Criteria

Text:
Topic:
Display:

Results

Viewing 91 to 120 of 8246
2017-06-05
Technical Paper
2017-01-1752
Kapil Gupta, Arun Choudhary, Rakesh Bidre
Abstract At present, a Dual Mass Flywheel (DMF) system is widely known to provide benefits on driveline induced noise, vibration and drivability over a Single Mass Flywheel (SMF). A well-tuned DMF provides nice isolation of torsional vibrations generated in periodic combustion process of automobile IC engines. Similarly, a torsional vibration damper mounted on driveline component reduces the torsional excitation and results a lower torsional vibration at driveline components. Noise and vibration issues like boom noise and high vibrations at low engine RPM range drive are often resulted due to high engine firing order torsional excitation input to the driveline. More often, this becomes one of the most objectionable noise and vibration issues in vehicle and should be eliminated or reduced for better NVH performance. A 4 cylinder, 4 stroke small diesel engine equipped with SMF is found to have high engine firing order torsional excitation.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
2017-06-05
Technical Paper
2017-01-1837
Paul R. Donavan, Carrie Janello
Abstract Acoustic beamforming was used to localize noise sources on heavy trucks operating on highways in California and North Carolina at a total of 20 sites. Over 1,200 trucks were measured under a variety of operating conditions, including cruise on level highways, on upgrades, down degrades, low speed acceleration, and for various speeds and pavements. The contours produced by the beamforming measurements were used to identify specific source contributions under these conditions and for a variety of heavy trucks. Consistently, the highest noise levels were seen at the tire-pavement interface, with lesser additional noise radiated from the engine compartment. Noise from elevated exhaust stacks was only documented for less than 5% of the trucks measured. The results were further reduced to produce vertical profiles of noise levels versus height above the roadway. The profiles were normalized to the highest noise level at ground level.
2017-05-30
Technical Paper
2017-01-5002
James Bradley Skarie
Abstract Antilock braking systems (ABS) are inherently limited by the static coefficient of friction (µ) between a vehicle’s tires and the road surface. This paper explores a unique active safety concept, Integrated Coefficient Enhancement (ICE), which works to improve ABS well beyond their present limits. The ICE concept was developed using a basic physics principle: to change µ between two surfaces, at least one of the surfaces must be altered in some way. By quickly deploying a specially designed tractive medium (TM) to aid in directional stability and braking, hazardous situations can be greatly mitigated. This paper describes the features and testing results of this TM and its aerodynamic-mechanical-electronic deployment apparatus. Under all slippery road conditions tested, the developed TM mitigated skidding, with improvements that ranged from 20% to several hundred percent, depending on conditions and deployment rates.
2017-05-24
Technical Paper
2017-36-0001
Luís Fernando Nuss de Souza, Antônio Carlos de Oliveira, Narã Vieira Vetter
Abstract After the anti-skid brake system (ABS) introduction, mandatory for all vehicles in the Brazilian market, manufacturers have given increasing attention to optimized systems which meet legal and safety requirements. For commercial vehicles, an alternative for the ABS, which presents feasibility, is the configuration 4S/3M (4 wheel-speed sensors and 3 modulator valves) in substitution to the configuration 4S/4M. In other words, application of just one modulator valve to control the brakes of the same axle, front or rear, instead of independent control per each brake of the vehicle. The aim of this paper is to present a performance comparison between a brake system fitted with ABS configuration 4S/3M and an ABS configuration 4S/4M. To this end, both configurations were tested on the same vehicle application in accordance with the Brazilian legislation, CONTRAN 519/15.
2017-05-24
Technical Paper
2017-36-0003
Rafael Paini Pavlak, Patric Daniel Neis, Jean Carlos Poletto, Liu Yesukai de Barros, Ney Francisco Ferreira
Abstract The current study presents some testing procedures which have been designed for friction and noise measurements of brake friction materials using a laboratory-scale tribometer. The uncertainties (errors) and precision of the measurements are also described in this paper. Some case studies related to friction, wear and noise related issues in brake friction materials were chosen to show the respective testing procedures. Through the error study, it was shown that the uncertainties of the lab. test bench are mainly associated with 3 variables: torque, force and sliding radius. The combined uncertainty of the friction measurements is less than or equal to ±1%, considering the typical operating range of the machine. The possibility of using two samples from a single brake pad also contributes to the reliability of the machine test and procedures.
