Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 7659
2015-07-01
Journal Article
2015-01-9112
Shahyar Taheri, Terence Wei
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
2015-06-15
Technical Paper
2015-01-2351
Hongyu Shu, Shuang Luo, Li Wang
Abstract In order to measure the noise of auto shock absorbers, a test bench used to detect piston-rod vibration responses of shock absorbers and measuring analyzer named SANTS-I were developed. The vibration response data was detected by bench tests, which shows that there are high-frequency violent peaks on the sine curve of piston-rod oscillating with relative low frequency. In order to explain the interior work dynamic mechanism of shock absorbers, a schematic Micro-process Dynamic Model with 10 steps particularly divided extension and compression stroke in more detail, and dynamic differential equations for each step were presented and discussed. Furthermore, numerical simulation for the inner impacts interaction between piston and damping fluid of hydraulic shock absorber was realized by ADINA software, by the establishment of a gas-liquid two-phase finite element model.
2015-06-15
Technical Paper
2015-01-2353
Jan Bunthoff, Frank Gauterin, Christoph Boehm
Abstract In an automotive suspension, the shock absorber plays a significant role to enable the vehicle performances, especially in ride, handling and Noise-Vibration-Harshness (NVH). Understanding its physical characteristics is of great importance, as it has a main influence on the overall vehicle performance. Within this research project simulation models for different passive monotube shock absorber systems have been created in a 1-D system simulation software. The simulation models are designed and parameterized physically. To validate the simulation models measurements on different hydropulse-shaker with specially designed control signals to investigate the response during high frequency excitation, have been done. A detailed discussion of the several models and results of a simulation to measurement comparison is given. After detailed investigation the shock absorber simulation models are now adaptable to the multi body simulation.
2015-06-15
Technical Paper
2015-01-2194
Giorgio Bartolozzi, Marco Danti, Guido Nierop, Andrea Camia
Abstract Within the automotive industry, a typical way to account for tires in a roadnoise mission simulation is to use the “modal model” supplied by tire manufacturers. Even though this kind of models is certified by the suppliers and is very simple to use, it has the drawback to be disconnected from the physical description of the tire. This reflects in limiting the carmaker company to be able only to request certain modal characteristics to the supplier. The aim of this paper is to present an accurate, yet easy to use, methodology to develop an FE model of a tire, to be used in a full-vehicle simulation. The determined model must be connected to the tire physical properties. These properties are not measured directly, but determined by tuning a properly created geometric FE model to the measured point inertances of the inflated tire. This allows creating the model only by using an optimization algorithm to tune such properties.
2015-06-15
Technical Paper
2015-01-2198
Masami Matsubara, Nobutaka Tsujiuchi, Takayuki Koizumi, Akihito Ito, Kensuke Bito
Abstract Early studies on the tire vibration characteristics of road noise focused on radial modes of vibration because these modes are dominant in vertical spindle force. However, recent studies of Noise, Vibration and Harshness (NVH) prediction have suggested that tire modeling not only of radial modes, but also of lateral vibration, including lateral translational and lateral bending modes, affect interior noise. Thus, it is important to construct tire dynamic models with few degrees of freedom for whole-vehicle analysis of NVH performance. Existing tire dynamics model can't express tire lateral vibrations. This paper presents a new approach for tire vibration analysis below 200Hz, and a formula for tire natural frequencies. First, a tire dynamic model is developed based on the thin cylindrical shell theory. Kinetic and potential energies are derived. Mode shape function is also derived by the assumption of inextensility in the neutral of the tread ring.
2015-06-15
Technical Paper
2015-01-2197
Stijn Vercammen, Fabio Bianciardi, Peter Kindt, Wim Desmet, Paul Sas
Abstract In the context of the reduction of traffic-related noise the research reported in this paper provides tools that could be used to develop low noise tyres. Two measurement techniques have been analyzed for exterior noise radiation characterization of a loaded rotating slick tyre on a rough road surface. On one hand sound pressure measurements at low spatial resolution with strategically placed microphones on a half-hemisphere around the tyre/road contact point have been performed. This technique provides a robust solution to compute the (overall) sound power level. On the other hand sound intensity measurements at high spatial resolution by means of a scanning intensity probe have been performed. This technique allows a more detailed spatial visualization of the noise radiation and helps in getting more insight and better understanding of the acoustical phenomena.
