Criteria

Text:
Topic:
Display:

Results

Viewing 151 to 180 of 8249
2017-03-28
Journal Article
2017-01-1485
Mikihiro Hiramine, Yoshitaka Hayashi, Takashi Suzuki
Abstract The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1480
Zhenfeng Wang, Mingming Dong, Yechen Qin, Feng Zhao, Liang Gu
Abstract The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
2017-03-28
Technical Paper
2017-01-1326
Santhoji Katare, Ravichandran S, Gokul Ram, Giri Nammalwar
Abstract Model based computer-aided processes offer an economical and accelerated alternative to traditional build-and-test "Edisonian" approaches in engineering design. Typically, a CAE based design problem is formulated in two parts, viz. (1) the inverse design problem which involves identification of the appropriate geometry with desired properties, and (2) the forward problem which is the prediction of performance from the product geometry. Solution to the forward problem requires development of an accurate model correlated to physical data. This validated model could then be used for Virtual Verification of engineering systems efficiently and for solving the inverse problem. This paper demonstrates the rigorous process of model development, calibration, validation/verification, and use of the calibrated model in the design process with practical examples from automotive chassis and powertrain systems.
2017-03-28
Technical Paper
2017-01-1567
Jaepoong Lee, Sehyun Chang, Kwangil Kim, Bongchoon Jang, Dongpil Lee, Byungrim Lee, Kyongsu Yi
Abstract This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
2017-03-28
Technical Paper
2017-01-1572
Wesley Kerstens
Abstract The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
2017-03-28
Journal Article
2017-01-1578
Tianyang Liu, Zhuoping Yu, Lu Xiong, Wei HAN
Abstract Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
2017-03-28
Journal Article
2017-01-1584
Peng Hang, Xinbo Chen, Fengmei Luo, Shude Fang
Abstract Compared with the traditional front-wheel- steering (FWS) vehicles, four-wheel-independent-steering (4WIS) vehicles have better handing stability and path-tracking performance. In view of this, a novel 4WIS electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. As to the 4WIS EV, a linear quadratic regulator (LQR) optimal controller is designed to make the vehicle track the target path based on the linear dynamic model. Taking the effect of uncertainties in vehicle parameters into consideration, a robust controller utilizing μ synthesis approach is designed and the controller order reduction is implemented based on Hankel-Norm approximation. In order to evaluate the performance of the designed controllers, numerical simulations of two maneuvers are carried out using the nonlinear vehicle model with 9 degrees of freedom (DOF) in MATLAB/Simulink.
2017-03-28
Technical Paper
2017-01-1580
Smitha Vempaty, Yuping He
Abstract Ensuring the lateral stability and handling of a car-and-trailer combination remains one of the challenges in safety system design and development for articulated vehicles. This paper reviews the state-of-the-art approaches for car-trailer lateral stability control. A literature review covering the effects of external factors, such as aerodynamic forces, tire forces, and road & climatic conditions, is presented. To address the effects of these factors, researchers have previously investigated numerous passive and active safety control techniques. This paper intends to identify the inadequacies of the passive safety approaches and analyzes promising active-control schemes, such as active trailer steering control (ATSC), active trailer braking (ATB) and model reference adaptive controller (MRAC). A comparative study of these control strategies in terms of applicability and cost effectiveness is performed.
2017-03-28
Technical Paper
2017-01-1561
Anton A. Tkachev, Nong Zhang
Abstract Rollover prevention is one of the prominent priorities in vehicle safety and handling control. A promising alternative for roll angle cancellation is the active hydraulically interconnected suspension. This paper represents the analytical model of a closed circuit active hydraulically interconnected suspension system followed by the simulation. Passive hydraulically interconnected suspension systems have been widely discussed and studied up to now. This work specifically focuses on the active hydraulically interconnected suspension system. Equations of motion of the system are formalized first. The system consists of two separate subsystems that can be modeled independently and further combined for simulation. One of the two subsystems is 4 degrees of freedom half-car model which simulates vehicle lateral dynamics and vehicle roll angle response to lateral acceleration in particular.
2017-03-28
Journal Article
2017-01-1563
Abhijeet Behera, Murugan Sivalingam
Abstract Two and three wheeler vehicles are largely used in many developing and under developing countries because of their lower cost, better fuel economy and easy handling. Although, the construction of them is simpler than the four wheeler vehicle, they pose some problems related to instability. Wobbling is the main cause of instabilities in two wheeler and three wheeler vehicles. In this study, a mathematical model was proposed and developed to determine wobble instability of a two wheeler. Nonlinear equations were formulated by using kinematics and the D’Alembert’s principle with the help of multi body formalism. The non-linear equations found in the study were linearized with respect to rectilinear and upright motion, considering no rolling. It led to formation of matrix. The real part of the Eigen value of the matrix was found to be negative, implication of whose was an asymptotic stable motion.
