Criteria

Text:
Topic:
Display:

Results

Viewing 181 to 210 of 8249
2017-03-28
Technical Paper
2017-01-1575
Andrei Keller, Sergei Aliukov, Vladislav Anchukov
Abstract Trucks are one of the most common modes of transport and they are operated in various road conditions. As a rule, all-wheel drive trucks are equipped with special systems and mechanisms to improve their off-road capability and overall efficiency. The usage of blocked mechanisms for power distribution is one of the most popular and effective ways to improve the off-road vehicle performance. However, the lock of differential may adversely affect the stability and control of vehicle because of the unobvious redistribution of reactions acting on wheels, which consequently leads to poor performance and safety properties. Problems of rational distribution of power in transmissions of all-wheel drive vehicles, as well as research in the field of improving directional stability and active safety systems are among the priorities in modern automotive industry.
2017-03-28
Journal Article
2017-01-1569
Amro Elhefnawy, Alhossein sharaf, Hossam Ragheb, Shawky Hegazy
Abstract This paper presents an advanced control system, which integrates three fuzzy logic controllers namely; Direct Yaw-moment Control (DYC), Active Roll-moment Control (ARC) and Active Front Steering (AFS) to enhance vehicle cornering and overturning stability. Based on a well-developed and validated fourteen degree of freedom (DOF) full vehicle model with non-linear tire characteristics, a reference 3-DOF yaw-roll plane vehicle model is introduced to control yaw rate, sideslip angle, and roll angle of the vehicle body. The control actions of both direct yaw and active roll moments are performed by generating differential braking moments across the front wheels, while the control action of the active steering is performed by modifying the steering wheel angle. Different standard cornering tests are conducted in MATLAB / Simulink environment such as J-turn, fishhook and lane change maneuvers.
2017-03-28
Technical Paper
2017-01-1579
Liang-kuang Chen, Chien-An Chen
Abstract The development of an integrated controller for a 4WS/4WD electric bus is investigated. The front wheel steering angle is assumed to be controlled by the human driver. The vehicle is controlled by the rear wheel steering and the yaw moment that can be generated by the differential torque/brake control on each wheel. The high speed cornering is used as the testing scenario to validate the designed controller. Due to the highly nonlinear and the multiple-input and multiple-output nature, the control design is separated into different stages using the hierarchical layer control concept. The longitudinal speed is controlled using a PI controller together with a rule-based speed modification. The other two control inputs, namely the rear wheel steering and the DYC moment, are then designed using the state-dependent Riccati equation method. The designed controllers are evaluated using computer simulations first, and the simulations showed promising results.
2017-03-28
Technical Paper
2017-01-1581
Jianbo Lu, Hassen Hammoud, Todd Clark, Otto Hofmann, Mohsen Lakehal-ayat, Shweta Farmer, Jason Shomsky, Roland Schaefer
Abstract This paper presents two brake control functions which are initiated when there is an impact force applied to a host vehicle. The impact force is generated due to the host vehicle being collided with or by another vehicle or object. The first function - called the post-impact braking assist - initiates emergency brake assistance if the driver is braking during or right after the collision. The second function - called the post-impact braking - initiates autonomous braking up to the level of the anti-lock-brake system if the driver is not braking during or right after the collision. Both functions intend to enhance the current driver assistance features such as emergency brake assistance, electronic stability control, anti-brake-lock system, collision mitigation system, etc.
2017-03-28
Technical Paper
2017-01-1585
Renxie Zhang, Lu Xiong, Zhuoping Yu, Wei Liu
Abstract A dynamic controller is designed for unmanned skid-steering vehicle. The vehicle speed is controlled through driving torque of engine to achieve the desired vehicle speed and the steering is controlled through hydraulic braking on each side of the vehicle to achieve the desired yaw rate. Contrary to the common approaches by considering non-holonomic constraints, tire slip and saturation of actuators torque influencing the driving and braking are considered, based on the analysis of vehicle dynamic model and nonlinear tire model. Hence, with conditional integrators, the dynamic controller overcoming integral saturation is designed to ensure the accurate tracking for desired signals under influence of tire forces and constraint of actuators. In addition, the exponential kind filter is utilized to enhance the ability of smoothing noise of wheel speed. To perform small radius cornering maneuvers, a dynamic control strategy for steering when vehicle speed is zero is also designed.
