using less energy than a conventional electric heater fan, providing a comfortable temperature feel within the cabin. Due to the big area of heated surface it is important to spread the heating power in a way that different heat conduction effects to underlying materials are considered. In case an accurate sensor feedback of the targeted homogeneous surface temperature cannot be guaranteed, a thermal energy model of the heated system can help to set and maintain a comfortable surface temperature. For a heated steering wheel development project, different models have been created to meet that aim using mechanistic approaches starting with a predominantly first-order dynamics model and ending with a distributed parameter multi-feedback system.
2017-03-28
Technical Paper
2017-01-1505
Andreas Hackl, Wolfgang Hirschberg, Cornelia Lex, Georg Rill
Abstract The present technical article deals with the modeling of dynamic tire forces, which are relevant during interactions of safety relevant Advanced Driver Assistance Systems (ADAS). Special attention has been paid on simple but effective tire modeling of semi-physical type. In previous investigations, experimental validation showed that the well-known first-order Kelvin-Voigt model, described by a spring and damper element, describes good suitability around fixed operation points, but is limited for a wide working range. When aiming to run vehicle dynamics models within a frequency band of excitation up to 8 Hz, these models deliver remarkable deviations from measured tire characteristics. To overcome this limitation, a nonlinear Maxwell spring-damper element was introduced which is qualified to model the dynamic hardening of the elastomer materials of the tire.
2017-03-28
Technical Paper
2017-01-1504
Peter Tkacik, Zachary Carpenter, Aaron Gholston, Benjamin James Cobb, Sam Kennedy, Ethan Blankenship, Mesbah Uddin, Surya Phani Krishna Nukala
Abstract Wind tunnel aerodynamic testing involving rolling road tire conditions can be expensive and complex to set up. Low cost rolling road testing can be implemented in a 0.3m2 Eiffel wind tunnel by modifying a horizontal belt sander to function as a moving road. This sander is equipped with steel supports to hold a steel plate against the bottom of the wind tunnel to stabilize the entire test section. These supports are bolted directly into the sander frame to ensure minimal vibrational losses or errors during testing. The wind tunnel design at the beginning of the project was encased in a wooden box which was removed to allow easier access to the test section for installation of the rolling road assembly. The tunnel was also modified to allow observers to view the testing process from various angles.
2017-03-28
Journal Article
2017-01-1502
Madeline Harper, Janice Tardiff, Daniel Haakenson, Maria Joandrea, Matthew Knych
Abstract Tire manufacturers have long grappled with the challenge of balancing the conflicting tire attributes of traction, rolling resistance, and treadwear. Improvements to one of these “magic triangle” attributes often comes at the expense of the other attributes. Recent regulations have further increased the pressure on manufacturers to produce optimized tires with minimal performance compromises. In order to meet this challenge, the tire industry is looking to new material systems beyond the traditional tire tread components. Polymeric materials beyond the base elastomers and processing oils used in tread provide opportunities to modify the physical and viscoelastic properties of tread. In this study, various polymeric materials were evaluated as additives in a model tire tread formulation. Hydrocarbon resin, high styrene resin, and thermoplastic styrene elastomers were added to the model formulation at various loading levels and through various addition strategies.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Journal Article
2017-01-1507
Prashanta Gautam, Yousof Azizi, Abhilash Chandy
Abstract Tire noise is caused due to the complex interactions between the rotating tire and the road surface at the tire/road interface. It is usually caused due to a combination of individual noise generation mechanisms, which can either be structural or air-borne. The influence of each of these noise generation mechanism may vary, depending on various conditions such as tire design, road surface and operating conditions. Due to the many variables that affect the noise generation mechanisms in tires, it is usually a very complex task to isolate and categorize those that are present in the overall tire/road noise spectrum. Various approaches are used to categorize noise generation mechanisms in tires. In this paper, a statistical model based on the assumption that the tire noise acoustic pressure at a specific frequency band is related to the vehicle speed, is used, in order to study tire noise at different speeds.
2017-03-28
Technical Paper
2017-01-1509
L. Daniel Metz
Abstract We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
2017-03-28
Journal Article
2017-01-1506
Johannes Wiessalla, Yiqin Mao, Frank Esser
Abstract An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
2017-03-28
Technical Paper
2017-01-1480
Zhenfeng Wang, Mingming Dong, Yechen Qin, Feng Zhao, Liang Gu
Abstract The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
2017-03-28
Technical Paper
2017-01-1481
Kyung-bok Lee, Sanghyuk Lee, Namyoung Kim, Bong Soo Kim, Tae soo Chi, Do young Kim
Abstract Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Journal Article
2017-01-1485
Mikihiro Hiramine, Yoshitaka Hayashi, Takashi Suzuki
Abstract The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
2017-03-28
Journal Article
2017-01-1482
Jens Dornhege, Simon Nolden, Martin Mayer
Abstract The layout of a vehicle steering system has to resolve a compromise. While it is important for lateral vehicle control to feel steering torque feedback of lateral tire to ground interaction, disturbing forces shall not be present in the feedback steering torque. These disturbing forces result from road irregularities, wheel rotor imbalance, suspension asymmetry caused by production tolerances, wear or impacts, and additional vehicle internal forces, e.g. the steered wheels also driven by the engine or braked. In general these disturbances are reduced by an optimization of the suspension geometry to decrease the impact of the unintended forces on the steering system. The remaining disturbance is controlled to an acceptable level via force feedback sensitivity calibration of the steering system, what in return influences the intended driver sensitivity to feel lateral tire forces.