2017-03-28
Technical Paper
2017-01-1590
Jyotishman Ghosh, Stéphane Foulard, Rafael Fietzek
Abstract A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
2017-03-28
Technical Paper
2017-01-1555
Mirosław Jan Gidlewski, Krystof JANKOWSKI, Andrzej MUSZYŃSKI, Dariusz ŻARDECKI
Abstract Lane change automation appears to be a fundamental problem of vehicle automated control, especially when the vehicle is driven at high speed. Selected relevant parts of the recent research project are reported in this paper, including literature review, the developed models and control systems, as well as crucial simulation results. In the project, two original models describing the dynamics of the controlled motion of the vehicle were used, verified during the road tests and in the laboratory environment. The first model - fully developed (multi-body, 3D, nonlinear) - was used in simulations as a virtual plant to be controlled. The second model - a simplified reference model of the lateral dynamics of the vehicle (single-body, 2D, linearized) - formed the basis for theoretical analysis, including the synthesis of the algorithm for automatic control. That algorithm was based on the optimal control theory.
2017-03-28
Technical Paper
2017-01-1483
Jia Mi, Lin Xu, Sijing Guo, Mohamed A. A. Abdelkareem, Lingshuai Meng
Abstract Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
2017-03-28
Technical Paper
2017-01-1591
Haotian Cao, Xiaolin Song, Zhi Huang
Abstract Generally speaking, lateral steering control method which ensures a good performance in tracking quality and handle quality simultaneously for autonomous vehicle is a changeling task. In order to keep the vehicle to stay safe when facing with severe situations such as an emergency lane change, a switched MPC lateral steering controller, which is on the basis of the stability feature of the vehicle, is presented in this paper. First, a MPC steering controller based on the 3DOF nonlinear vehicle model is derived, a comparative study of different vehicle models for MPC prediction are made. It proves that the presented MPC controller based on 3DOF nonlinear vehicle model possesses an advantage of balancing the conflicts between the tracking quality and handling quality of the vehicle.
2017-03-28
Technical Paper
2017-01-0347
Yat Sheng Kong, Dieter Schramm, M. Zaidi Omar, Sallehuddin Mohd. Haris, Shahrum Abdullah
This paper presents the study of a relationship between objective vertical vibration and coil spring fatigue life under different road excitation to shorten suspension design process. Current development processes of vehicle suspension systems consist of many different stages of analysis and time consuming. Through this vertical vibration and durability characterisation, the vehicle ISO weighted vertical accelerations were used to describe fatigue life of coil spring. Strain signals from various roads were measured using a data acquisition and then converted into acceleration signal. The acceleration signals were then used as input to multibody suspension model for forces time history on spring and acceleration signal of sprung mass extraction. The acceleration signals were then processed for ISO weighted indexes while the force time history was used for coil spring fatigue life prediction respectively.
2017-03-28
Technical Paper
2017-01-0066
Shogo Nakao, Akihiko Hyodo, Masaki Itabashi, Tomio Sakashita, Shingo Obara, Tetsuya Uno, Yasuo Sugure, Yoshinobu Fukano, Mitsuo Sasaki, Yoshihiro Miyazaki
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
2017-03-28
Technical Paper
2017-01-0056
Naveen Mohan, Martin Törngren, Sagar Behere
Abstract With the advent of ISO 26262 there is an increased emphasis on top-down design in the automotive industry. While the standard delivers a best practice framework and a reference safety lifecycle, it lacks detailed requirements for its various constituent phases. The lack of guidance becomes especially evident for the reuse of legacy components and subsystems, the most common scenario in the cost-sensitive automotive domain, leaving vehicle architects and safety engineers to rely on experience without methodological support for their decisions. This poses particular challenges in the industry which is currently undergoing many significant changes due to new features like connectivity, servitization, electrification and automation. In this paper we focus on automated driving where multiple subsystems, both new and legacy, need to coordinate to realize a safety-critical function.
2017-03-28
Technical Paper
2017-01-0239
Seth Bryan, Maria Guido, David Ostrowski, N. Khalid Ahmed
Abstract It is desirable to find methods to increase electric vehicle (EV) driving range and reduce performance variability of Plug-in Hybrid Electric Vehicles (PHEV). One strategy to improve EV range is to increase the charge power limit of the traction battery, which allows for more brake energy recovery. This paper applies Big Data technology to investigate how increasing the charge power limit could affect EV range in real world usage with respect to driving behavior. Big Data Drive (BDD) data collected from Ford employee vehicles in Michigan was analyzed to assess the impact of regenerative braking power on EV range. My Ford Mobile (MFM) data was also leveraged to find correlation to drivers nationwide based on brake score statistics. Estimated results show incremental improvements in EV range from increased charge power levels. Subsequently, this methodology and process could be applied to make future design decisions based on the dynamic nature of driving habits.
2017-03-28
Technical Paper
2017-01-1537
Ananya Bhardwaj
Abstract Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies.
