Criteria

Text:
Topic:
Display:

Results

Viewing 241 to 270 of 8158
2016-06-15
Technical Paper
2016-01-1832
Ramakrishna Kamath
Intermediate shaft assembly is used to connect steering gear to the steering wheel. The primary function of the intermediate shaft is to transfer torsional loads. There is a high probability of noise propagating through the Intermediate shaft to the driver. The current standard for measuring the noise is by performing vehicle level subjective evaluations. If improperly clamped at either of the yokes, a sudden change in the direction of the torsional load on the Intermediate shaft can generate a displeasing noise. Noise can also be generated from the constant velocity joint. Intermediate shaft noise can be measured using a microphone or can be correlated to acceleration values. The benefit of measuring the acceleration over sound pressure level is the reduction of complexity of the test environment and test set up. The nature of the noise in question requires the filtering of low frequency data. This paper presents a new test procedure that has been developed by General Motors.
2016-06-15
Technical Paper
2016-01-1765
Kelly Savva, Ahmed Haris, Eliot Motato, Mahdi Mohammadpour, Stephanos Theodossiades, Homer Rahnejat, Patrick Kelly, Alexander Vakakis, Lawrence Bergman, Donald McFarland
Abstract Legislation on vehicle emissions and the requirements for fuel efficiency are currently the key development driving factors in the automotive industry. Research activities to comply with these targets point to engine downsizing and new boosting technologies, which have adverse effects on the NVH performance, durability and component life. As a consequence of engine downsizing, substantial torsional oscillations are generated due to high combustion pressures. Meanwhile, to attenuate torsional vibrations, the manufacturers have implemented absorbers that are tuned to certain frequency ranges, including clutch dampers, Dual Mass Flywheel (DMF) and centrifugal pendulum dampers. These devices add mass/inertia to the system, potentially introducing negative effects on other vehicle attributes, such as weight, driving performance and gear shiftability.
2016-06-15
Journal Article
2016-01-1827
Giorgio Bartolozzi, Marco Danti, Andrea Camia, Davide Vige
Abstract The time to market in the automotive industry is constantly decreasing pushing the carmaker companies to increase the efforts in numerical simulations and to decrease the number of prototypes. In the NVH field, this time constraint reflects in moving the well-established finite element simulations towards the so called “full-vehicle simulations”. Specifically, the CAE techniques should be able to predict the complete behavior of the vehicles in mission conditions, so to reproduce some usual tests, such as the “coast down” test on different roads. The aim of this paper is to present a methodology to improve rolling noise simulations exploiting an integrated full-vehicle approach. An accurate modeling of all the subsystems is needed, with particular attention to the wheels and the suspension systems. Therefore, the paper firstly covers the modeling approach used to obtain the FE models of tires and suspension system.
2016-06-15
Technical Paper
2016-01-1834
Florian Fink, Gregor Koners
Abstract This paper describes the prediction process of wheel forces and moments via indirect transfer path analysis, followed by an analysis of the influence of wheel variants and suspension modifications. It proposes a method to calculate transmission of noise to the vehicle interior where wheel forces and especially moments were taken into account. The calculation is based on an indirect transfer path analysis with geometrical modifications of the frequency response functions. To generate high quality broadband results, this paper also points out some of the main clearance cutting criteria. The method has been successfully implemented to show the influence of wheel tire combinations as well as the influence of suspension modifications. Case studies have been performed and will be presented in this paper. Operational noise and vibration measurements have been carried out on Daimler NVH test tracks. The frequency response functions were estimated in an acoustic laboratory.
2016-06-15
Journal Article
2016-01-1777
Sebastian Oberst, Zhi Zhang, Joseph CS Lai
Abstract Despite significant progress made in the past 20 years in discovering some of the mechanisms of brake squeal, it remains difficult to predict the underlying friction-induced instabilities reliably. Most numerical analyses are based on linear deterministic analyses of structural vibrations such as the complex eigenvalue analysis (CEA). However, nonlinear multi-scale processes govern friction contact with high sensitivities to operating and/or environmental conditions. In addition, uncertainties in the material properties and boundary conditions such as contact and friction laws are rarely considered. Hence, it is quite common to underpredict or overpredict the number of instabilities and extensive brake noise dynamometer tests are still required in industry to ensure acceptable brake noise performance. In this paper, simplified finite element brake models are used to illustrate the role of nonlinearity in brake squeal.