2017-03-28
Technical Paper
2017-01-1483
Jia Mi, Lin Xu, Sijing Guo, Mohamed A. A. Abdelkareem, Lingshuai Meng
Abstract Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
2017-03-28
Journal Article
2017-01-1489
Duanxiang Zhang, Bo Lin, Ahmet Kirli, Chinedum Okwudire
Abstract Electric Power Assisted Steering (EPAS) is widely adopted in modern vehicles to reduce steering effort. It is probable that some EPAS systems will experience a shutdown due to reliability issues stemming from electrical and/or electronic components. In the event of EPAS failure, power assist becomes unavailable and the steering system reverts to a fully manual state, leading to excessive steering torque demands from the driver to maneuver the vehicle at lower speeds, i.e., under 30 mph. This situation has resulted in dozens of reported crashes and several OEM safety recalls in the past few years. Inspired by recent work which utilizes independent driving torque of in-wheel-motor vehicles to reduce steering torque, this paper proposes the use of Differential Braking Assisted Steering (DBAS) to alleviate steep increases in steering torque upon EPAS failure. DBAS requires software upgrades with minimal hardware modification to EPAS, which is preferable for a backup system.
2017-03-28
Technical Paper
2017-01-1487
Russ Norton, Ben Bulat, Ahmed Mohamed
Abstract A semi-active suspension system is designed to improve secondary ride by lowering damping levels while maintaining or enhancing primary ride control and vehicle handling. In order to provide optimized ride comfort, base damping levels are reduced. Reduced damping levels increase damaging loads through pothole events. The Road Load Mitigation (RLM) algorithm seeks to resolve the tradeoff of high damping levels required to control the vertical and horizontal spindle loads and the need for lower damping forces to improve secondary ride. As the base active damping forces are increased to control these loads, ride benefits or vehicle ride comfort is diminished. RLM looks at suspension velocity at all four corners independently to determine if a pothole signature is detected and requires compensation. Compensation is delivered quickly to reduce wheel drop into the pothole thereby reducing damaging loads.
2017-03-28
Technical Paper
2017-01-1490
Silvia Faria Iombriller
Abstract The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
2017-03-28
Technical Paper
2017-01-1488
Srinivas Kurna, Ruchik Tank, Riddhish Pathak
Abstract The job of a suspension system is to maximize the friction between the tires and the road surface, to provide steering stability with good handling and to act as a cushioning device ensuring the comfort of the driver & passengers. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. Almost all heavy duty vehicles use inverted type suspension system which is also called as bogie type suspension system. The design of this type of suspension is a complex and difficult science which has evolved over many years. It was recognized very early in the development of suspensions that the interface between vehicle body and wheel needed some sort of cushioning system to reduce the vibration felt as the vehicle moved along. This was already part of road coach design and took the form of leaf (laminated) steel springs mounted on the axles, upon which the vehicle body rested.
2017-03-28
Technical Paper
2017-01-1494
Weinan Tao, Bingzhao Gao, Hongqing Chu, Mengjian Tian, Hong Chen
Abstract The steer-by-wire system has been widely studied due to many advantages such as good controllability. In the system, the steering column is cancelled and the driver can't feel the feedback torque (also called steering feeling) coming from the ground. Therefore a steering feeling feedback system is needed. In this paper, we propose a simple method to calculate desired feedback torque based on a nonlinear 2DOF vehicle model. The vehicle model contains the nonlinearity of tire. So that the proposed method is also appropriate for big acceleration conditions. Besides that, the properties of steering system such as friction and stiffness are also taken into consideration. As for conventional steering system, driver can only feel part of the feedback torque due to the power assist system. In order to provide steering feeling similar to conventional steering system, a weighting function is proposed to compensate the influence of power assist system.
2017-03-28
Technical Paper
2017-01-1495
Srinivas Kurna, Ruchik Tank, Krishna Srikanth Achanta
1. Abstract At the time of invention of road coaches, the vehicle consisted only of an axle with wheels and a body attached. Smooth roads were built for a better ride comfort however they were not consistent. The road coaches were too bumpy and uncomfortable for the passenger along with the driver who was not able to control the vehicle. That's why the engineers had to shift their attention to the suspension system for a better ride comfort and handling. The technology has advanced with time so as the suspension system. Rubber ended type leaf spring is one of the suspension system types available in the industry. The main function of a suspension in order of importance is as below: 1 Acts as a cushioning device ensuring the comfort of the driver and passengers;2 Maximizes the contact between the tires and the road surface to provide steering stability with good handling;3 Protects the vehicle itself and any cargo or luggage from damage and wear.
