Display:

Results

Viewing 1 to 30 of 11080
2017-12-15
Article
VW's compact SUV gets a touch of Porsche chassis expertise.
2017-12-11
Article
Hyundai engineers deployed the G70 sedan platform for this surprisingly high performance 5-passenger sportback.
CURRENT
2017-12-07
Standard
J2932_201712
This document provides test performance requirements for air disc brake actuators for service and combination service parking brake actuators with respect to function, durability and environmental performance when tested according to SAE J2902.
2017-12-07
WIP Standard
AS24586C
SCOPE IS UNAVAILABLE.
2017-12-03
Article
To avoid the Z06's overheating woes, Chevrolet verified the 755-hp Z06 in 100º F testing.
2017-12-03
Article
The use cases for three-dimensional printed automobile parts are plentiful, but production applications of the additive manufacturing process have been almost non-existent -- until now.
CURRENT
2017-11-29
Standard
J246_201711
This SAE Standard covers complete general and dimensional specifications for tube fittings of the spherical and flanged sleeve compression types for use in the piping of air brake systems on automotive vehicles. The spherical sleeve compression type Figures 1A to 5 and Tables 1 to 3 is intended for use with annealed copper alloy tubing per SAE J1149, Type 1. The flanged sleeve compression type Figures 6A to 11 and Tables 4 to 6 is intended for use with nylon tubing per SAE J844. It is not intended to restrict or preclude other designs of a tube fitting for use with SAE J844, air brake tubing. Performance requirements for SAE J844 are covered in SAE J1131. See SAE J1131 for the Performance Requirements of Reusable (Push to Connect) Fittings Intended for Use in Automotive Air Brake Systems.
CURRENT
2017-11-29
Standard
J2675_201711
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under combined cornering and braking conditions. The properties are acquired as functions of slip angle, normal force, and slip ratio. Slip angle and normal force are changed incrementally using a sequence specified in this document. At each increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control.
2017-11-28
WIP Standard
J2598
This procedure is applicable to brake pad modes between 500 Hz. and 16 kHz. The parameters measured with this procedure are defined as the first three natural frequencies, fn (n=1, 2, 3), and the corresponding loss factors, .
2017-11-20
Technical Paper
2017-01-5021
Greg Suter, Lodewijk Wijffels, Oliver Nehls
This paper will detail the development of a Handling Controller designed to assist the driver in recovering from oversteer situations using an Active Front Steering (AFS) system. The AFS system uses an electric motor to provide a steering angle overlay to the driver’s steering input. This angle can be used to supplement countersteer during an oversteer event, and to rapidly remove countersteer when the sideslip is collapsing, preventing a fishtailing situation. Key factors considered in designing the system were functional safety considerations for potential sensor failures, and how to assist the driver without creating an unnatural feel or excessive torque feedback in the steering wheel. This system may be used to supplement brake stability controls, increasing stability levels with less harshness. The lessons learned from this application may also be used in designing autonomous steering systems to recover from oversteer situations.
2017-11-17
WIP Standard
J431
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. Note: This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
2017-11-16
WIP Standard
J2786
This document defines various vehicular noises and vibrations that are attributed to being created by the brake system of the vehicle. These definitions cover both disc and drum brakes. The frequency ranges from near zero hertz (tactile sensations) all the way up to 17 kilohertz, or the upper limit of normal hearing. These noises and vibrations may either directly radiate off the brake system or provide the excitation energy that cause other vehicle components to react.
CURRENT
2017-11-15
Standard
J840_201711
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process.
CURRENT
2017-11-15
Standard
AMS4951J
This specification covers one grade of commercially pure titanium in the form of wire for welding filler metal.
2017-11-14
Article
Porsche's spicier new Cayenne gets stronger and lighter for 2018.
CURRENT
2017-11-14
Standard
J2564_201711
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a. ABS - Antilock Brake Systems b. TCS - Traction Control Systems c. ESC - Electronic Stability Control The document is technical in nature and attempts to remain neutral regarding unique features that individual system or vehicle manufacturers may provide.
2017-11-13
WIP Standard
J513
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
2017-11-10
WIP Standard
J2717
This SAE Recommended Practice describes a trio of test methods which determine basic tire size (geometry), mass, and moments of inertia. The methods apply to any tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular surfaces paved or unpaved. Within the context of this Recommended Practice, forces applied to the surface on which the tire is operating are not considered.
2017-11-10
WIP Standard
J2705
This SAE Recommended Practice describes a test method for determining properties of a non-rolling tire quasi-statically enveloping either a set of triangular cleats or a single step cleat. In the case of the triangular cleats the normal force and vertical deflection of the non-rolling tire are determined. In the case of the step cleats the normal force, longitudinal force, and vertical deflection of the non-rolling tire are determined. The method applies to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are intended for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered.
2017-11-05
Technical Paper
2017-32-0018
Masayuki Miki, Tetsuya Kimura
The stability factor is widely used for four-wheel vehicles as an index representing the turning performance of a vehicle. Stability factor for two-wheel vehicles has been proposed as an indicator of cornering performance from the same way of thinking. In line traceability evaluation as a sensory evaluation item of motorcycles, the expressions of understeer and oversteer are sometimes used, but the relation with stability factor for two-wheel vehicles has not been investigated. In this paper, a test in which the slip angle characteristics of the front and rear tires were varied using a riding simulator was conducted, and the correlation between the stability factor and the rider evaluation was investigated to derive an index showing the line traceability.
2017-11-05
Technical Paper
2017-32-0039
Satoshi Itoh, Michiyasu Yamamoto