2016-05-11
Technical Paper
2016-36-0064
V. R. M. Gonçalves, L. C. F. Canale, V. Leskovšek, B. Podgornik
Abstract Spring steels are the materials most commonly used in suspensions of vehicles and are subject to heavy efforts in terms of load, impact and also under intense fatigue solicitation. Required mechanical performance depends mainly on the chemical composition and heat treatments. Therefore, the aim of the present work was to compare SAE 5160 steel with one Super Clean steel developed in Slovenia. Searches improving mechanical properties of these steels are constantly present in the automotive industry, reducing vehicle weight and maintaining safety. In this scenario, cryogenic treatment in combination with quenching and tempering has shown interesting results in the scientific literature for tool steels and the best results for cryogenics are achieved when the treatment occurs for long duration as 24 hours.
2016-05-11
Technical Paper
2016-36-0063
Vitor Braga Ferreira de Souza
Abstract With the constant evolution of vehicle systems becomes increasingly challenging the Components project. The demand for mass and cost optimization in a challenging project schedule scenario generates a great challenge to the engineering teams, who look for design and development methods more assertive. In order to reduce the risk of failure, testing time and design cost, simulation tools are being increasingly used. A major challenge in the component project for trucks and buses is the knowledge of the real loads that the components are subjected. In the case of propeller shaft bearings several factors should influence the magnitude of the efforts. The biggest influent factors that has been studied and discussed widely for many years are the torque and joints angles.
2016-05-11
Technical Paper
2016-36-0069
Misael Neris da Silva, Milton Monteverde Belli, Silvia Faria Iombriller, Paulo Henrique Knoll, Ramon Conde, Robson Netto, Eduardo Carraro
Abstract The air suspension development and application has becoming increasingly applied also in commercial vehicles, offering to the driver more dynamic comfort as well as contributing to the reduction of impact loads on highways. Through this project pursuit show the analysis and application of an air suspension system for commercial tractor vehicles application. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension′s stiffness under different conditions of usage, laden and unladen. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain the vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions. For entire development were also used quality tools, considering the possible failure modes and effects as well as virtual simulation tools (Adams) and bench validations.
2016-05-11
Technical Paper
2016-36-0068
Arthur Larocca, Pablo Yugo Yoshiura Kubo, Dayane Rosa Buss, Luis Fernando de Mello Welin
Abstract One of the major challenges on the automotive industry is how to delineate a set of representative and real road loads, for reliability and efficiency during the validation stage on the development process. While several previous studies presented evaluations and results of the tire inflation pressure influence on the fuel consumption, driver comfort, vertical load and braking and handling performance, the objective of this work is to assess the influence of the tire pressure on the forces applied to a commercial vehicle’s steering system. In this regard, the steering link-rod of a truck has been instrumented and used as a load cell, in order to quantify the forces applied to the vehicle’s pitman arm on different tire inflation pressures. The measurements were performed in a static dry-park (lock-to-lock) maneuver and by decreasing the tire inflation pressure of the vehicle’s front loaded axle (6 tons) from 110 psi (7.6 bar) to 50 psi, in steps of 10 psi.
2016-04-15
Journal Article
2015-01-9020
Emre Sert, Pinar Boyraz
Abstract Studies have shown that the number of road accidents caused by rollover both in Europe and in Turkey is increasing [1]. Therefore, rollover related accidents became the new target of the studies in the field of vehicle dynamics research aiming for both active and passive safety systems. This paper presents a method for optimizing the rear suspension geometry using design of experiment and multibody simulation in order to reduce the risk of rollover. One of the major differences of this study from previous work is that it includes statistical Taguchi method in order to increase the safety margin. Other difference of this study from literature is that it includes all design tools such as model validation, optimization and full vehicle handling and ride comfort tests. Rollover angle of the vehicle was selected as the cost function in the optimization algorithm that also contains roll stiffness and height of the roll center.