2015-06-15
Technical Paper
2015-01-2233
Hudson P Vijayakumar, V Shivaraj, T Sukumar, Suresh Gaikwad
Abstract Generally the brake system products are mounted on chassis with brackets which are subjected to dynamic loads due to road undulations. Exhaust brake is used to restrict the engine exhaust flow passage and thereby creates a back pressure in the engine for reducing the engine speed. This in turn reduces the vehicle speed. This is widely used in the vehicles operating in the hilly areas. This product is mounted on the exhaust passage and the air cylinder sub-assembly which actuates the exhaust brake is mounted on a bracket. Automotive industries perform durability tests on vehicles to reduce the failure on end-user environment. An assembly which has cleared the durability test got failed on addition of a spring into the assembly. The inclusion of spring is for enhancing the performance of the overall assembly.
2015-06-15
Journal Article
2015-01-2199
Rui Cao, J Stuart Bolton
Abstract Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
2015-06-15
Journal Article
2015-01-2196
Farokh Kavarana, Scott Fritz, John DeYoung
Abstract Recent trends in vehicle light-weighting and tire design requirements have created an increased awareness to tire flat-spotting. Tire flat-spotting occurs when tires remain in a loaded condition without rolling for an extended period of time. Tire flat-spotting can either be temporary or permanent depending on the length of storage and other environmental factors. Tire non-uniformity caused due to flat-spots often induces shake and shimmy (back and forth oscillation of steering wheel) vibration in vehicles due to increased tire-wheel force variation input into the chassis. This can result in increased warranty costs for OEMs (Original Equipment Manufacturers) as well as customer dissatisfaction exhibited in third party quality surveys like the annual J. D. Power IQS (Initial Quality Survey).
2015-06-15
Journal Article
2015-01-2193
Masami Matsubara, Daiki Tajiri, Makoto Horiuchi, Shozo Kawamura
Abstract One of the elements of tire stiffness is sidewall stiffness. This stiffness, which influences tire vibration characteristics, is also an important design parameter for carrying the vehicle body. Tire is one of pressure vessels and inflation pressure is dominant in sidewall stiffness. Thus, tire sidewall stiffness is decided from the tension of inflation pressure and the structural dynamic, including the properties of the rubber material. To reveal the dynamic characteristics of tire sidewall stiffness, this study describes differences in stiffness due to inflation pressure. It can be expected that variation of inflation pressure is monitored from the axle vibration response during vehicle traveling in the future. That is because the relationship of the vibration characteristics and the inflation pressure of tire are derived by sidewall stiffness. First, we derive a formula for sidewall stiffness based on the structural dynamics of Akasaka's theory.
2015-06-15
Journal Article
2015-01-2355
Luke Fredette, Jason Dreyer, Rajendra Singh
Abstract Hydraulic bushings with amplitude sensitive and spectrally varying properties are commonly used in automotive suspension. However, scientific investigation of their dynamic properties has been mostly limited to linear system based theory, which cannot capture the significant amplitude dependence exhibited by the devices. This paper extends prior literature by introducing a nonlinear fluid compliance term for reduced-order bushing models. Quasi-linear models developed from step sine tests on an elastomeric test machine can predict amplitude dependence trends, but offer limited insight into the physics of the system. A bench experiment focusing on the compliance parameter isolated from other system properties yields additional understanding and a more precise characterization.
2015-05-13
Technical Paper
2015-36-0006
Erik Camargo, Claudio Fernandes, Leopoldo Sprandel, Romulo Castro, Rodrigo Sousa, Leandro Roza, Marcio Ciolfi
Abstract This paper focused on pedal feeling studies at most often longitudinal decelerations for the normal daily usage of customers. Such decelerations were defined in vehicle equipped with sensors in a specific itinerary near Resende/Penedo city (southeastern Brazil) with several clients using the same vehicles. Through the decelerations acquired, one could correlate, objectively and subjectively, the pedal effort and travel that delight the customers, reaching the so called ideal pedal feeling. The mapping provides the needed input data to develop, or adapt, a vehicle to the best condition expected by consumers.
2015-05-13
Technical Paper
2015-36-0004
Patric Daniel Neis, Ney Francisco Ferreira, Luciano Tedesco Matoso, Diego Masotti, Jean Carlos Poletto
Abstract The present paper addresses an investigation about the definition of a parameter for quantifying the creep-groan propensity in brake pads. Creep-groan is a self-excited vibration caused by stick-slip phenomenon [1, 2, 3]. For the definition of the creep-groan propensity parameter, extensive experimental work was performed on a laboratory-scale tribometer. The experiments are divided in two main parts: (i) study of correlation between accelerometer signal with physical and operating parameters. (ii) validation of the chosen parameter, which was based on stick-slip tests performed with three different materials, one low-metallic (low-met) and two non-asbestos organic (NAO 1 and 2). From the first study, it was found that both the slip power and mean torque multiplied by torque variation showed a slightly higher correlation with the acceleration signal.
