Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 1148
2017-10-13
Technical Paper
2017-01-7006
Gao Ke, Zhao Weiqiang, Xiaojian Han
As the main passenger and freight transport equipment,commercial vehicle’s safety and comfort has become particularly important.Due to the long traveled distance,commercial vehicle is equipped with more than one driver.Different drivers have their unique steering behavior and same driver have a large physical power change when driving for a long time.Therefore,the needs of drivers cannot be met by a single model of the steering characteristics.If the vehicle steering characteristics are not suitable for the drivers,the vehicle will always produce too much/ little of the steering angle when driver controls steering system.The steering angle need to be adjusted again by driver when this happens.The occurrence of such a situation will affect the road safety, and cause extra burden on driver. On the basis of the traditional hydraulic power, dynamic steering system adds an electric servo motor to the steering column.
2017-09-17
Technical Paper
2017-01-2505
Mahesh Shridhare, Santosh Sonar, Manish Ranawat, Ajit Kumar Jindal
Abstract This paper explains a method to estimate and reduce brake pulling of vehicles due to force difference between RH and LH brake during straight ahead braking. One of the cause of brake pulling during straight ahead braking is brake force difference between right and left brakes of front and rear axles. It is challenging to eliminate this unwanted pulling especially during panic braking in shorter wheelbase vehicles having high center of gravity (CG) and drum brake on all wheels. A mathematical model is developed to estimate amount of brake pulling from known parameters like brake force, tire properties, steering geometry, suspension hard points, vehicle CG, scrub radius, castor angle etc. Vehicle tests were conducted to measure amount of brake pulling and close correlation was observed between vehicle test results and derived model.
2017-09-17
Technical Paper
2017-01-2508
Xianyao Ping, Shengguang Xiong, Gangfeng Tan, Jialiang Liu
Abstract Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
2017-09-17
Technical Paper
2017-01-2534
Silvia Faria Iombriller, Wesley Bolognesi Prado
Summary Considering that the most part of commercial vehicles are equipped with air brakes it is very important assure specific technical requirements for air brake system and its components. In addition, the effects of brake system failure are more critical for commercial vehicles which require more attention on their requirements details. Historically, the development of air brakes technology started on North America and Europe and consequently two strong and distinct resolutions were structured: FMVSS 121 and ECE R.13, respectively. For passenger cars were developed the ECER.13H to harmonize North American and European resolutions. However, for commercial vehicles regional applications, culture and implementation time must be considered. These commercial vehicles peculiarities must be understood and their specific requirements harmonized to attend the global marketing growth.
2017-09-17
Technical Paper
2017-01-2535
Yongbing Xu, Binyu Mei, Longjie Xiao, Wanyang XIA, Gangfeng Tan
Abstract The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
2017-09-17
Technical Paper
2017-01-2500
Bo Huang, Wanyang Xia, Gangfeng Tan, Longjie Xiao, Zongsong Wang
Abstract Head-up Display (HUD) system can avoid drivers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will use the indicator symbol‘s color and position change to remind drivers to brake or accelerate. Drivers can do driving operation timely and accurately. The system has the advantages of safety, intuition and real-time. The vehicle safe speed is calculated according to the road parameters, like adhesion coefficient and slope, and vehicle parameters, such as vehicle mass and centroid. Then, the appropriate braking operations are obtained by combining the vehicle driving state.
2017-09-17
Technical Paper
2017-01-2493
Sivakumar Palanivelu, Jeevan Patil, Ajit Kumar Jindal
Abstract Apart from being an active safety system the brake system represents an important aspect of the vehicle dynamics. The vehicle retardation and stopping distance completely depend upon the performance of brake system and the functionality of all components. However, the performance prediction of the entire system is a challenging task especially for a complex configuration such as multi-axial vehicle applications. Furthermore, due to its complexity most often the performance prediction by some methods is limited to static condition. Hence, it is very important to have equivalent mathematical models to predict all performance parameters for a given configuration in all different conditions This paper presents the adopted system modelling approach to model all the elements of the pneumatic brake system such as dual brake valve, relay valve, quick release valve, front and rear brake actuators, foundation brake etc.
2017-09-17
Technical Paper
2017-01-2491
Baskar Anthonysamy, Arun Kumar Prasad, Babasaheb Shinde
Abstract Automotive industry has led to constant production innovation among manufactures. This has resulted in the reduction of the life cycle of the design philosophies and design tools. One of the performance factors that have continues to challenge automotive designer is to design and fine tune the braking performance with low cost and short life cycle. Improvement in braking performance and vehicle stability can be achieved through the use of braking systems whosebrake force distribution is variable. Braking force distribution has an important and serious role in thevehicle stopping distance and stability. In this paper a new approach will be presented to achieve the braking forcedistribution strategy for articulated vehicles. For this purpose, the virtual optimization process has beenimplemented.