2017-03-28
Technical Paper
2017-01-1176
Hafiz S. Khafagy
Abstract Auto stop-start (Engine stop-start, ESS) has become a widely used feature to reduce fuel consumption and CO2 emissions particularly in congested cities. Typically, vehicles equipped with such systems include two DC power sources that are coupled in parallel: a primary and a secondary power source. The primary power source supplies energy to the starter to crank the engine, while the secondary power source supplies energy to the rest of the vehicle electric loads. During an auto-stop event, a controllable switch decouples the two power sources. Moreover, operating current, voltage and the State of Charge (SOC) are monitored to ensure enough energy for the next auto-start event. When any of these operating parameters are below the threshold values, the controllable switch opens to isolate the two batteries and then the engine is automatically started.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
2017-03-28
Technical Paper
2017-01-0459
Salah H. R. Ali, Badr S. N. Azzam, T. A. Osman, A. M. Moustafa
Abstract The frictional composite is an important material in braking system for automotive, trucks or heavy-duty vehicles. In this paper, a proposed frictional composite material has been developed to achieve the ISO requirements for heavy-duty vehicle brakes. This new frictional material has been fabricated with various compositions. Tribological, chemical, mechanical, thermal conductivity and acoustic noise level tests have measure its performance compared to other two commercial samples under certain operating conditions. Surface characteristics of selected samples have been performed using white light optical microscopy (WLOM) in 2D images to insure the material homogeneity. Additionally, surface roughness analyses using atomic force microscopy (AFM) into 2D and 3D images before and after frictional operation have been investigated.
2017-03-28
Technical Paper
2017-01-1405
Tzu-Sung Wu
Abstract Autonomous Emergency Braking Systems (AEBS) usually contain radar, (stereo) camera and/or LiDAR-based technology to identify potential collision partners ahead of the car, such that to warn the driver or automatically brake to avoid or mitigate a crash. The advantage of camera is less cost: however, is inevitable to face the defects of cameras in AEBS, that is, the image recognition cannot perform good accuracy in the poor or over-exposure light condition. Therefore, the compensation of other sensors is of importance. Motivated by the improvement of false detection, we propose a Pedestrian-and-Vehicle Recognition (PVR) algorithm based on radar to apply to AEBS. The PVR employs the radar cross section (RCS) and standard deviation of width of obstacle to determine whether a threshold value of RCS and standard deviation of width of the pedestrian and vehicle is crossed, and to identity that the objective is a pedestrian or vehicle, respectively.
2017-03-28
Journal Article
2017-01-1573
Andreas Carlitz, Sebastien Allibert, Thomas Schmitz, Axel Engels
Abstract A twistbeam is a very cost effective rear suspension architecture which has drawbacks compared to an independent rear suspension. One drawback is the lateral compliance during cornering compromising the handling of the vehicle. Common solutions to correct this issue are complex reinforcements or an additional Watts linkage. However, these solutions drive high cost and additional weight. The challenge was to find a solution which reduces the gap to the functional performance of a multilink rear suspension. Due to the bush attachment, the set-up of a twistbeam is always a compromise between ride comfort and vehicle dynamics. The more comfort is desired the softer the bushings will be, resulting in less agility and slower vehicle response. The target was to determine a way to separate ride comfort and dynamic agility. A solution was found using a special set of springs working as a dynamic anti-compliance mechanism.