2017-05-24
Technical Paper
2017-36-0004
Wesley Bolognesi Prado, Silvia Faria Iombriller, Jonathan Orsi Chiu, Alexandre Roman
Abstract S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
2017-05-24
Technical Paper
2017-36-0005
Diego Severo Antunes, Diego Masotti
Abstract Analytical models used to design most of drum brake systems assume rigid body behavior of shoes and drum, resulting in sinusoidal pressure distribution in the friction interface. This approach leads to various limitations and sometimes incoherent results at typical applications since brake components are highly deformable and the contact pressure distribution plays an important role on the brake system efficiency. This study addresses a numerical analysis of drum brake pressure distribution, using Finite Element Method and considering shoes and drum as flexible bodies. The model validation from experimental procedure, where brake components were instrumented in an inertial dynamometer test. Once the pressure distribution can not be accurately measured, this research uses strain field measurements to calibrate the numerical model. This model is nonlinear, implying in convergence difficulties.
2017-05-24
Technical Paper
2017-36-0006
Claudio Jr. Ferreto, Ademir S. Carvalho, Robson D. A. Abreu, Pedro F. Marinho, Luiz R. Guimarães
Abstract Brake noise causes discomfort to passengers and a perception of reduced vehicle quality. Other types of vehicle noises have been significantly reduced and consequently brake noise and vibration are becoming more perceivable by owners, leading to high warranty costs. It is known in the Brake Industry that the natural frequencies of brake rotors may have a significant participation in disc brake squeal generation, and, a robust process control of this characteristic in the manufacturing gives an important contribution to reduce brake noise. However, recent studies have demonstrated a significant variation of natural frequencies due to manufacturing and this is the outcome of carbon equivalent content in gray cast iron. This paper is concerned with the understanding of this phenomenon and its influence on disc brake noise generation. For this research, it was manufactured two batches of this rotor from two different grades of carbon equivalent.
2017-05-24
Technical Paper
2017-36-0007
Luiz Roberto Guimarães, Robson Demétrius Araújo Abreu, Ademir Carvalho, Claudio Jr. Ferreto
Abstract The improvement of motor’s power requires consequently the improvement in brake system also. The kinetic energy of moving vehicles is transformed in a big part of heat, but there is a part that can be transformed in vibration and sound pressure. One of these vibration and sound pressure complain is known as howl noise. The howl noise complain is very intense and uncomfortable for passengers and pedestrians. Today, the customers spend a lot of money in his vehicles comfort and this disorder can’t occur. This paper presents a methodology which uses Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) to survey the dynamic behavior of suspension and brake systems at the howl noise occurrence condition.
2017-05-24
Technical Paper
2017-36-0010
André G. L. Suetti, Carlos Eduardo Correia
Abstract The knowledge of the elastic properties of friction materials is especially important in the development of brake systems. The stiffness of the system directly impacts on the consumption of the fluid during braking and the user interaction with the brake pedal, in addition to being strongly linked to the occurrence or not of certain types of noise. For the analysis of brake pad stiffness, is well known the compressibility equipment, which evaluates the deformation subject to a load in the axial direction. The first stage of the work proves that the compressive deformation of the pad has a non-linear behaviour as a function of the applied force. Based on this non-linearity, tests are carried out on 93 brake pads, where trends between the instantaneous deformation and the final compressibility result are sought.
