Criteria

Text:
Topic:
Display:

Results

Viewing 31 to 60 of 8139
2017-03-28
Journal Article
2017-01-0418
Gregory McCann, Prashant Khapane
Abstract An increase in data measurement and recording within vehicles has allowed Anti-lock Braking Systems (ABS) to monitor a vehicle’s dynamic behavior in far more detail. This increased monitoring helps to improve vehicle response in scenarios such as braking whilst cornering and braking on uneven surfaces. The Durability and Robustness (D&R) CAE department within Jaguar Land Rover discovered that the lack of a complex ABS system in virtual vehicle models was contributing to poor lateral and longitudinal loads correlation throughout the suspension and mounting systems. D&R CAE started a project to incorporate Continental’s ABS system, provided by ‘©Continental AG’ for physical JLR vehicles, into SIMPACK virtual vehicles by means of a co-simulation (2017 n.d.). The work involved collaboration between 3 departments in Jaguar Land Rover and ultimately led to implementation of the ABS into the JLR standard automotive virtual database.
2017-03-28
Technical Paper
2017-01-0416
Vishal Barde, Baskar Anthonysamy, Ganeshan Reddy, Senthil S, Visweswara lenka, Gurdeep Singh Pahwa
Abstract New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
2017-03-28
Technical Paper
2017-01-0414
Bin Li, Xiaobo Yang, James Yang, Yunqing Zhang, Zeyu Ma
Abstract In this paper, a detailed three dimensional (3D) flexible ring tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of massless tread blocks attached on the belt. The parameters of the proposed 3D tire model can be divided into in-plane parameters and out-of-plane parameters. In this paper, the relationship of the in-plane parameters between the 3D tire model and the 2D tire model is determined according to the connections among the tire components. Based on the determined relationship, it is shown that the 3D tire model can produce almost the same prediction results as the 2D tire model for the in-plane tire behaviors.
2017-03-28
Journal Article
2017-01-0404
Anatoliy Dubrovskiy, Sergei Aliukov, Sergei Dubrovskiy, Alexander Alyukov
Abstract Currently, a group of scientists consisting of six doctors of technical sciences, professors of South Ural State University (Chelyabinsk, Russia) has completed a cycle of scientific research for creation of adaptive suspensions of vehicles. We have developed design solutions of the suspensions. These solutions allow us to adjust the performance of the suspensions directly during movement of a vehicle, depending on road conditions - either in automatic mode or in manual mode. We have developed, researched, designed, manufactured, and tested experimentally the following main components of the adaptive suspensions of vehicles: 1) blocked adaptive dampers and 2) elastic elements with nonlinear characteristic and with improved performance.
2017-03-28
Technical Paper
2017-01-0401
Ye Yuan, Junzhi Zhang, Yutong Li, Chen Lv
Abstract As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
2017-03-28
Technical Paper
2017-01-0402
Zhigang Zhang, Shi Xiaohui, Ye Bin
Abstract Based on the formation mechanism of engaging force of clutch, the engagement was divided into four stages: idle stage, cushion spring stage, diaphragm spring stage and locked stage. The mechanism of transmitted torque in each stage was analyzed and the transmitted torque model of clutch was deduced. Multi-load step analysis method based on finite element was used to analyze the coupling load-deformation characteristics of diaphragm spring and cushion spring in engagement, and the change laws of engaging force, diaphragm spring force and release bearing force were achieved and their coupling interaction were studied. And then change of friction coefficient of clutch with oscillating temperature was measured on friction test rig, and effect of temperature on transmitted torque was further discussed. Finally, simulation results of transmitted torque were validated by the experiment. Results indicate that the transmitted torque in clutch engagement has a nonlinear characteristic.
2017-03-28
Technical Paper
2017-01-0084
Jiantao Wang, Bo Yang, Jialiang Liu, Kangping Ji, Qilu Wang
Abstract Studies show that driving in foggy environment is a security risk, and when driving in foggy environment, the drivers are easy to accelerate unconsciously. The safety information prompted to the driver is mainly from fog lights, road warning signs and the traffic radio. In order to increase the quality of the safety tips to prevent drivers from unintended acceleration and ensure the security of driving in foggy environment, the study proposes a safety speed assessment method for driving in foggy environment, combining the information of driving environment, vehicle’s speed and the multimedia system. The method uses camera which is installed on the front windshield pillar to collect the image about the environment, and uses the dark channel prior theory to calculate the visibility. And by using the environment visibility, the safety speed can be calculated based on the kinematics theory. And it is appropriate for vehicles which have different braking performance.