2015-05-13
Technical Paper
2015-36-0002
Keshav Sundaresh, Felipe Moretti Leila
Abstract The level of noise transmitted to the passengers of a vehicle can drastically impact a passenger's comfort. Brake noise will give the customer an impression of poor product quality and can thus damage the quality image of the company. Within the automotive industry, the study of mode coupling instability by the use of FEM and modal complex analysis is widespread to reduce this phenomenon. In this paper an alternative method is presented, where potential brake noise issues are predicted by the use of a time transient integration using multi-body system analysis. The simulation model contains a nonlinear contact description, bushing, flexible bodies and the axis kinematics of the vehicle. Transient results are transformed by Fourier for a frequency domain study. The parameters that can be varied for the prediction analysis are brake pressure, vehicle speed, friction laws, system damping and bushing properties.
2015-05-13
Technical Paper
2015-36-0028
Patric Daniel Neis, Ney Francisco Ferreira, Jean Carlos Poletto
Abstract The current paper addresses the comparative analysis of the performance (friction and wear) produced by original and aftermarket brake pads. The brake pads selected in this study belongs to a large circulation vehicle in Brazil, which also has a high number of sales. An original and 4 others aftermarket brake pads were purchased at Porto Alegre, Brazil. The braking tests were performed on a braking tribometer, which is located on the University facilities. Experimental data of the coefficient of friction produced by each brake pad have been recorded. A precision scale was used to measure the mass loss of the materials subjected to the tests. Results of the performance obtained by the brake pads are evaluated and discussed in this paper. Results have shown that the original brake pad has superior properties in terms of friction performance (magnitude and variation), while aftermarket 1 and aftermaket 2 materials have the lowest vibration magnitudes.
2015-05-13
Technical Paper
2015-36-0026
André G. L. Suetti, Robson Pederiva
Abstract In the field of engineering, there is a well known phenomenon called “stick-slip” a specific type of vibration in a mechanical system where friction is involved, it is qualified as non-linear, auto-excited and generally stable within a limited cycle. During stick-slip, the behavior of the friction coefficient as a function of the sliding velocity has big influence on the wave pattern, wherein various models can be found in the literature. Besides affecting wave patterns, this behavior affects significantly the amount of damping necessary to reach an asymptotic level of stability. The objective of this work is to study various friction models found in literature, for example: constant transition between coefficients, linear and exponential and apply these models in mechanical systems that represent brake systems.
2015-05-13
Technical Paper
2015-36-0024
Thomas Gillespie, Vinicius de A. Lima
Abstract Heavy trucks with solid front axles commonly use steering systems that have left to right asymmetry. The asymmetry creates the potential to cause steering pulls during brake application which are by their nature undesirable since they require an input in the steering wheel by the driver to maintain the correct path of the vehicle. Brake forces acting in the tire contact patches create toe-out moments around the kingpin axes that are resisted by the steering linkages. However asymmetry of the linkage allows unbalanced toe-out steer angle deviations at the wheels resulting in a path deviation of the truck that is perceived as brake steering pull. The factors influencing steering pull include the compliance properties of the steering linkages, road wheel geometry, drag link geometry and spring windup properties. The mechanics of the brake force interactions with these steering and suspension properties are explained here.
2015-05-13
Technical Paper
2015-36-0020
Carlos Abílio Passos Travaglia, Adan Araujo Rodrigues, Luiz Carlos Rolim Lopes
Abstract In engineering development, simulation methods are frequently used to perform thermal and mechanical stress components analysis. In brake systems, where the components are exposed to mechanical and thermal loads, the numerical analysis is very helpful. Once a numerical model for brake assembly is available, it will be possible to understand the effects of successive brake applications on the temperature distribution in drum brake's friction materials. This is a fundamental aspect to determine, for instance, the thermal stress distribution which is related to the warming and cooling of the brakes. In this work, an analytical solution to calculate stabilized temperature was used to establish a heat flux through a pneumatic S cam drum brake's friction material applied to a numerical model in a finite element analysis.
2015-05-13
Technical Paper
2015-36-0019
Márcio J. Ciolfi, Paulo E. B. de Mello
Abstract This paper presents the different “gradients” of heat transfer coefficients found in a usual ventilated brake disc type. Although the conduction coefficient depends on the material characteristics applied, the convection and radiation coefficients changes as function of vehicle speed and brake temperature respectively. By comparing the coefficients magnitude orders of each surface and condition is possible to define the most favorable geometries for cool down the system.