2017-05-24
Technical Paper
2017-36-0011
J. Ocampo, S. Jelic, J. Han
Abstract Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
2017-05-24
Technical Paper
2017-36-0015
Alexis Klauber Chaia Kléperon, Robson Demétrius Araújo Abreu, Rômulo Morais Bitencourt, Francis José Marochi Almeida
Abstract The vibroacoustic comfort sense inside vehicles is a topic of major concern in current automotive industry. Moreover, the increase in demand of users and the competition in the automotive sector lead automakers to invest in developing more comfortable vehicles. Thus, even noises in specific usage scenarios and short time is claimed. This paper raises the cause and proposes solutions to a noise from the brake system known as "Moan Noise". This noise happens under specific conditions of use, but is easily identified by the user. Moreover, it is a random phenomenon and difficult to characterize. Thus, this study shows a methodology to survey the phenomenon under study and validation of proposals for improvement through operational techniques and experimental modal analysis.
2017-05-24
Technical Paper
2017-36-0021
Jean Cory de Souza Silva, Juan Carlos Horta Gutierrez
Abstract This work consists in a study about regulations for brake system in Brazil, which aims to show the current scenario, as well as the evolution of the resolutions and technologies. Within the last few years Brazil had a considerable evolution in terms of safety requirements for brake systems. In 2009 an important step was taken when Brazilian Traffic National Consil (Conselho Nacional de Trânsito - CONTRAN), the agency responsible for traffic regulations in Brazil, emitted the resolution N° 312, which established the mandatory use of Anti-lock Brake System (ABS). This obligatoriness was introduced gradually, beginning by passengers cars in 2010, when 8% of the automobiles manufactured in that year should have the system installed as standard item. This percentage would increase until reaching 100% of vehicle production in 2014.
2017-05-24
Technical Paper
2017-36-0020
Luiz Filipe de Medeiros Gomes, Fernanda de Lima Menezes, Ademir de Silva Carvalho, Claudio Junior Ferreto, Luciano Matozo
Abstract The brake system is one of the most important safety systems of the vehicle. So far, several researches are being conducted with the objective of improve its efficiency. In a disc brake, it is the friction between the pads and the rotor the responsible for kinetic energy conversion into heat and brake torque generation. Demanding brake applications, can generate high temperatures levels which can reduce the friction coefficient between pads and rotor, reducing brake efficiency. Thus, the present work aims to evaluate the front disc temperature drop by the installation of a duct on the vehicle frontal bumper to direct the outside air into the wheelhouse This duct has the function to direct the outside air towards to the brake disc. Theoretical studies, Computational Fluid Dynamics (CFD) simulations and experimental dynamometer tests were carried out.
2017-05-24
Technical Paper
2017-36-0016
Mathias Haag, Achim Reich, Angelo Sardá, Michael Wurmlinger-Georg, Martin Semsch, Leonardo Felix Borim
Abstract Residual brake torque (RBT) is generated in disc brakes as a result of contact between brake disc and brake pads when the braking pressure is not applied. Among the negative implications of RBT are, notably, dispensable additional fuel consumption as well as increased pad (taper) wear. Several properties of the brake system have a direct influence on the level of residual torque [1]. A major effect is connected to the caliper properties determining the clearance gap. This is characterized by the default air gap between pads and disc and its distribution regarding vehicle inner and outer sides (piston and fist sides for floating type calipers). Initial air gap is mainly influenced by the sealing grove design (between piston and housing, where the sealing ring is positioned). The retraction of the piston due to the sealing ring, also called rollback, mainly depends on the load case (e.g. applied pressure and temperature).
2017-04-11
Journal Article
2017-01-9177
N. Obuli Karthikeyan, R. Dinesh Kumar, V. Srinivasa Chandra, Vela Murali
Abstract In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
2017-03-28
Technical Paper
2017-01-1480
Zhenfeng Wang, Mingming Dong, Yechen Qin, Feng Zhao, Liang Gu
Abstract The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
2017-03-28
Technical Paper
2017-01-1483
Jia Mi, Lin Xu, Sijing Guo, Mohamed A. A. Abdelkareem, Lingshuai Meng
Abstract Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1466
Claudia De La Torre, Ravi Tangirala, Michael Guerrero, Andreas Sprick
Abstract Studies in the EU and the USA found higher deformation and occupant injuries in frontal crashes when the vehicle was loaded outboard (frontal crashes with a small overlap). Due to that, in 2012 the IIHS began to evaluate the small overlap front crashworthiness in order to solve this problem.A set of small overlap tests were carried out at IDIADA’s (Institute of Applied Automotive Research ) passive safety laboratory and the importance of identifying the forces applied in each structural element involved in small overlap crash were determined. One of the most important structural elements in the small overlap test is the wheel. Its interaction in a small overlap crash can modify the vehicle interaction at the crash, which at the laboratory the interaction is with a barrier. That interaction has a big influence at the vehicle development and design strategy.
