Criteria

Text:
Topic:
Content:
Display:

Results

Viewing 1 to 30 of 7431
Technical Paper
2014-10-01
Christopher Gill, Christopher Knight, Scott McGarry
Vehicle shock absorbers are designed to dissipate kinetic energy through frictional viscous forces. In some circumstances, this can be in the order of kilowatts of instantaneous power dissipation. This study quantitatively assesses the vehicle damper system energy dissipation of a low-mass utility vehicle and a high-mass hauling vehicle, using empirically derived regression models of the working dampers and custom data logging equipment. The damper force and power is derived from post-processing of the measurement of critical damper metrics, including linear velocity and temperature. Under typical operating conditions, the low-mass utility vehicle showed an average power dissipation of 39 W for a single shock absorber, and approximately 150 W for a complete vehicle-damper model. The high-mass hauling vehicle demonstrated an average power dissipation of 102 W for a single shock absorber, and approximately 600 W for a complete vehicle-damper model under laden operating conditions. Our results provide evidence of the amount of energy available for harvesting from a vehicles' damper system using a kinetic energy recovery device.
Technical Paper
2014-10-01
Theodoros Kosmanis, Georgios Koretsis, Athanasios Manolas
Abstract The implementation of an electronic differential system in a delta-type, electrically assisted, three wheel Human Powered Vehicle is the subject of this paper. The electronic differential algorithm is based on the turning angle of the vehicle and its geometrical characteristics. The theoretical analysis is applied in a realistic human powered tricycle constructed in the premises of the Alexander Technological Educational Institute of Thessaloniki. The system's efficiency is validated through test measurements performed on the rear wheels during vehicle's operation in appropriately selected routes. The measurements are performed for both typical cornering and oversteering.
Technical Paper
2014-09-30
Dhiraj Dashrat Salvi
Braking system is having a key importance in vehicle safety & handling stability. In this research paper I had developed a circuit model of Antilock braking system where the operating medium is hydro-pneumatic. A solenoid operated modulator valve consisting of two 2/2 valves is connected in line with the air cylinder & hydraulic master cylinder assembly. Using methodology of response time calibration time taken to modulate hydraulic pressure against pneumatic pressure is evaluated. The signal input to the modulator valve is given by the Electronic controlled unit (ECU). All results obtained is exported to an excel file using Data Acquisition software with pressure myograph system. It gives easy and intuitive readings based on the signal program from ECU for various inputs (i.e. ramp, step). The signals are program for various inputs in order to check the fidelity of the circuit. These readings are easily customized to get the optimum graphs. The response time evaluated from the calibrated data is compared with benchmark or standard set by central motor vehicles rules (CMVR) to meet the regulation.
Technical Paper
2014-09-30
Can Wang, Gangfeng Tan, Bo Yang, Ming Chen, Fudong Wei, Yabei Ni
Abstract The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model. And the vacuum power of AFRS and the air-friction of retarder are analyzed comprehensively.
Technical Paper
2014-09-30
Sunil Raj, S Ravi Shankar
Abstract Automotive component light weighing is one of the major goals for original equipment manufacturers (OEM's) globally. Significant advances are being made in developing light-weight high performance components. In order to achieve weight savings in vehicles, the OEM's and component suppliers are increasingly using ultra-high-strength steel, aluminum, magnesium, plastics and composites. One way is to develop a light weight high performance component through multi material concept. In this present study, a bimetal brake drum of inner ring cast iron and outer shell of aluminum has been made in two different design configurations. In two different designs, 40 and 26% weight saving has been achieved as compared to conventional gray cast iron brake drum. The component level performance has been evaluated by dynamometer test. The heat dissipation and wear behavior has been analyzed. In both designs, the wear performance of the bimetal brake drum was similar to the gray cast iron material.
Technical Paper
2014-09-30
Dong Zhang, Changfu Zong, Ying Wan, Hongyu Zheng, Wei-qiang Zhao
Abstract Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time. In the multiple targets stability control algorithm, a simplified vehicle model, a Kalman filter estimator and an Adaptive Kalman filter estimator of heavy duty vehicles are built, by which the parameters and states can be estimated successfully.