2016-04-05
Technical Paper
2016-01-1628
Gurdeep Singh Pahwa, Baskar Anthonysamy, Karan Shah
Abstract Lateral Stability is an important attribute which must be accounted for in the pick-up truck segment vehicles. If designed in an improper way, undesirable effects such as oversteer or tail sway may occur. Excessive yaw rate magnitudes, or tail sway, can reduce the confidence of the driver during severe lane change events. The concept architecture of the vehicle plays an important role in how stable the vehicle will be. High yaw rate or tail sway during limit cornering was reported during prototype vehicle evaluations. The tested vehicle configuration incorporated a double wish bone front suspension with an antiroll bar and a rear solid axle suspension with leaf springs and an antiroll bar. The feedback was critically analysed using computer simulations of the condition found in on track testing. Since the vehicle was still with the validation team, quick solution was necessary. This paper discusses the process which resulted in improved vehicle performance.
2016-04-05
Technical Paper
2016-01-1671
Dejian Han, Zhen Yan, Feng Xiao, Shaokun Li
Abstract Direct yaw moment control can maintain the vehicle stability in critical situation. For four-wheel independently driven (4WD) electric vehicle with in-wheel motors (IWMs), direct yaw moment control (DYC) can be easily achieved. A fairly accurate calculation of the required yaw moment can improve vehicle stability. A novel sliding mode control (SMC) technique is employed for the motion control so as to track the desired vehicle motion, which is it for different working circumstances compared to the well-used traditional DYC. Through the weighted least square algorithm, the lower controller is used to determine the torque properly allocated to each wheel according to the desired yaw moment. Several actuator constraints are considered in the control strategy. In addition, a nonlinear tire model is utilized to improve the accuracy of tire lateral force estimation. Then, simulations are carried out and the values of vehicle states are compared.
2016-04-05
Technical Paper
2016-01-1658
Jie Huang, Lu Xiong, Songyun Xu, Zhuoping Yu
Abstract With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
2016-04-05
Technical Paper
2016-01-1549
Nicola Bartolini, Lorenzo Scappaticci, Francesco Castellani, Alberto Garinei
Knocking noise is a transient structural noise triggered by piston rod vibrations in the shock absorber that excite the vibration of chassis components. Piston rod vibrations can be caused by valve motion (opening and closing) and dry friction during stroke inversions. This study investigates shock absorber knocking noise in twin tube gas-filled automotive shock absorbers and its aim is to define an acceptance criterion for a sample check of the component. If, in fact, the damper comes from a large mass production, it may happen that small mounting differences lead to different behaviors that result in higher or lower levels of knocking noise. To achieve this goal, experimental tests were carried out using a hydraulic test bench; accelerometers were placed in proximity to the rebound valve and on the piston rod. The vibration phenomenon was then isolated through a post-processing analysis and a damped and unforced lumped mass model was used to characterize the vibration.
2016-04-05
Technical Paper
2016-01-1550
Ming Peng, Xuexun Guo, Junyi Zou, Chengcai Zhang
Abstract This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
2016-04-05
Technical Paper
2016-01-1557
Francesco Castellani, Nicola Bartolini, Lorenzo Scappaticci, Davide Astolfi, Matteo Becchetti
Abstract Shock absorber is one of the most relevant sub-systems of the suspension system for a wide range of vehicles. Although a high level of development and tuning has been reached, in order to ensure high safety standards in almost every situation, some dynamic phenomena affecting vehicle handling or NHV (Noise Vibration Harshness) can appear. The aim of present work is to improve a mathematical model using experimental data from a prototype of monotube shock absorber developed for research purposes. The model takes into account all the main features affecting the global performance of the device, such as non-linear behaviour and the presence of hysteresis loops. Actually, the most important parameters are analyzed, such as flow and orifice coefficients of the valves, coefficients of mechanical compliance of the chambers and oil compressibility, dry and viscous friction coefficients.
2016-04-05
Technical Paper
2016-01-1559
Francesco Vinattieri, Tim Wright, Renzo Capitani, Claudio Annicchiarico, Giacomo Danisi
Abstract The adoption of Electrical Power Steering (EPS) systems has greatly opened up the possibilities to control the steering wheel torque, which is a critical parameter in the subjective and objective evaluation of a new vehicle. Therefore, the tuning of the EPS controller is not only becoming increasing complicated, containing dozens of parameters and maps, but it is crucial in defining the basic DNA of the steering feeling characteristics. The largely subjective nature of the steering feeling assessment means that EPS tuning consists primarily of subjective tests on running prototypes. On account of that, this paper presents an alternative test bench for steering feeling simulation and evaluation. It combines a static driving simulator with a physical EPS assisted steering rack. The end goal is to more accurately reproduce the tactile feedback to the driver by including a physical hardware in lieu of complicated and difficult to obtain software models.