2017-03-28
Technical Paper
2017-01-1727
Yumin Lin, Bo-Chiuan Chen, Hsien-Chi Tsai, Bi-Cheng Luan
Abstract A model-based sensor fault detection algorithm is proposed in this paper to detect and isolate the faulty sensor. Wheel speeds are validated using the wheel speed deviations before being employed to check the sensor measurements of the vehicle dynamics. Kinematic models are employed to estimate yaw rate, lateral acceleration, and steering wheel angle. A Kalman filter based on a point mass model is employed to estimate longitudinal speed and acceleration. The estimated vehicle dynamics and sensor measurements are used to calculate the residuals. Adaptive threshold values are employed to identify the abnormal increments of residuals. Recursive least square method is used to design the coefficients of the expressions for adaptive threshold values, such that the false alarms caused by model uncertainties can be prevented. Different combinations of estimations are employed to obtain 18 residuals.
2017-03-28
Technical Paper
2017-01-1537
Ananya Bhardwaj
Abstract Improving brake cooling has commanded substantial research in the automotive sector, as safety remains paramount in vehicles of which brakes are a crucial component. To prevent problems like brake fade and brake judder, heat dissipation should be maximized from the brakes to limit increasing temperatures. This research is a CFD investigation into the impact of existing wheel center designs on brake cooling through increased cross flow through the wheel. The new study brings together the complete wheel and disc geometries in a single CFD study and directly measures the effect on brake cooling, by implementing more accurately modeled boundary conditions like moving ground to replicate real conditions correctly. It also quantifies the improvement in the cooling rate of the brake disc with a change in wheel design, unlike previous studies.
2017-03-28
Technical Paper
2017-01-1509
L. Daniel Metz
Abstract We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
2017-03-28
Technical Paper
2017-01-1565
Xiangkun He, Kaiming Yang, Xuewu Ji, Yahui Liu, Weiwen Deng
Abstract A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
2017-03-28
Technical Paper
2017-01-1567
Jaepoong Lee, Sehyun Chang, Kwangil Kim, Bongchoon Jang, Dongpil Lee, Byungrim Lee, Kyongsu Yi
Abstract This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
2017-03-28
Technical Paper
2017-01-1571
Kevin McLaughlin, Jonah Shapiro, HyungJu Kwon
Abstract An approach to electric steering control and tuning is developed using vehicle dynamics and quantitative steering objectives. The steering objective chosen is the torque vs. lateral acceleration target for the driver termed the “steering gain”. Two parameters are derived using vehicle dynamics that substantially determine driver feel: the vehicle’s “manual gain” (total steering torque divided by lateral acceleration) and the vehicle’s lateral acceleration gain (lateral acceleration divided by steering angle). Lateral acceleration gain is a well-known quantity in the literature but “manual gain” is a nonstandard point of view for steering control systems. The total gain inside the controller is the loop gain; generally, the higher the loop gain, the better the controller rejects unwanted effects such as friction. For a typical torque-input electric steering topology, it is shown that the relationship between loop gain and steering gain is unique.
2017-03-28
Technical Paper
2017-01-1572
Wesley Kerstens
Abstract The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
2017-03-28
Technical Paper
2017-01-1551
Charlie Lew, Nath Gopalaswamy, Richard Shock, Bradley Duncan, James Hoch
Abstract The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible.
Viewing 91 to 120 of 8246