Technical Paper
2014-09-30
Ying Wan, Dong Zhang, Zhao Weiqiang, Changfu Zong, Jongchol Han
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS. Therefore, this paper does the following work for this problem: (1) the structure of proportional relay valve is introduced and the response time and hysteresis characteristics of proportional relay valves are analyzed, (2) the dynamic characteristic of pressure response time and the steady-state characteristic of hysteresis curve are tested with open-loop test bench, (3) a hysteresis compensation control method which integrates PID closed loop control and the feed-forward compensation control is presented for mitigating the hysteresis characteristic of proportional relay valve and improving the pressure response character of the front wheels, (4) a vehicle dynamic simulation platform of commercial vehicle consists of EBS is developed with the co-simulation of MATLAB/Simulink and AMESim for the purpose of EBS control strategy development and validation, (5) the effect of the hysteresis compensation control strategy on vehicle braking performance is validated and analyzed offline.
Technical Paper
2014-09-30
Hongyu Zheng, Linlin Wang
Abstract A brake pad wear control algorithm used under non-emergency braking conditions is proposed to reduce the difference in brake pad wear between the front and rear axles caused by the difference in brakes and braking force. According to the adhesion state of the pad wear, the control algorithm adjusted the braking force distribution ratio of front and rear wheel that balanced adhesion pad wear value. Computer co-simulations of braking with Trucksim and Matlab/Simulink using vehicle models with equal brake pad wear, greater wear on the front axle and greater wear on the rear axle respectively is performed. The computation simulation results show that meet the brake force distribution system regulatory requirements and total vehicle braking force unchanged.
Technical Paper
2014-09-30
Boris Belousov, Tatiana I. Ksenevich, Vladimir Vantsevich, Sergei Naumov
An open-link locomotion module (OLLM) is an autonomous energy self-sufficient locomotion setup for designing ground wheeled vehicles of a given configuration that includes drive/driven and steered/non-steered wheels with individual suspension and brake systems. Off-road applications include both trucks and trailers. The paper concentrates on the module's electro-hydraulic suspension design and presents results of analytical and experimental studies of a trailer with four driven (no wheel torque applied) open-link locomotion modules. On highly non-even terrain, the suspension design provides the sprung mass with sufficient vibration protection at low level of normal oscillations, enhanced damping and stabilized angular movements. This is achieved by the introduction of two control loops: (i) a fast-acting loop to control the damping of the normal displacements; and (ii) a slow-acting control loop for varying the pressure and counter-pressure in the suspension system. Thus, two separate but coordinated controls were designed for both loops to act under small (less than ±7 degrees) and big (larger than ±7 degrees) pitch and roll angles of a vehicle designed with a set of the modules.
Technical Paper
2014-09-30
Guoying Chen, Dong Zhang
Abstract Four-wheel independent control electric vehicle is a new type of x-by-wire EV with four wheels independent steering and four wheels independent drive/brake systems. In order to take full advantage of the vehicle's performance potential, this paper presents a novel integrated chassis control strategy. In the paper, the strategy is designed by the hierarchical control structure and divided into integrated control layer and allocation layer. By this method, the control logical can be modularized and simplified. In the integrated control layer, Model Prediction Control (MPC) is adopted to design the integrated control unit, which belongs to be a kind of local optimization algorithm with feedback correction features. Using this method could avoid the system performance degradation caused by the control model mismatch. The control allocation layer is to optimally distribute the vehicle control forces to the steering/driving/brake actuators on each wheel. In order to maximize the use of the tire adhesions, the algorithm sets the tire load rate minimized as the control target.
Technical Paper
2014-09-30
Dong Zhang, Changfu Zong, Guoying Chen, Pan Song, Zexing Zhang
Abstract A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer. In the Objective Control Layer, a real-time ideal reference model of vehicle dynamics for drivers with different characteristics are built up with Radical Basis Function (RBF) neural network by using the driving simulator test data, which is used for the control objective of the UFEV.