2015-05-13
Technical Paper
2015-36-0009
Evandro Benincá, Mauricio da Silva, Ruy Alberto Bueno Jr., Vagner do Nascimento
Abstract One effect which is present in drum and disc brakes is the temperature. This effect significantly changes the vehicle and semi-trailer combinations performance, mainly in drum brakes that is more susceptible to this factor. High temperatures mean loss of efficiency, higher lining wear, brakes and rolling systems components life reduction and could be caused by many factors, which can be mentioned, overload, error in design and choice of brake system, speeding, over adjustment (dragging) and environment heat exchange. The challenge is to comprehend the relation between different brake configuration and how these configurations affects the temperatures generation on brake system, allowing that this factors can be evaluated during the project design. This paper aims to show a case study for a new brake family to be used in city bus application where the fleets are looking for better, safety, performance and low lining wear reduce the to increase the maintenance time.
2015-05-13
Technical Paper
2015-36-0027
Silvia F. Iombriller, Wesley B. Prado, Claudio R. Herrero
Summary It is very important and unquestionable that we need to have a clear technical requirement for Air Brake Systems and its components, since it is one of most important regarding safety. Looking to heavy commercial vehicles and possible air brake system failures, everything becomes clearly to pay total attention for these normative and regulatory requirements. Historically, the development of Brakes technology has started on EUA and Europe and consequently two strong and distinct requirements were structured: FMVSS 121 and ECE-R13. From decades people are trying to harmonize these requirements and for passenger cars, the evolution was faster. However, for commercial vehicles there are more peculiarities considering regional applications and some of them cultural and implementation time.
2015-05-05
Journal Article
2015-01-9107
Zhiyun Zhang, Miaohua Huang, Meixia Ji, Shuanglong Zhu
Abstract In the field of active safety, the active four-wheel-steering (4WS) system seems to be an attractive alternative and an effective tool to improve the vehicles' handling stability in lane-keeping control performance. Under normal using condition, the vehicle's lateral acceleration is comparatively small, and the mathematic relationship between the small side force excitation and the small slip angle of the tire is in the linear region. Furthermore, the effects of roll, heave, and pitch motions are neglected as well as the dynamic characteristics of the tires and suspension system in this work. Therefore, the linear quadratic control (LQC) theory is used to ensure that the output of the 4WS control system can keep track of the desired yaw rate and zero-sideslip-angle response can also be realized at the same time.
2015-05-01
Journal Article
2015-01-9141
Selim Oleksowicz, Keith Burnham, Navneesh Phillip, Phil Barber, Eddie Curry, Witold Grzegozek
Hybrid and electric vehicle (H/EV) technology is already well established in the automotive industry and a great majority of car manufacturers offer vehicles with alternative propulsion systems (hybrid or electric - H/E). This advancement, however, does not mean that all technical aspects of H/E propulsion systems have already been encapsulated or even fully understood. This statement is specifically valid for regenerative braking technology. In order to regenerate the maximum possible energy, which may be limited in real applications (e.g. by the charging ratio of the energy storage device(s)), the interaction of regenerative braking and the active driving safety systems (ADSSs) such as the anti-lock braking system (ABS) needs to be taken in to account. For maximum recaptured energy via electric motor (E-Motor) braking, the use of regenerative braking, which generates decelerations greater than 0.1g, should be deployed.
2015-05-01
Journal Article
2015-01-9109
Dzmitry Savitski, Valentin Ivanov, Barys Shyrokau, Jasper De Smet, Johan Theunissen
Anti-lock braking functions of electric vehicles with individual wheel drive can be effectively realized through the operation of in-wheel or on-board motors in the pure regenerative mode or in the blending mode with conventional electro-hydraulic anti-lock braking system (ABS). The regenerative ABS has an advantage in simultaneous improvement of active safety, energy efficiency, and driving comfort. In scope of this topic, the presented work introduces results of experimental investigations on a pure electric ABS installed on an electric powered sport utility vehicle (SUV) test platform with individual switch reluctance on-board electric motors transferring torque to the each wheel through the single-speed gearbox and half-shaft. The study presents test results of the vehicle braking on inhomogeneous low-friction surface for the case of ABS operation with front electric motors.
2015-05-01
Journal Article
2015-01-9106
Magnus Löfdahl, Arne Nykänen, Roger Johnsson
Abstract In the automotive industry, tire noise is an important factor for the perceived quality of a product. A useful method to address such NVH problems is to combine recordings with measurements and/or simulations into auralizations. An example of a method to create structure-borne tire noise auralizations is to filter recordings of hub forces and moments through binaural transfer functions experimentally measured from the hub of the car to an artificial head in the car cabin. To create authentic auralizations of structure-borne sound, all six degrees of freedom (DOFs) of hub forces and moments and transfer functions should be included. However, rotational DOFs are often omitted due to measurement difficulty, complexity, time, and cost. The objective was to find which DOF (or DOFs) is perceived as most prominent in structure-borne tire noise. An auralization model of interior structure-borne tire noise was used.