2016-04-05
Technical Paper
2016-01-1554
Cheng Gu, Xinbo Chen, Jun Yin
Abstract A novel geared electromagnetic active suspension is proposed in this paper. A pushing rod and a rocker are introduced to transfer the suspension vertical motion to the rotational motion of the motor. Comparing with the common ball-screw active suspension, it presents advantages of simple structure, easy manufacturing and module design. As the state variables of the suspension system cannot be all obtained for the sake of cost, taking the suspension deflection as the measurement, an output feedback LQR optimal controller is adopted, and it is concluded that the system can be stable with damping. Considering the nonlinearity of equivalent stiffness and unsprung mass caused by the system structure, parameter perturbation ranges are concluded through dynamic analysis, and robust H∞ control algorithm is proposed to realize the multi-objective optimization.
2016-04-05
Technical Paper
2016-01-1565
Joydeep Banerjee, John McPhee
Abstract Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
2016-04-05
Technical Paper
2016-01-1561
Xinxin Shao, Haiping Du, Fazel Naghdy
Abstract Development of a passive anti-pitch anti-roll hydraulically interconnected suspension (AAHIS) with the advantage of improving vehicle directional stability and handling quality is presented. A 7 degrees-of-freedom full car model and a 20 degrees-of-freedom anti-pitch anti-roll hydraulically interconnected suspension model dynamically coupled together through boundary conditions are developed and used to evaluate vehicle handing dynamic responses under steering/braking maneuvers. The modeling of mechanical subsystem is established based on the Newton’s second law and the fluid subsystem is modelled using a nonlinear finite-element approach. A motion-mode energy method (MEM) based on the calculation of the motion-mode energy is employed to investigate the effects of an anti-pitch anti-roll hydraulically interconnected suspension (AAHIS) system on vehicle body-wheel motion-mode energy distribution.
2016-04-05
Technical Paper
2016-01-1542
Shaosong Li, Jiafei Niu, Ren Sheng, Zhixin Yu, Shunhang Zheng, Yongfa Tu
Abstract With motor and reduction mechanism applied to Electric Power Steering (short for EPS) system of automobile, the frictional loss torque of steering system is increased. The common friction compensation control through the sign function of angular velocity or the saturation function of angular velocity is conducted to reduce the frictional loss torque of steering system. However, when the motor used in steering system generates assist torque based on the common friction compensation control, the longitudinal intercepts of steering torque change obviously at different steering wheel angles. The driver will get different frictional loss torque of steering system at different steering wheel angle. The information of steering torque contains the change of steering reaction torque and the frictional loss torque of steering system, so the change of frictional loss torque can cause the fuzzy of road feeling.
2016-04-05
Technical Paper
2016-01-1576
Federico Ballo, Gianpiero Mastinu, Massimiliano Gobbi
Abstract Mass minimization is a key objective for the design of racing motorcycle wheels. The structural optimization of a front motorcycle wheel is presented in the paper. Topology Optimization has been employed for deriving optimized structural layouts. The minimum compliance problem has been solved, symmetry and periodicity constraints have been introduced. The wheel has been optimized by considering several loading conditions. Actual loads have been measured during track tests by means of a special measuring wheel. The forces applied by the tire to the rim have been introduced in an original way. Different solutions characterized by different numbers of spokes have been analyzed and compared. The actual racing wheel has been further optimized accounting for technological constraints and the mass has been reduced down to 2.9 kilograms.
2016-04-05
Technical Paper
2016-01-1652
Jungmin Na, Gibin Gil
Abstract This paper presents a new method to find the tire cornering characteristics that satisfy the required handling performance of a vehicle in the early tire development process. The tire cornering characteristics should be considered in the sense of not only absolute levels but also balance between front and rear tires in order to satisfy handling performance of a vehicle. As a result, it is difficult to find the appropriate tire characteristics when trial-and-error approach is used. In this study, the virtual optimization technique is applied to find the required tire cornering characteristics in more efficient way. The optimization framework consists of a vehicle dynamic simulation tool to predict the handling performance of a vehicle and an optimization tool to find the optimal solution. The objective function and the constraints are defined in terms of vehicle handling objective parameters associated with the subjective assessment.