2017-07-10
Technical Paper
2017-28-1985
Hemasunder Banka, Radhika Muluka, Vikram Reddy
Abstract Conventional materials like steel, brass, aluminum etc will fail without any indication, cracks initiation, propagation, will takes place with a short span. Now-a-days to overcome these problem, conventional materials are replaced by hybrid composite material. Not only have this conventional material failed to meet the requirement of high technology applications, like space applications and marine applications and structural applications in order to meet the above requirements new materials are being searched. Hybrid composites materials found to the best alternative with its unique capacity of designing the materials to give required properties and light weight. This paper aims to preparing hybrid composite using artificial fibers. Epoxy as resin and glass fiber as fiber for artificial hybrid composite to make a laminate for preparing leaf spring.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Abstract Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional DOF is brought in and the transverse stiffness is relatively weak. When the articulated vehicle runs in a high speed along a straight line, it is easy to cause the transverse swing and the poor handling stability. If it is serious enough, it will lead to "snakelike" instability phenomenon. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. The vehicle will have a lateral migration of center of gravity (CG) when steering, which will lead a higher probability of rollover accident. A dynamic mathematical model for a 35t articulated truck with four motor-driven wheels was established in this paper, to study the condition for its stable driving and the influence of the vehicle structural parameters.
2017-06-05
Technical Paper
2017-01-1837
Paul R. Donavan, Carrie Janello
Abstract Acoustic beamforming was used to localize noise sources on heavy trucks operating on highways in California and North Carolina at a total of 20 sites. Over 1,200 trucks were measured under a variety of operating conditions, including cruise on level highways, on upgrades, down degrades, low speed acceleration, and for various speeds and pavements. The contours produced by the beamforming measurements were used to identify specific source contributions under these conditions and for a variety of heavy trucks. Consistently, the highest noise levels were seen at the tire-pavement interface, with lesser additional noise radiated from the engine compartment. Noise from elevated exhaust stacks was only documented for less than 5% of the trucks measured. The results were further reduced to produce vertical profiles of noise levels versus height above the roadway. The profiles were normalized to the highest noise level at ground level.
2017-06-05
Technical Paper
2017-01-1836
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Abstract Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
2017-05-24
Technical Paper
2017-36-0001
Luís Fernando Nuss de Souza, Antônio Carlos de Oliveira, Narã Vieira Vetter
Abstract After the anti-skid brake system (ABS) introduction, mandatory for all vehicles in the Brazilian market, manufacturers have given increasing attention to optimized systems which meet legal and safety requirements. For commercial vehicles, an alternative for the ABS, which presents feasibility, is the configuration 4S/3M (4 wheel-speed sensors and 3 modulator valves) in substitution to the configuration 4S/4M. In other words, application of just one modulator valve to control the brakes of the same axle, front or rear, instead of independent control per each brake of the vehicle. The aim of this paper is to present a performance comparison between a brake system fitted with ABS configuration 4S/3M and an ABS configuration 4S/4M. To this end, both configurations were tested on the same vehicle application in accordance with the Brazilian legislation, CONTRAN 519/15.
2017-05-24
Technical Paper
2017-36-0004
Wesley Bolognesi Prado, Silvia Faria Iombriller, Jonathan Orsi Chiu, Alexandre Roman
Abstract S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-03-28
Technical Paper
2017-01-0436
Tianjun Zhu, Bin Li
Abstract A new extended planar model for multi-axle articulated vehicle with nonlinear tire model is presented. This nonlinear multi-axle articulated vehicle model is specifically intended for improving the model performance in operating regimes where tire lateral force is near the point of saturation, and it has the potential to extend the specific axles model to any representative configuration of articulated vehicle model. At the same time, the extended nonlinear vehicle model can reduce the model's sensitivity to the tire cornering coefficients. Firstly, a nonlinear tire model is used in conjunction with the 6-axle planar articulated vehicle model to extend the ranges of the original linear model into the nonlinear regimes of operation. Secondly, the performance analysis of proposed nonlinear vehicle model is verified through the double lane change maneuver on different road adhesion coefficients using TruckSim software.
2017-03-28
Technical Paper
2017-01-0428
Tianqi Lv, Yan Wang, Xingxing Feng, Yunqing Zhang
Abstract Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-1495
Srinivas Kurna, Ruchik Tank, Krishna Srikanth Achanta
1. Abstract At the time of invention of road coaches, the vehicle consisted only of an axle with wheels and a body attached. Smooth roads were built for a better ride comfort however they were not consistent. The road coaches were too bumpy and uncomfortable for the passenger along with the driver who was not able to control the vehicle. That's why the engineers had to shift their attention to the suspension system for a better ride comfort and handling. The technology has advanced with time so as the suspension system. Rubber ended type leaf spring is one of the suspension system types available in the industry. The main function of a suspension in order of importance is as below: 1 Acts as a cushioning device ensuring the comfort of the driver and passengers;2 Maximizes the contact between the tires and the road surface to provide steering stability with good handling;3 Protects the vehicle itself and any cargo or luggage from damage and wear.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1490
Silvia Faria Iombriller
Abstract The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
2017-03-28
Technical Paper
2017-01-1575
Andrei Keller, Sergei Aliukov, Vladislav Anchukov
Abstract Trucks are one of the most common modes of transport and they are operated in various road conditions. As a rule, all-wheel drive trucks are equipped with special systems and mechanisms to improve their off-road capability and overall efficiency. The usage of blocked mechanisms for power distribution is one of the most popular and effective ways to improve the off-road vehicle performance. However, the lock of differential may adversely affect the stability and control of vehicle because of the unobvious redistribution of reactions acting on wheels, which consequently leads to poor performance and safety properties. Problems of rational distribution of power in transmissions of all-wheel drive vehicles, as well as research in the field of improving directional stability and active safety systems are among the priorities in modern automotive industry.