2017-03-28
Technical Paper
2017-01-1491
Manish Kumar Seth, Jens Glorer, Ralf Schellhaas
Abstract For long automakers around the globe are trying to reduce weight and cost of the components in order to make vehicles more cost and fuel efficient. This paper deals with same problem for rear twist beam for an upcoming vehicle, the task was to reduce the weight and cost of the twist beam structure without compromising on attributes as compared to the surrogate part. This problem was solved by inventing a new torsion profile and gusset combination which uses shape instead of thickness to use material more efficiently thereby reducing weight and cost. This invention has been successfully patented as well.
2017-03-28
Journal Article
2017-01-0411
Yuming Yin, Subhash Rakheja, Jue Yang, P-E. Boileau
Abstract This study is aimed at characterizing the nonlinear stiffness and damping properties of a simple and low cost design of a hydro-pneumatic suspension (HPS) that permits entrapment of gas into the hydraulic fluid. The mixing of gas into the oil yields highly complex variations in the bulk modulus, density and viscosity of the hydraulic fluid, and the effective gas pressure, which are generally neglected. The pseudo-static and dynamic properties of the HPS strut were investigated experimentally and analytically. Laboratory tests were conducted to measure responses in terms of total force and fluid pressures within each chamber under harmonic excitations and nearly steady temperature. The measured data revealed gradual entrapment of gas in the hydraulic fluid until the mean pressure saturated at about 84% of the initial pressure, suggesting considerably reduced effective bulk modulus and density of the hydraulic fluid.
2017-03-28
Journal Article
2017-01-0404
Anatoliy Dubrovskiy, Sergei Aliukov, Sergei Dubrovskiy, Alexander Alyukov
Abstract Currently, a group of scientists consisting of six doctors of technical sciences, professors of South Ural State University (Chelyabinsk, Russia) has completed a cycle of scientific research for creation of adaptive suspensions of vehicles. We have developed design solutions of the suspensions. These solutions allow us to adjust the performance of the suspensions directly during movement of a vehicle, depending on road conditions - either in automatic mode or in manual mode. We have developed, researched, designed, manufactured, and tested experimentally the following main components of the adaptive suspensions of vehicles: 1) blocked adaptive dampers and 2) elastic elements with nonlinear characteristic and with improved performance.
2017-03-28
Journal Article
2017-01-0419
Yuliang Yang, Yu Yang, Ying Sun, Jian Zeng, Yunquan Zhang
Abstract In addition to ride comfort, handling stability and other conventional vehicle performances, we should also focus on other aspects of performance to a center axle trailer combination, such as the maximum stable side-inclination, the anti-rolling stability, the lateral stability and so on. Based on the finite element method, a rigid-flexible coupling model for the truck combination was built and analyzed in the multi-body environment (ADAMS), in which the key components of the chassis and cab suspension were treated as flexible bodies. A series of simulations were carried out to evaluate the lateral stability of the center axle trailer in accordance with the relevant regulations of the vehicle. The influence of design variables on the lateral stability was studied by an experiment. Furthermore, in order to improve the lateral stability of the trailer combination, the optimal design was obtained by the co-simulation of the ADAMS/Car, iSIGHT and Matlab.
2017-03-28
Journal Article
2017-01-0418
Gregory McCann, Prashant Khapane
Abstract An increase in data measurement and recording within vehicles has allowed Anti-lock Braking Systems (ABS) to monitor a vehicle’s dynamic behavior in far more detail. This increased monitoring helps to improve vehicle response in scenarios such as braking whilst cornering and braking on uneven surfaces. The Durability and Robustness (D&R) CAE department within Jaguar Land Rover discovered that the lack of a complex ABS system in virtual vehicle models was contributing to poor lateral and longitudinal loads correlation throughout the suspension and mounting systems. D&R CAE started a project to incorporate Continental’s ABS system, provided by ‘©Continental AG’ for physical JLR vehicles, into SIMPACK virtual vehicles by means of a co-simulation (2017 n.d.). The work involved collaboration between 3 departments in Jaguar Land Rover and ultimately led to implementation of the ABS into the JLR standard automotive virtual database.