2017-03-28
Technical Paper
2017-01-1466
Claudia De La Torre, Ravi Tangirala, Michael Guerrero, Andreas Sprick
Abstract Studies in the EU and the USA found higher deformation and occupant injuries in frontal crashes when the vehicle was loaded outboard (frontal crashes with a small overlap). Due to that, in 2012 the IIHS began to evaluate the small overlap front crashworthiness in order to solve this problem.A set of small overlap tests were carried out at IDIADA’s (Institute of Applied Automotive Research ) passive safety laboratory and the importance of identifying the forces applied in each structural element involved in small overlap crash were determined. One of the most important structural elements in the small overlap test is the wheel. Its interaction in a small overlap crash can modify the vehicle interaction at the crash, which at the laboratory the interaction is with a barrier. That interaction has a big influence at the vehicle development and design strategy.
2017-03-28
Journal Article
2017-01-1502
Madeline Harper, Janice Tardiff, Daniel Haakenson, Maria Joandrea, Matthew Knych
Abstract Tire manufacturers have long grappled with the challenge of balancing the conflicting tire attributes of traction, rolling resistance, and treadwear. Improvements to one of these “magic triangle” attributes often comes at the expense of the other attributes. Recent regulations have further increased the pressure on manufacturers to produce optimized tires with minimal performance compromises. In order to meet this challenge, the tire industry is looking to new material systems beyond the traditional tire tread components. Polymeric materials beyond the base elastomers and processing oils used in tread provide opportunities to modify the physical and viscoelastic properties of tread. In this study, various polymeric materials were evaluated as additives in a model tire tread formulation. Hydrocarbon resin, high styrene resin, and thermoplastic styrene elastomers were added to the model formulation at various loading levels and through various addition strategies.
2017-03-28
Journal Article
2017-01-1507
Prashanta Gautam, Yousof Azizi, Abhilash Chandy
Abstract Tire noise is caused due to the complex interactions between the rotating tire and the road surface at the tire/road interface. It is usually caused due to a combination of individual noise generation mechanisms, which can either be structural or air-borne. The influence of each of these noise generation mechanism may vary, depending on various conditions such as tire design, road surface and operating conditions. Due to the many variables that affect the noise generation mechanisms in tires, it is usually a very complex task to isolate and categorize those that are present in the overall tire/road noise spectrum. Various approaches are used to categorize noise generation mechanisms in tires. In this paper, a statistical model based on the assumption that the tire noise acoustic pressure at a specific frequency band is related to the vehicle speed, is used, in order to study tire noise at different speeds.
2017-03-28
Journal Article
2017-01-1506
Johannes Wiessalla, Yiqin Mao, Frank Esser
Abstract An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
2017-03-28
Technical Paper
2017-01-1505
Andreas Hackl, Wolfgang Hirschberg, Cornelia Lex, Georg Rill
Abstract The present technical article deals with the modeling of dynamic tire forces, which are relevant during interactions of safety relevant Advanced Driver Assistance Systems (ADAS). Special attention has been paid on simple but effective tire modeling of semi-physical type. In previous investigations, experimental validation showed that the well-known first-order Kelvin-Voigt model, described by a spring and damper element, describes good suitability around fixed operation points, but is limited for a wide working range. When aiming to run vehicle dynamics models within a frequency band of excitation up to 8 Hz, these models deliver remarkable deviations from measured tire characteristics. To overcome this limitation, a nonlinear Maxwell spring-damper element was introduced which is qualified to model the dynamic hardening of the elastomer materials of the tire.
2017-03-28
Technical Paper
2017-01-1503
Jared Johan Engelbrecht, Tony Russell Martin, Piyush M. Gulve, Nagarjun Chandrashekar, Amol Dwivedi, Peter Thomas Tkacik, Zachary Merrill
Abstract Most commercial heavy-duty truck trailers are equipped with either a two sensor, one modulator (2S1M) or four sensors, two modulator (4S2M) anti-lock braking system (ABS). Previous research has been performed comparing the performance of different ABS modules, in areas such as longitudinal and lateral stability, and stopping distance. This study focuses on relating ABS module type and wheel speed sensor placement to trailer wheel lock-up and subsequent impact to tire wear for tandem axle trailers with the Hendrickson air-ride suspension. Prior to tire wear inspection, functionality of the ABS system was testing using an ABS scan tool communicating with the SAE J1587 plug access port on the trailer. Observations were documented on trailers using the 2S1M system with the wheel speed sensor placed on either the front or rear axle of a tandem pair.
2017-03-28
Technical Paper
2017-01-1509
L. Daniel Metz
Abstract We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
2017-03-28
Technical Paper
2017-01-1580
Smitha Vempaty, Yuping He
Abstract Ensuring the lateral stability and handling of a car-and-trailer combination remains one of the challenges in safety system design and development for articulated vehicles. This paper reviews the state-of-the-art approaches for car-trailer lateral stability control. A literature review covering the effects of external factors, such as aerodynamic forces, tire forces, and road & climatic conditions, is presented. To address the effects of these factors, researchers have previously investigated numerous passive and active safety control techniques. This paper intends to identify the inadequacies of the passive safety approaches and analyzes promising active-control schemes, such as active trailer steering control (ATSC), active trailer braking (ATB) and model reference adaptive controller (MRAC). A comparative study of these control strategies in terms of applicability and cost effectiveness is performed.