Technical Paper
2014-09-30
Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri
Abstract Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations. Thus, the need for state-of-the-art tire-ice models capable of predicting accurate friction levels taking into account all operational conditions becomes evident.
Technical Paper
2014-09-30
Mehmet Bakir, Murat Siktas, Serter Atamer
Abstract In today's world, there are a prominent number of weight and cost reduction projects within the vehicle engineering development activities. Regarding this phenomenon, a complete optimization study is applied to a leaf spring assembly, which has 4 leaves and which is used in heavy duty trucks, by reducing the number of leaves down to 3 together with weight and cost reductions. At the first step of the project, the stiffness of the leaf spring is calculated with in-house software based on mathematical calculations using the thickness profile of the leaves. Then the results of these calculations are compared with non-linear elastic leaf spring calculations which are conducted with FEA. This elastic leaf spring finite element model is transferred into Multi-Body-Simulation (MBS) model in order to determine the forces acting on the leaf spring. Using the results of the MBS calculations, which are time histories of the internal forces and moments on the leaf spring, the FE simulations are performed.
Technical Paper
2014-09-30
Sijing Guo, Zhenfu Chen, Xuexun Guo, Quan Zhou, Jie Zhang
Abstract To integrate the energy-recovery characteristic of the Hydraulic electromagnetic shock absorber (HESA) and the anti-roll characteristic and anti-pitch characteristic of Hydraulic Interconnected Suspension(HIS), a Hydraulic Interconnected Suspension system based on Hydraulic Electromagnetic Shock Absorber (HESA-HIS) is presented. HESA-HIS has three operating modes: energy-recovery priority mode, dynamic performance priority mode and energy-recovery and dynamic performance balance mode. The working principle of HESA-HIS in the three operating modes is introduced, a full vehicle model is built by using the software AMESim, and some simulation tests are conducted by using the vehicle model. The simulation results show that the system can effectively reduce the roll angle of the vehicle, while maintaining good ride performance. Fishhook test results show that the roll angle of the HESA-HIS vehicle is reduced by 80%, compared to the traditional vehicle. Sinusoidal excitation tests show that HESA-HIS system can improve the ride performance to a certain extent by switching the operating modes.
Technical Paper
2014-09-30
Anatoliy Dubrovskiy, Sergei Aliukov, Yuriy Rozhdestvenskiy, Olesya Dubrovskaya, Sergei Dubrovskiy
Abstract We have developed a fundamentally new design of adaptive suspension systems of vehicles. Their technical characteristics and functional abilities are far better than the existing designs of suspensions. We have developed the following main suspension components of vehicles: a lockable adaptive shock absorber with an ultra-wide range of control performance, implementing “lockout” mode by means of blocking adaptive shock absorber, and an elastic element with progressive non-linear characteristic and automatic optimization of localization of work areas. Our patents confirm the novelty and efficiency of our major design decisions. Advantages of our developments in the vehicle suspensions are the following. Firstly, it should be noted that when the vehicle is in a wide range of speeds in a so-called “comfort zone”, we were able, by applying the non-linear elastic element, to reduce significantly the stiffness of the elastic suspension elements in compare with the regular structures - at least in two times.
Technical Paper
2014-09-30
Yiting Kang, Subhash Rakheja, Wenming Zhang
Abstract A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions. Toe-in and horizontal wheel center displacements of the CA and TA vary significantly, which could strongly affect the vehicle handling performance and cause greater tire wear.
Technical Paper
2014-09-30
Xianjian Jin, Guodong Yin, Youyu Lin
Abstract Knowledge of vehicle dynamics variables is very important for vehicle control systems that aim to improve handling characteristics and passenger safety. However for both technical and economical reasons some fundamental data (e.g., Lateral tire-road forces and vehicle sideslip angle) are difficult to measure in a standard car. This paper proposes a novel Interacting Multiple Model Filter-Based method to estimate lateral tire-road forces by utilizing real-time measurements. The estimation method of lateral tire-road forces is based on an interacting multiple model (IMM) filter that integrates in-vehicle sensors of in-wheel-motor-driven electric vehicles to adaptively adjusted multiple vehicle-road system models to match variable driving conditions. A four-wheel nonlinear vehicle dynamics model (NVDM) is built considering extended roll dynamics and load transfer. The vehicle-road system model set of the IMM filter is consists of a linear tire model based NVDM and a nonlinear Dugoff tire model based NVDM.