2017-03-28
Technical Paper
2017-01-1579
Liang-kuang Chen, Chien-An Chen
Abstract The development of an integrated controller for a 4WS/4WD electric bus is investigated. The front wheel steering angle is assumed to be controlled by the human driver. The vehicle is controlled by the rear wheel steering and the yaw moment that can be generated by the differential torque/brake control on each wheel. The high speed cornering is used as the testing scenario to validate the designed controller. Due to the highly nonlinear and the multiple-input and multiple-output nature, the control design is separated into different stages using the hierarchical layer control concept. The longitudinal speed is controlled using a PI controller together with a rule-based speed modification. The other two control inputs, namely the rear wheel steering and the DYC moment, are then designed using the state-dependent Riccati equation method. The designed controllers are evaluated using computer simulations first, and the simulations showed promising results.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Journal Article
2017-01-0404
Anatoliy Dubrovskiy, Sergei Aliukov, Sergei Dubrovskiy, Alexander Alyukov
Abstract Currently, a group of scientists consisting of six doctors of technical sciences, professors of South Ural State University (Chelyabinsk, Russia) has completed a cycle of scientific research for creation of adaptive suspensions of vehicles. We have developed design solutions of the suspensions. These solutions allow us to adjust the performance of the suspensions directly during movement of a vehicle, depending on road conditions - either in automatic mode or in manual mode. We have developed, researched, designed, manufactured, and tested experimentally the following main components of the adaptive suspensions of vehicles: 1) blocked adaptive dampers and 2) elastic elements with nonlinear characteristic and with improved performance.
2017-03-28
Journal Article
2017-01-0419
Yuliang Yang, Yu Yang, Ying Sun, Jian Zeng, Yunquan Zhang
Abstract In addition to ride comfort, handling stability and other conventional vehicle performances, we should also focus on other aspects of performance to a center axle trailer combination, such as the maximum stable side-inclination, the anti-rolling stability, the lateral stability and so on. Based on the finite element method, a rigid-flexible coupling model for the truck combination was built and analyzed in the multi-body environment (ADAMS), in which the key components of the chassis and cab suspension were treated as flexible bodies. A series of simulations were carried out to evaluate the lateral stability of the center axle trailer in accordance with the relevant regulations of the vehicle. The influence of design variables on the lateral stability was studied by an experiment. Furthermore, in order to improve the lateral stability of the trailer combination, the optimal design was obtained by the co-simulation of the ADAMS/Car, iSIGHT and Matlab.
2017-03-28
Journal Article
2017-01-0437
Bin Li, Subhash Rakheja
Abstract In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
2017-03-28
Journal Article
2017-01-1554
Ajith Jogi, Sujatha Chandramohan
Abstract Over the years, commercial vehicles, especially tractor-semitrailer combinations have become larger and longer. With the increasing demand for their accessibility in remote locations, these vehicles face the problem of off-tracking, which is the ensuing difference in path radii between the front and rear axles of a vehicle as it maneuvers a turn. Apart from steering the rear axle of the semitrailer, one of the feasible ways of mitigating off-tracking is to shift the fifth wheel coupling rearwards. However, this is limited by the distribution of the semitrailer’s load between the two axles of the tractor; any rearward shift of the fifth wheel coupling results in the reduction of the total static load on the tractor’s front axle and hence available traction. This may in turn lead to directional instability of the vehicle. In the present work, a new model of the fifth wheel coupling is proposed which the authors call Split fifth wheel coupling (SFWC).
2017-01-10
Technical Paper
2017-26-0310
Vyankatesh Madane, Sameer Shivalkar, Chandrakant Patil, Sanjeev Annigeri
Abstract In rubber industry, different techniques are used to enhance durability. This paper gives complete design, development and testing methodology of rubber bush in which pre-compression of rubber is used to enhance rubber bush life. In bogie suspension, axle to torque rod join is critical as it has to transfer lateral and longitudinal load with flexibility. This makes challenging to design joint which need to carry more than 6 ton load and having flexibility of more than 10 degree articulation. In this torque rod to axle joint called as End bush, compressed rubber is used to carry high load with flexibility. Other possible material for bush can be brass bush which able to carry high load however not able to give high flexibility Design and finite element calculations are done to design pre-compression and rubber volume to get desired strength and stiffness to carry required load with flexibility.
Viewing 1 to 30 of 1148

Filter