2017-03-28
Journal Article
2017-01-1493
Dexin Wang, Yiqin Mao, Timothy Drotar, Frank Esser, Hessel van Dijk, Michel Paas
Abstract Subjective steering feel tuning and objective verification tests are conducted on vehicle prototypes that are a subset of the total number of buildable combinations of body style, drivetrain and tires. Limited development time, high prototype vehicle cost, and hence limited number of available prototypes are factors that affect the ability to tune and verify all the possible configurations. A new model-based process and a toolset have been developed to enhance the existing steering development process such that steering tuning efficiency and performance robustness can be improved. The innovative method utilizes the existing vehicle dynamics simulation and/or physical test data in conjunction with steering system control models, and provides users with simple interfaces which can be used by either CAE or development engineers to perform virtual tuning of the vehicle steering feel to meet performance targets.
2017-03-28
Technical Paper
2017-01-1491
Manish Kumar Seth, Jens Glorer, Ralf Schellhaas
Abstract For long automakers around the globe are trying to reduce weight and cost of the components in order to make vehicles more cost and fuel efficient. This paper deals with same problem for rear twist beam for an upcoming vehicle, the task was to reduce the weight and cost of the twist beam structure without compromising on attributes as compared to the surrogate part. This problem was solved by inventing a new torsion profile and gusset combination which uses shape instead of thickness to use material more efficiently thereby reducing weight and cost. This invention has been successfully patented as well.
2017-03-28
Technical Paper
2017-01-1537
Ananya Bhardwaj
Abstract Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies.
2017-03-28
Journal Article
2017-01-1519
Arturo Guzman, Young-Chang Cho, John Tripp, Kumar Srinivasan
Abstract Pickup trucks are designed with a taller ride height and a larger tire envelope compared to other vehicle types given the duty cycle and environment they operate in. These differences play an important role in the flow field around spinning wheels and tires and their interactions with the vehicle body. From an aerodynamics perspective, understanding and managing this flow field are critical for drag reduction, wheel design, and brake cooling. Furthermore, the validation of numerical simulation methodology is essential for a systematic approach to aerodynamically efficient wheel design as a standard practice of vehicle design. This paper presents a correlation the near-wheel flow field for both front and rear spinning wheels with two different wheel designs for a Ram Quad Cab pick-up truck with moving ground. Twelve-hole probe experimental data obtained in a wind tunnel with a full width belt system are compared to the predictions of numerical simulations.
2017-03-28
Technical Paper
2017-01-1326
Santhoji Katare, Ravichandran S, Gokul Ram, Giri Nammalwar
Abstract Model based computer-aided processes offer an economical and accelerated alternative to traditional build-and-test "Edisonian" approaches in engineering design. Typically, a CAE based design problem is formulated in two parts, viz. (1) the inverse design problem which involves identification of the appropriate geometry with desired properties, and (2) the forward problem which is the prediction of performance from the product geometry. Solution to the forward problem requires development of an accurate model correlated to physical data. This validated model could then be used for Virtual Verification of engineering systems efficiently and for solving the inverse problem. This paper demonstrates the rigorous process of model development, calibration, validation/verification, and use of the calibrated model in the design process with practical examples from automotive chassis and powertrain systems.
2017-03-28
Technical Paper
2017-01-1284
Khushal Ahmad, Monis Alam
Abstract With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
2017-03-28
Technical Paper
2017-01-1113
Yulong Lei, Pengxiang Song, Hongpeng Zheng, Yao Fu, Zhenjie Liu, Xuanyi Fu
Abstract Hydraulic retarders have been widely used in heavy-duty vehicles because of its advantages such as large braking torque and long operating hours. They can be used instead of service brakes in non-emergency braking conditions and can also reduce frequency and time of driver’s actions in braking process, thereby minimizing heat-related problems. In order to accurately produce braking torque needed for the vehicle in time by using hydraulic retarder, which enable the vehicle to travel stably and safely during downhill driving, aiming at the constant-speed function of hydraulic retarder, the research of constant-speed control method is conducted in this paper. The structure and working principle of hydraulic retarder is introduced and the dynamic characteristic is analyzed. And the theoretical model of vehicle and hydraulic retarder are established based on dynamic analysis of the vehicle downhill driving.
2017-03-28
Journal Article
2017-01-1111
Marcello Canova, Cristian Rostiti, Luca D'Avico, Stephanie Stockar, Gang Chen, Michael Prucka, Hussein Dourra
Abstract To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Viewing 271 to 300 of 11114

Filter