Technical Paper
2014-09-30
Marius-Dorin Surcel, Yves Provencher
Abstract The objective of this project was to compare the fuel consumption and traction performances of 6 × 2 and 6 × 4 Class 8 tractors. Two approaches have been considered: evaluation of 6 × 2 tractors, modified from 6 × 4 tractors, and evaluation of OEM 6 × 2 tractors. Compared to the 6 × 4 tractors, which are equipped with a rear tandem with both drive axles, the 6 × 2 tractors have a rear tandem axle with one drive axle, and one non-drive axle, also called dead axle. The 6 × 2 tractor configurations are available from the majority of Class 8 tractor manufacturers. The SAE Fuel Consumption Test Procedures Type II (J1321) and Type III (J1526) were used for fuel consumption track test evaluations. Traction performances were assessed using pull sled tests to compare pulling distance, maximum speed, and acceleration when pulling the same set sled on similar surface. Fuel consumption tests showed that 6 × 2 tractors consume up to 3.5% less than the similar 6 × 4 tractors, whilst pull sled tests showed shorter distance, lower maximum speed, and lower acceleration for the 6 × 2 tractors, when compared to similar 6 × 4 tractors.
Technical Paper
2014-09-30
Yang Li, JianWei Zhang, Konghui Guo, Dongmei Wu
Abstract This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
Technical Paper
2014-09-30
Joshua L. Every, M. Kamel Salaani, Frank S. Barickman, Devin H. Elsasser, Dennis A. Guenther, Gary J. Heydinger, Sughosh J. Rao
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results. Data was drawn from a prior NHTSA simulator study and showed that many drivers exhibited multi-stage braking during four different imminent crash scenarios.
Technical Paper
2014-09-30
Takahiko Yoshino, Hiromichi Nozaki
Abstract It has been reported that steering systems with derivative terms have a heightened lateral acceleration and yaw rate response in the normal driving range. However, in ranges where the lateral acceleration is high, the cornering force of the front wheels decreases and hence becomes less effective. Therefore, we applied traction control for the inner and outer wheels based on the steering angle velocity to improve the steering effectiveness at high lateral accelerations. An experiment using a driving simulator showed that the vehicle's yaw rate response improved for a double lane change to avoid a hazard; this improves hazard avoidance performance. Regarding improved vehicle control in the cornering margins, traction control for the inner and outer wheels is being developed further, and much research and development has been reported. However, in the total skid margin, where few margin remains in the forward and reverse drive forces on the tires, spinout is unavoidable. Therefore, we applied tire camber angle control to improve vehicle maneuverability in the total skid margin.
Technical Paper
2014-09-30
Linlin Wang, Hongyu Zheng
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads. The simulation results shows that the algorithm can control the wheels' slip-rate changing in the settled range and shorten the braking time, thus improves braking performance of tractor/trailer combination vehicle.
Technical Paper
2014-09-30
Hongyu Zheng, Linlin Wang
Abstract The active safety and stability of tractor and trailer (heavy-duty vehicle) have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research differential braking force distribution control algorithm to improve braking safety of heavy-duty vehicle. The ideal braking force of each wheel axle should be proportional to vertical load of vehicle that is also related to the road adhesion coefficient, the load and the braking intensity. Reasonable braking force distribution can enhance its braking stability and shorten the braking distance by making full use of the road adhesion condition of each wheel. A braking force distribution algorithm is proposed, in which the objective braking force change with the axle load of vehicle. A controller is built with Matlab® software and TruckSim® software on vehicles respectively equipped with electric braking system (EBS) on typical condition and the simulation results show that the control strategy can shorten the braking distance and improve vehicle safety.