2015-04-14
Journal Article
2015-01-1755
Atsushi Hirano
Abstract This paper studies various wheel stiffness configurations, with the aim of enhancing driving stability while minimizing the increase in weight associated with an increase in stiffness. Reinforcement was added to the wheel disk and the wheel rim of standard aluminum wheels for passenger vehicles in order to produce four wheels with different stiffness configurations. The effects of disk stiffness and rim stiffness on tire contact patch profiles and driving stability were quantitatively evaluated. From the results of tests with the four wheels, it was observed that disk stiffness and rim stiffness have differing effects on tire contact patch profiles, and on driving stability. Disk stiffness influences especially tire contact patch length, and tire contact patch length influences especially maneuverability in driving stability. Rim stiffness influences especially tire contact patch area, and tire contact patch area influences especially stability in driving stability.
2015-04-14
Technical Paper
2015-01-1522
Takahiro Yokoyama, Koji Hiratsuka, Shinya Notomi
Abstract Vehicle dynamic performance on snow-covered roads is one aspect of performance that is influenced by tire performance. Much research concerning a vehicle's performance on snow-covered roads has focused on being directed to vehicle control technology that increases control when the tire-slip ratio is larger, such as anti-lock braking systems (ABS) and electronic stability control (ESC). There has been little research, regarding performance when the slip ratio on a snow- covered road is smaller. We studied the friction performance of tires on snow-covered roads to predict vehicle performance within the grip range. We propose a technology for predicting vehicle performance within the small slipangle range and also verify its effectiveness. We established the tire characteristics that assure the grip range on a snow-covered road using performance indicators.
2015-04-14
Technical Paper
2015-01-1515
Kwangwon Kim, Hyeonu Heo, Md Salah Uddin, Jaehyung Ju, Doo-Man Kim
Abstract Due to the relatively high freedom of selection of materials associated with a simple manufacturing method, a nonpneumatic tire (NPT) can be manufactured with a low viscoelastic energy loss material. A highly increasing demand to reduce greenhouse gases drives engineers to explore NPTs. NPTs consisting of flexible spokes and the shear band are still at an early stage of research and development. An optimization study of NPTs' geometry needs to be conducted, which is the objective of this paper. Parametric studies and design of experiments (DOE) of an NPT are conducted with a hyper-viscoelastic finite element (FE) model to determine the effects of three design variables on rolling resistance: the thickness of cellular spokes, the cell angle, and the shear band thickness. Considering vehicle load carrying capacity and riding comfort, ranges of vertical deflection between 18 and 20mm and contact pressure between 0.6 and 0.8MPa are selected as constraints for the optimization.
2015-04-14
Technical Paper
2015-01-1516
Mohammed K Billal, Rizwan Basha, Anilkumar Nesarikar, Abdul Haiyum, Thomas Oery
Abstract Damages (fracture) in metals are caused by material degradation due to crack initiation and growth due to fatigue or dynamic loadings. The accurate and realistic modeling of an inelastic behavior of metals is essential for the solution of various problems occurring in engineering fields. Currently, various theories and failure models are available to predict the damage initiation and the growth in metals. In this paper, the failure of aluminum alloy is studied using progressive damage and failure material model using Abaqus explicit solver. This material model has the capability to predict the damage initiation due to the ductile and shear failure. After damage initiation, the material stiffness is degraded progressively according to the specified damage evolution response. The progressive damage models allow a smooth degradation of the material stiffness, in both quasi-static and dynamic situations.
2015-04-14
Technical Paper
2015-01-1518
Emmanuel O. Bolarinwa, Oluremi Olatunbosun
Abstract Three-dimensional (3D) Finite element (FE) tyre models have been widely used for tyre design, vehicle design and dynamic investigations. Such tyre models have the inherent advantage of covering a wide range of tyre modelling issues such as the detailed tyre geometry and material composition, in addition to an extensive coverage of tyre operational conditions such as the static preload, inflation pressure and driving speed. Although tyre vibration behaviour, in different frequency ranges are of general interest, both for the vehicle interior and exterior noise, the present study is limited to a frequency of 100 Hz which is prevalent in most road induced (Noise, Vibration, Harshness) NVH ride and handling problems. This study investigates tyre vibration behaviour using a proprietary FE code. Such investigation plays an important role in the study of vehicle dynamics.
Viewing 1 to 30 of 7659