One of the fuel efficiency improvement policy of Small vehicle included Regenerative Braking System (JSAE 20139006 / SAE 2013-32-9006), but developed New Compact Hybrid System to realize further fuel efficiency improvement. The previous system has losses for the engine friction when deceleration energy is collected, but the new system realizes effective regeneration with separating the engine. The new system collect deceleration energy in decelerating time and coasting as well as the previous system, but the fuel consumption with the engine is minimized by running EV with the collected energy and realize further fuel efficiency improvement. In addition, the assist is also performed with collected energy, so both good efficiency and good accelerating performance are realized. This system adopts Auto Gear Shift® system (following, AGS) which is based on a manual transmission.
2017-11-05
Technical Paper
2017-32-0086
Shinji Takayanagi, Kiyotaka Sakai, Takashi Iwasa, Tomoyuki Matsumura, Shigehiro Yamaguchi, Kenji Tanaka
A low fuel consumption tire with an affordable price that is applicable for small motorcycles marketed mainly for India and Southeast Asian countries was developed. Two contradicting requirements, which are reduction of the rolling resistance and retention of the wet grip performance, were satisfied by applying a method based on viscoelastic properties of the tread rubber. Regarding the composition of compound of the tread rubber, the amounts of carbon black and oil were reduced instead of using silica. In addition, a polymer having a high glass transition temperature was employed. Moreover, response to the roll motion, which is unique in motorcycles, was made satisfactory to the requirement by modifying the dynamic modulus E* of the tread rubber. With those measures, the rolling resistance was reduced by more than 15% to conventional tires while maintaining the basic performances such as tire grip and stability in maneuvering.
2017-11-05
Technical Paper
2017-32-0123
Girish Kokane, Dinesh Kalani, Ravindra Kharul, Muragendra Magdum
With advancements in powertrain technologies & light weighting of vehicle structures, the average driving speeds of motorcycles are increasing. This makes it important to safeguard the vehicle structure from possible impact loads or crash events. The front suspension of a motorcycle typically consists of telescopic front fork which acts as a structural member as well. Thus modern vehicle front forks should be designed keeping in mind frontal impacts as well. Which means the structural stiffness of front fork needs to be optimally designed so that during impacts, the structure should deflect absorbing the bulk of the impact energy safeguarding the rest of the vehicle structure including chassis. At the same time the front fork should not break. The popular design improvement techniques like increasing section modulus, heat treatments to increase strength may or may not have positive effect on impact strength.
2017-11-02
Article
Hoist Liftruck Manufacturing is bringing full electrification for some of the biggest forklift trucks, motivated only in part by regulatory pressures. They are also proving to be less expensive to operate versus their ICE counterparts.
CURRENT
2017-10-30
Standard
J2686_201710
This SAE Recommended Practice is intended for qualification testing for brake drums used on highway commercial vehicles with air brakes using an inertia-dynamometer procedure. This Recommended Practice consists of two distinct tests: Part A - durability and speed maintenance test, and Part B - heat check drag sequence test. Each test can be considered to be an independent evaluation of the brake drum which tests different properties.
2017-10-26
WIP Standard
ARP6812
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Brake Temperature Monitoring Systems (BTMS), and sometimes referred to as Brake Temperature Indication Systems (BTIS). The BTMS is limited to aircraft where a dispatch indication and brake temperature indication is required. The scope of this BTMS equipment shall be limited to the 1) brake temperature sensor or indicator, 2) temperature reference measurement, if required, and 3) processing and communication of brake temperature. This recommended practice will not address cockpit ergonomics and aircraft operating procedures.
CURRENT
2017-10-25
Standard
J3087_201710
Develop and propose an SAE Recommended Practice for AEB system performance testing which: 1. Establishes uniform vehicle level test procedures 2. Identifies target equipment, test scenarios, and measurement methods 3. Identifies and explains the performance data of interest 4. Does not exclude any particular system or sensor technology 5. Identifies the known limitations of the information contained within (assumptions and "gap") 6. Intended to be a guide toward standard practice and is subject to change on pace with the technology 7. Limited to "Vehicle Front to Rear, In-lane Scenarios" for initial release
2017-10-24
WIP Standard
J2494/3
This SAE Standard is intended to establish uniform performance criteria and methods of testing push to connect tube fittings, with SAE J844 air brake tubing as used in vehicular air brake systems. The specific tests and performance criteria applicable to the tubing are set forth in SAE J844. The test values contained in this performance standard are for test purposes only. For environmental and usage limitations, see SAE J844.
2017-10-23
Technical Paper
2017-01-7008
Yoshiharu Inaguma
Abstract This article describes cavitation in a hydraulic disk valve to control an inlet pressure by changing a valve opening at a constant flow rate and an outlet pressure. In the hydraulic system, because the cavitation occurs often and causes an unpleasant noise as well as an instability in pressure-flow control, the cavitation avoidance is important. Hence, for cavitation avoidance under a high pressure condition, the influences of the specifications of the disk and nozzle as well as operating conditions on the cavitation and the inlet pressure change against the valve opening are experimentally investigated. Under a constant flow rate and an outlet pressure, the inlet pressure rises and the cavitation appears when the valve opening decreases. By decreasing the valve opening more, however, the cavitation disappears despite a rise in the inlet pressure. In addition, the round edge at the nozzle outlet is effective in avoiding the cavitation.
CURRENT
2017-10-23
Standard
J393_201710
This SAE Recommended Practice establishes uniform engineering nomenclature for wheels, hubs, rims, and their components used in truck, bus, and trailer applications. This nomenclature and accompanying drawings are intended to define functional truck wheel, hub, and rim designs. For nomenclature specific to “passenger-type” disc wheels, refer to SAE J1982. The International Standard (ISO) nomenclature is shown in parentheses when different than SAE J393.
Viewing 1 to 30 of 11080

Filter