Technical Paper
2014-09-30
Hongyu Zheng, Linlin Wang
Abstract At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
Technical Paper
2014-09-30
Takahiko Yoshino, Hiromichi Nozaki
Abstract In recent years, the conversion of vehicles to electric power has been accelerating, and if a full conversion to electric power is achieved, further advancements in vehicle kinematic control technology are expected. Therefore, it is thought that kinematic performance in the critical cornering range could be further improved by significantly controlling not only the steering angle but also the camber angle of the tires through the use of electromagnetic actuators. This research focused on a method of ground negative camber angle control that is proportional to the steering angle as a technique to improve maneuverability and stability to support the new era of electric vehicles, and the effectiveness thereof was clarified. As a result, it was found that in the critical cornering range as well, camber angle control can control both the yaw moment and lateral acceleration at the turning limit. It was also confirmed that both stability and the steering effect in the critical cornering range are improved by implementing ground negative camber angle control that is proportional to the steering angle using actuators.
Technical Paper
2014-09-30
C Venkatesan, R DeepaLakshmi
Abstract The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time. Also it has got better heat ageing properties and higher burst pressure at elevated temperature.
Technical Paper
2014-09-30
Jiaqi Xu, Bradley Thompson, Hwan-Sik Yoon
Abstract Hydraulic excavators perform numerous tasks in the construction and mining industry. Although ground grading is a common task, proper grading cannot easily be achieved. Grading requires an experienced operator to control the boom, arm, and bucket cylinders in a rapid and coordinated manner. Due to this reason, automated grade control is being considered as an effective alternative to conventional human-operated ground grading. In this paper, a path-planning method based on a 2D kinematic model and inverse kinematics is used to determine the desired trajectory of an excavator's boom, arm, and bucket cylinders. Then, the developed path planning method and PI control algorithms for the three cylinders are verified by a simple excavator model developed in Simulink®. The simulation results show that the automated grade control algorithm can grade level or with reduced operation time and error.
Technical Paper
2014-09-30
Mehdi Ahmadian
The 2014 SAE Buckendale Lecture will address the past developments and challenges of electromechanical “smart” systems for improving commercial vehicles' functionality. Electromechanical systems combine traditional mechanical devices with electrical components to provide far higher degree of functionality and adaptability for improved vehicle performance. The significant advances in microprocessors and their widespread use in consumer products have promoted their implementation in various classes of vehicles, resulting in “smart” devices that can sense their operating environment and command an appropriate action for improved handling, stability, and comfort. The chassis and suspension application of electromechanical devices mostly relate to controllable suspensions and vehicle dynamic management systems, such as Electronic Stability Control. Controllable suspensions include an active or semiactive element-most commonly, damper-that enables changing the dynamic characteristics of the suspension in real time, to adapt to the instantaneous driving dynamics of the vehicle.
Technical Paper
2014-09-30
Naseem A. Daher, Monika Ivantysynova
Original equipment manufacturers and their customers are demanding more efficient, lighter, smaller, safer, and smarter systems across the entire product line. In the realm of automotive, agricultural, construction, and earth-moving equipment industries, an additional highly desired feature that has been steadily trending is the capability to offer remote and autonomous operation. With the previous requirements in mind, the authors have proposed and validated a new electrohydraulic steering technology that offers energy efficiency improvement, increased productivity, enhanced safety, and adaptability to operating conditions. In this paper, the authors investigate the new steering technology's capacity to support remote operation and demonstrate it on a compact wheel loader, which can be remotely controlled without an operator present behind the steering wheel. This result establishes the new steer-by-wire technology's capability to enable full autonomous operation as well.
Technical Paper
2014-09-30
L. Joseph Bachman, Anthony Erb, Jeffry Sellers
Abstract Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline. The return factor for the new tires was 1: 3.1, that is, a one percent decrease in fuel consumption is obtained by a 3.1 percent decrease in rolling resistance.
Viewing 1 to 30 of 7431