2017-03-28
Journal Article
2017-01-0412
Mina M.S. Kaldas, Kemal Çalışkan, Roman Henze, Ferit Küçükay
Abstract Semi-active suspension offers variety of damping force range which demands greater need to optimize the top mount to ensure multiple objectives of ride comfort, harshness and safety can be achieved. For this purpose, this paper proposes a numerical optimization procedure for improving the harshness performance of the vehicle through the adjustment of the damper top mount characteristics of the semi-active suspension system. The proposed optimization process employs a frequency dependent combined objective function based on ride comfort and harshness evaluation. A detailed and accurate damper top mount mathematical model is implemented inside a validated full vehicle model to provide a realistic simulation environment for the optimization study. The semi-active suspension system employs a Rule-Optimized Fuzzy-Logic controller. The ride comfort and harshness of the full vehicle are evaluated by analyzing the body acceleration in different frequency ranges.
2017-03-28
Journal Article
2017-01-0437
Bin Li, Subhash Rakheja
Abstract In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
2017-03-28
Journal Article
2017-01-0421
Xiang Liu, Wei Chen, Ying Chen, Jing Zhao
Abstract The leaf spring has significant hysteresis characteristics due to the interleaf friction. The traditional three-link model could not simulate the hysteresis characteristics at all. According to the dynamic load test results one can find that the dynamic stiffness of leaf spring has a nonlinear relationship with the travel distance and the load frequency has a tiny influence on it. Based on the traditional three-link model, this paper proposed a simulation modeling method by introducing torsional friction on the revolute joints. The key parameters including torsional spring stiffness, friction torque preload, stiction transition velocity and max stiction deformation are optimized by combining the ADAMS and OPTIMUS. The comparison analysis between the simulation and test results of front and rear leaf springs have revealed that the maximum average errors are 4.84% and 6.41%, respectively.
2017-03-28
Journal Article
2017-01-1554
Ajith Jogi, Sujatha Chandramohan
Abstract Over the years, commercial vehicles, especially tractor-semitrailer combinations have become larger and longer. With the increasing demand for their accessibility in remote locations, these vehicles face the problem of off-tracking, which is the ensuing difference in path radii between the front and rear axles of a vehicle as it maneuvers a turn. Apart from steering the rear axle of the semitrailer, one of the feasible ways of mitigating off-tracking is to shift the fifth wheel coupling rearwards. However, this is limited by the distribution of the semitrailer’s load between the two axles of the tractor; any rearward shift of the fifth wheel coupling results in the reduction of the total static load on the tractor’s front axle and hence available traction. This may in turn lead to directional instability of the vehicle. In the present work, a new model of the fifth wheel coupling is proposed which the authors call Split fifth wheel coupling (SFWC).
2017-03-28
Journal Article
2017-01-1519
Arturo Guzman, Young-Chang Cho, John Tripp, Kumar Srinivasan
Abstract Pickup trucks are designed with a taller ride height and a larger tire envelope compared to other vehicle types given the duty cycle and environment they operate in. These differences play an important role in the flow field around spinning wheels and tires and their interactions with the vehicle body. From an aerodynamics perspective, understanding and managing this flow field are critical for drag reduction, wheel design, and brake cooling. Furthermore, the validation of numerical simulation methodology is essential for a systematic approach to aerodynamically efficient wheel design as a standard practice of vehicle design. This paper presents a correlation the near-wheel flow field for both front and rear spinning wheels with two different wheel designs for a Ram Quad Cab pick-up truck with moving ground. Twelve-hole probe experimental data obtained in a wind tunnel with a full width belt system are compared to the predictions of numerical simulations.