2017-03-28
Technical Paper
2017-01-1481
Kyung-bok Lee, Sanghyuk Lee, Namyoung Kim, Bong Soo Kim, Tae soo Chi, Do young Kim
Abstract Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
2017-03-28
Journal Article
2017-01-1482
Jens Dornhege, Simon Nolden, Martin Mayer
Abstract The layout of a vehicle steering system has to resolve a compromise. While it is important for lateral vehicle control to feel steering torque feedback of lateral tire to ground interaction, disturbing forces shall not be present in the feedback steering torque. These disturbing forces result from road irregularities, wheel rotor imbalance, suspension asymmetry caused by production tolerances, wear or impacts, and additional vehicle internal forces, e.g. the steered wheels also driven by the engine or braked. In general these disturbances are reduced by an optimization of the suspension geometry to decrease the impact of the unintended forces on the steering system. The remaining disturbance is controlled to an acceptable level via force feedback sensitivity calibration of the steering system, what in return influences the intended driver sensitivity to feel lateral tire forces.
2017-03-28
Technical Paper
2017-01-1490
Silvia Faria Iombriller
Abstract The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
2017-03-28
Technical Paper
2017-01-1494
Weinan Tao, Bingzhao Gao, Hongqing Chu, Mengjian Tian, Hong Chen
Abstract The steer-by-wire system has been widely studied due to many advantages such as good controllability. In the system, the steering column is cancelled and the driver can't feel the feedback torque (also called steering feeling) coming from the ground. Therefore a steering feeling feedback system is needed. In this paper, we propose a simple method to calculate desired feedback torque based on a nonlinear 2DOF vehicle model. The vehicle model contains the nonlinearity of tire. So that the proposed method is also appropriate for big acceleration conditions. Besides that, the properties of steering system such as friction and stiffness are also taken into consideration. As for conventional steering system, driver can only feel part of the feedback torque due to the power assist system. In order to provide steering feeling similar to conventional steering system, a weighting function is proposed to compensate the influence of power assist system.
2017-03-28
Technical Paper
2017-01-1488
Srinivas Kurna, Ruchik Tank, Riddhish Pathak
Abstract The job of a suspension system is to maximize the friction between the tires and the road surface, to provide steering stability with good handling and to act as a cushioning device ensuring the comfort of the driver & passengers. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. Almost all heavy duty vehicles use inverted type suspension system which is also called as bogie type suspension system. The design of this type of suspension is a complex and difficult science which has evolved over many years. It was recognized very early in the development of suspensions that the interface between vehicle body and wheel needed some sort of cushioning system to reduce the vibration felt as the vehicle moved along. This was already part of road coach design and took the form of leaf (laminated) steel springs mounted on the axles, upon which the vehicle body rested.
2017-03-28
Technical Paper
2017-01-1225
Jayaraman Krishnasamy, Martin Hosek
Abstract An advanced electric motor with hybrid-field topology has been developed for automotive traction applications. Departing from the conventional radial- and axial-field designs, the hybrid-field motor features three-dimensional magnetic flux paths, which are enabled by a novel isotropic soft magnetic material produced by a unique additive-manufacturing process based on spray forming. The motor is expected to offer an unprecedented combination of high power output, compact size, low weight and energy efficiency, achieving more than two times higher power density than state-of-the-art high-performance traction motors.
2017-03-28
Technical Paper
2017-01-1556
Jianbo Lu, Li Xu, Daniel Eisele, Stephen Samuel, Matthew Rupp, Levasseur Tellis
Abstract This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
2017-03-28
Journal Article
2017-01-1558
Jose Velazquez Alcantar, Francis Assadian, Ming Kuang
Abstract Hybrid Electric Vehicles (HEV) offer improved fuel efficiency compared to their conventional counterparts at the expense of adding complexity and at times, reduced total power. As a result, HEV generally lack the dynamic performance that customers enjoy. To address this issue, the paper presents a HEV with eAWD capabilities via the use of a torque vectoring electric rear axle drive (TVeRAD) unit to power the rear axle. The addition of TVeRAD to a front wheel drive HEV improves the total power output. To further improve the handling characteristics of the vehicle, the TVeRAD unit allows for wheel torque vectoring at the rear axle. A bond graph model of the proposed drivetrain model is developed and used in co-simulation with CarSim. The paper proposes a control system which utilizes tire force optimization to allocate control to each tire. The optimization algorithm is used to obtain optimal tire force targets to at each tire such that the targets avoid tire saturation.
2017-03-28
Technical Paper
2017-01-1560
Wei Liu, Lu Xiong, Bo Leng, Haolan Meng, Renxie Zhang
Abstract In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
2017-03-28
Technical Paper
2017-01-1571
Kevin McLaughlin, Jonah Shapiro, HyungJu Kwon
Abstract An approach to electric steering control and tuning is developed using vehicle dynamics and quantitative steering objectives. The steering objective chosen is the torque vs. lateral acceleration target for the driver termed the “steering gain”. Two parameters are derived using vehicle dynamics that substantially determine driver feel: the vehicle’s “manual gain” (total steering torque divided by lateral acceleration) and the vehicle’s lateral acceleration gain (lateral acceleration divided by steering angle). Lateral acceleration gain is a well-known quantity in the literature but “manual gain” is a nonstandard point of view for steering control systems. The total gain inside the controller is the loop gain; generally, the higher the loop gain, the better the controller rejects unwanted effects such as friction. For a typical torque-input electric steering topology, it is shown that the relationship between loop gain and steering gain is unique.
Viewing 151 to 180 of 8249