2017-03-28
Technical Paper
2017-01-0056
Naveen Mohan, Martin Törngren, Sagar Behere
Abstract With the advent of ISO 26262 there is an increased emphasis on top-down design in the automotive industry. While the standard delivers a best practice framework and a reference safety lifecycle, it lacks detailed requirements for its various constituent phases. The lack of guidance becomes especially evident for the reuse of legacy components and subsystems, the most common scenario in the cost-sensitive automotive domain, leaving vehicle architects and safety engineers to rely on experience without methodological support for their decisions. This poses particular challenges in the industry which is currently undergoing many significant changes due to new features like connectivity, servitization, electrification and automation. In this paper we focus on automated driving where multiple subsystems, both new and legacy, need to coordinate to realize a safety-critical function.
2017-03-28
Technical Paper
2017-01-0066
Shogo Nakao, Akihiko Hyodo, Masaki Itabashi, Tomio Sakashita, Shingo Obara, Tetsuya Uno, Yasuo Sugure, Yoshinobu Fukano, Mitsuo Sasaki, Yoshihiro Miyazaki
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
2017-03-28
Technical Paper
2017-01-0108
Zaydounr Y. Rawashdeh, Trong-Duy Nguyen, Anoop Pottammal, Rajesh Malhan
Abstract In this work, Dedicated Short Range Communication (DSRC) capabilities combined with classical autonomous vehicles’ on-board sensors (Camera) are used to trigger a Comfortable Emergency Brake (CEB) for urban traffic light intersection scenario. The system is designed to achieve CEB in two phases, the Automated Comfortable Brake (ACB) and the full stop Automated Emergency Brake (AEB). The ACB is triggered first based on the content of the Signal Phase and Timing (SPaT) / Map data (MAP) messages received from the Road Side Unit (RSU) at larger distances. And, once the traffic light becomes in the detection field of view of the camera, the output of the Camera-based Traffic Light Detection (TLD) and recognition software is fused with the SPaT/MAP content to decide on triggering the full stop AEB. In the automated vehicle, the current traffic light color and duration received in the SPaT message is parsed; and compared with the TLD output for color matching.
2017-03-28
Journal Article
2017-01-0112
Mingming Zhao, Hongyan Wang, Junyi Chen, Xiao Xu, Yutong He
Abstract Rear-end accident is one of the most important collision modes in China, which often leads to severe accident consequences due to the high collision velocity. Autonomous Emergency Braking (AEB) system could perform emergency brake automatically in dangerous situation and mitigate the consequence. This study focused on the analysis of the rear-end accidents in China in order to discuss about the parameters of Time–to-Collision (TTC) and the comprehensive evaluation of typical AEB. A sample of 84 accidents was in-depth investigated and reconstructed, providing a comprehensive set of data describing the pre-crash matrix. Each accident in this sample is modeled numerically by the simulation tool PC-Crash. In parallel, a model representing the function of an AEB system has been established. This AEB system applies partial braking when the TTC ≤ TTC1 and full braking when the TTC ≤ TTC2.
2017-03-28
Technical Paper
2017-01-0145
Edward Palmer, Wilko Jansen
Abstract In order to specify a brake system that will have robust performance over the entire range of expected vehicle drive cycles it is vital that it has sufficient thermal inertia and dissipation to ensure that component temperatures are kept within acceptable limits. This paper presents a high fidelity CAE (computer aided engineering) technique for predicting the temperature of the front brake and the surrounding suspension components whilst installed on vehicle. To define the boundary conditions the process utilizes a coupled unsteady CFD (computational fluid dynamics) and thermal solver to accurately predict the convective heat transfer coefficients across a range of vehicle speeds. A 1-D model is used to predict the brake energy inputs as well as the vehicle speed-time curves during the drive cycle based on key vehicle parameters including wide-open-throttle performance, drive train losses, rolling resistance, aerodynamic drag etc.
2017-03-28
Technical Paper
2017-01-1176
Hafiz S. Khafagy
Abstract Auto stop-start (Engine stop-start, ESS) has become a widely used feature to reduce fuel consumption and CO2 emissions particularly in congested cities. Typically, vehicles equipped with such systems include two DC power sources that are coupled in parallel: a primary and a secondary power source. The primary power source supplies energy to the starter to crank the engine, while the secondary power source supplies energy to the rest of the vehicle electric loads. During an auto-stop event, a controllable switch decouples the two power sources. Moreover, operating current, voltage and the State of Charge (SOC) are monitored to ensure enough energy for the next auto-start event. When any of these operating parameters are below the threshold values, the controllable switch opens to isolate the two batteries and then the engine is automatically started.