2017-03-28
Journal Article
2017-01-1111
Marcello Canova, Cristian Rostiti, Luca D'Avico, Stephanie Stockar, Gang Chen, Michael Prucka, Hussein Dourra
Abstract To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
2017-03-28
Technical Paper
2017-01-0439
Joydeep Chatterjee, Yuva Kishore Vaddi, Chetan Prakash Jain
Abstract In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
2017-03-28
Technical Paper
2017-01-1058
L.V. Pavan Kumar Maddula, Ibrahim Awara
Abstract Increased focus on fuel efficiency and vehicle emissions has led the automotive industry to look into low weight alternative designs for powertrain system components. These new design changes pose challenges to vehicle attributes like NVH, durability, etc. Further, the requirement of high power applications produces even more complexities. The present work explains how a potential design change of half shafts driven by a desire to reduce weight and cost can lead to NVH problems caused by half shaft resonances and explains how using multiple dynamic vibration absorbers can solve the issue to meet customer expectation while improving efficiency. With the aid of Finite Element Analysis (FEA) & optimization software, interactions between multiple DVA’s on a system was understood and optimal damper parameters for effective damping was identified. The final DVA design was tested and verified on the vehicle for optimal attribute performance.
2017-03-28
Technical Paper
2017-01-1551
Charlie Lew, Nath Gopalaswamy, Richard Shock, Bradley Duncan, James Hoch
Abstract The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible.
2017-03-28
Technical Paper
2017-01-1562
Junyu Zhou, Chao Liu, Jan Kubenz, Günther Prokop
Abstract This paper describes a new hybrid algorithm for multibody dynamics in vehicle system dynamics which combines the advantages of both embedding technique algorithm and augmented formulation algorithm. An approach to vehicle dynamics modeling based on the hybrid algorithm is presented. Embedding technique algorithm has relatively small number of equations of motion. With help of this technique, an enhanced parametric vehicle dynamics model can be built, representing characteristic curves of suspension comprised in kinematic and compliance. Small number of equations enables the vehicle dynamics model to be simulated very efficiently. In comparison to embedding technique algorithm, the main benefit of augmented formulation algorithm is relatively simple for computer programming. With help of augmented formulation algorithm, the structure of the vehicle dynamic model can be easily extended.
2017-03-28
Technical Paper
2017-01-1565
Xiangkun He, Kaiming Yang, Xuewu Ji, Yahui Liu, Weiwen Deng
Abstract A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
2017-01-10
Technical Paper
2017-26-0259
Sandeep V. Sawangikar, Jeevan N. Patil, Sivakumar Palanivelu, Arun Kumar K
Abstract Steering system deliver a precise directional control to the vehicle chassis and ensure the safe driving at all maneuvers. Hydraulic power assisted system (HPAS) helps drivers to steer by boosting steering assistance of the steering wheel while retaining the road feel. HPAS performance is associated with the design characteristics of rotary valve, steering, suspension, kinematics, brake, tire, vehicle speed and load transfer. Thus a detailed power steering system model is absolutely necessary to evaluate and optimize the performance characteristics. However, many components of HPAS system are proprietary in nature so it is very challenging to get component characteristic of each sub-system for the complete power steering system model. Hence, it is very important to establish a technique to extract all such influencing characteristics with available test facility.
2017-01-10
Technical Paper
2017-26-0261
Ashesh Anil Shah, Ashok Patidar
Abstract Paper explains conversion of existing drum brake system to disc brake system with complete digital validation at structural as well as thermal level to make sure First Time Right Design before physical part development. To provide leverage to quick design, modification and selection of brake system according to vehicle configuration, a virtual computational fluid dynamics (CFD) simulation process is developed and validated with test results. Temperature variation over brake drum and disc in internal standard braking cycle is measured virtually and correlated with test results. Also Fade testing criteria’s were considered during CFD analysis. This up gradation is must considering technology enhancement trend and safety in automotive segment. In current competitive market scenario and as per customer requirements, front disc brake module is becoming necessary not only for passenger segment but also for commercial segment vehicle.
2017-01-10
Technical Paper
2017-26-0299
Mahesh Kishore Patekar, Jeevan Patil, Sivakumar Palanivelu, Bhupendra Bhat
Abstract Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
2017-01-10
Technical Paper
2017-26-0293
Sachin lambate, Kedar Shrikant Joshi, Gautam Diwan, Pratap Daphal
Abstract Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Viewing 181 to 210 of 8249