2016-04-05
Technical Paper
2016-01-1564
Shyama Ashok kumar S
Abstract Field Oriented Control (FOC) has been widely used for controlling Brushless DC motors (BLDC) used in Electric Power Assisted Steering (EPAS) systems. This is majorly because FOC provides better performance at lower speed, compared to other algorithms available in market. But the design complexities and cost of EPAS ECUs are much higher due to transformations and the rotor position sensor involved. This paper suggests the use of Direct Torque Control (DTC) over FOC, due to its quicker dynamic response, lower complexity and better response at higher speed. A simple Ripple Reduction Strategy (RRS) with data smoothening and filtering is introduced to improve the performance at lower speed. The DTC with RRS is modeled in MATLAB /Simulink. The Simulation results are compared with that of FOC, to prove the effectiveness of DTC.
2016-04-05
Technical Paper
2016-01-0051
Hongyu Zheng, Mingxin Zhao
Abstract Electric power steering (EPS), active front wheel steering (AFS) and steer by wire systems (SBW) can enhance the handling stability and safety of the vehicle, even in dangerous working conditions. Now, the development of the electric control steering system (ECS) is mainly based on the way that combines the test of the electric steering hardware-in-loop (HIL) test bench with real vehicle tests. However, the real vehicle tests with higher cost, long cycle and vulnerable to space weather have the potential safety problems at early development. On contrast, electronic control steering HIL test bench can replace real vehicle tests under various working conditions and make previous preparations for real vehicle road tests, so as to reduce the number of real vehicle test, shorten the development cycle, lower development costs, which has gradually become the important link of research and development of electronic steering system.
2016-04-05
Technical Paper
2016-01-0117
Bi-Cheng Luan, I-Hsuan Lee, Han-Shue Tan, Kang Li, Ding Yuan, Fang-Chieh Chou
Abstract This paper presents the design and implementation of a new steering control method for lane following control (LFC) using a camera. With the road information provided by the image sensor, the LFC system calculates the steering command based on the Target and Control (T&C) driver steering model. The T&C driver model employs a look-ahead control structure to capture the drivers’ core steering mechanism. Based on the models of the steering actuator and the vehicle dynamics, optimal control gains can be determined for any given look-ahead distance (normalized by the vehicle speed). With these simple gains, the vehicle can track very well along the center of the lane. This LFC system was first simulated under the Model-in-the-Loop (MiL) test using the CarSim simulation. The simulations show that the resultant lateral offsets are smaller than those from typical driver models.
2016-04-05
Technical Paper
2016-01-0132
Haizhen Liu, Weiwen Deng, Rui He, Jian Wu, Bing Zhu
Abstract Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
2016-04-05
Technical Paper
2016-01-0134
Sagar Behere, Xinhai Zhang, Viacheslav Izosimov, Martin Törngren
Abstract Heavy commercial vehicles constitute the dominant form of inland freight transport. There is a strong interest in making such vehicles autonomous (self-driving), in order to improve safety and the economics of fleet operation. Autonomy concerns affect a number of key systems within the vehicle. One such key system is brakes, which need to remain continuously available throughout vehicle operation. This paper presents a fail-operational functional brake architecture for autonomous heavy commercial vehicles. The architecture is based on a reconfiguration of the existing brake systems in a typical vehicle, in order to attain dynamic, diversified redundancy along with desired brake performance. Specifically, the parking brake is modified to act as a secondary brake with capabilities for monitoring and intervention of the primary brake system.
2016-04-05
Technical Paper
2016-01-0378
John George, Daniel Gross, Hamid Jahed, Ali Roostaei
Abstract The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
2016-04-05
Technical Paper
2016-01-0381
Moorthy Senniappan, Rajendra More, Shreyas Bhide, Siddesh Gowda
Abstract In the present scenario, automobile manufacturers are forced to reduce the weight of each components through design optimization. In a bid to enhance the fuel efficiency and load carrying capacity of the vehicle; however this approach may not be practical for all the parts in real life, and the engineer will end up adding further mass to the component. This is carried out to enhance the strength of the component, since considerable over load application in real world usage condition which can damage the component drastically. In this paper, steering tie rod arm of a heavy commercial vehicle was taken as a case study. The Steering tie rod arm is a part which connects the wheel spindle with steering system linkage i.e. Track rod. Track rod transfers the steered force from one wheel to another wheel and steering tie rod arm transfers the force from track rod to wheel spindle to steer both the wheels in same direction.
Viewing 241 to 270 of 8158