2017-03-28
Technical Paper
2017-01-0239
Seth Bryan, Maria Guido, David Ostrowski, N. Khalid Ahmed
Abstract It is desirable to find methods to increase electric vehicle (EV) driving range and reduce performance variability of Plug-in Hybrid Electric Vehicles (PHEV). One strategy to improve EV range is to increase the charge power limit of the traction battery, which allows for more brake energy recovery. This paper applies Big Data technology to investigate how increasing the charge power limit could affect EV range in real world usage with respect to driving behavior. Big Data Drive (BDD) data collected from Ford employee vehicles in Michigan was analyzed to assess the impact of regenerative braking power on EV range. My Ford Mobile (MFM) data was also leveraged to find correlation to drivers nationwide based on brake score statistics. Estimated results show incremental improvements in EV range from increased charge power levels. Subsequently, this methodology and process could be applied to make future design decisions based on the dynamic nature of driving habits.
2017-03-28
Technical Paper
2017-01-1481
Kyung-bok Lee, Sanghyuk Lee, Namyoung Kim, Bong Soo Kim, Tae soo Chi, Do young Kim
Abstract Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
2017-03-28
Journal Article
2017-01-1482
Jens Dornhege, Simon Nolden, Martin Mayer
Abstract The layout of a vehicle steering system has to resolve a compromise. While it is important for lateral vehicle control to feel steering torque feedback of lateral tire to ground interaction, disturbing forces shall not be present in the feedback steering torque. These disturbing forces result from road irregularities, wheel rotor imbalance, suspension asymmetry caused by production tolerances, wear or impacts, and additional vehicle internal forces, e.g. the steered wheels also driven by the engine or braked. In general these disturbances are reduced by an optimization of the suspension geometry to decrease the impact of the unintended forces on the steering system. The remaining disturbance is controlled to an acceptable level via force feedback sensitivity calibration of the steering system, what in return influences the intended driver sensitivity to feel lateral tire forces.
2017-03-28
Technical Paper
2017-01-1478
Srinivas Kurna, Sajal Jain, Palish Raja, Laxman Vishwakarma
Abstract In an automobile, main function of the steering system is to allow the driver to guide the vehicle on a desired course. Steering system consists of various components & linkages. Using these linkages, the torque from steering wheel is transferred to tyre which results in turning of the vehicle. Over the life of vehicle, these steering components are subjected to various loading conditions. As steering components are safety critical parts in the vehicle, therefore they should not fail while running because it will cause vehicle breakdown. In commercial vehicle segment, vehicle breakdown means delay in freight delivery which results in huge loss to costumer. Therefore, while designing steering components one should consider all the possible loadings condition those are possible. But, it can’t be done through theoretical calculation. Therefore, physical tests have to be carried out to validate design of steering system, which is very costly & time-consuming process.
2017-03-28
Technical Paper
2017-01-1480
Zhenfeng Wang, Mingming Dong, Yechen Qin, Feng Zhao, Liang Gu
Abstract The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
2017-03-28
Journal Article
2017-01-1485
Mikihiro Hiramine, Yoshitaka Hayashi, Takashi Suzuki
Abstract The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
2017-03-28
Technical Paper
2017-01-1487
Russ Norton, Ben Bulat, Ahmed Mohamed
Abstract A semi-active suspension system is designed to improve secondary ride by lowering damping levels while maintaining or enhancing primary ride control and vehicle handling. In order to provide optimized ride comfort, base damping levels are reduced. Reduced damping levels increase damaging loads through pothole events. The Road Load Mitigation (RLM) algorithm seeks to resolve the tradeoff of high damping levels required to control the vertical and horizontal spindle loads and the need for lower damping forces to improve secondary ride. As the base active damping forces are increased to control these loads, ride benefits or vehicle ride comfort is diminished. RLM looks at suspension velocity at all four corners independently to determine if a pothole signature is detected and requires compensation. Compensation is delivered quickly to reduce wheel drop into the pothole thereby reducing damaging loads.
2017-03-28
Technical Paper
2017-01-1483
Jia Mi, Lin Xu, Sijing Guo, Mohamed A. A. Abdelkareem, Lingshuai Meng
Abstract Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
2017-03-28
Technical Paper
2017-01-1427
Daniel Koch, Gray Beauchamp, David Pentecost
Abstract Tire disablement events can cause a drag force that slows a vehicle. In this study, the magnitude of the deceleration was measured for different phases of 29 high speed tire tread separation and air loss tests. These deceleration rates can assist in reconstructing the speed of a vehicle involved in an accident following a tire disablement.
Viewing 31 to 60 of 8139