Criteria

Display:

Results

Viewing 1 to 30 of 1948
2015-06-15
Technical Paper
2015-01-2163
Caio Fuzaro Rafael, Diogo Mendes Pio, Guilherme A. Lima da Silva
The present paper shows integral boundary-layer solutions and finite-volume Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) results for flow around three airfoils: NACA 8H12, MMB-V2 and NACA0012. The objective of the present paper is to verify and compare results of a proposed two-equation integral model to those of a traditional one-equation integral model used by classic 2D icing codes and previous anti-ice works. In addition, the present paper compares the results of both proposed and traditional integral codes to CFD results and, whenever possible - validate with experimental data. A numerical code that solves integral equations of boundary layer - with transition onset and length predictions as well as the intermittency evolution - is implemented based on different literature models.
2015-06-15
Technical Paper
2015-01-2083
Daniel Silva, Thais Bortholin, J Allan Lyrio, Luis Santos
An important issue regarding landing performance is the reference speed which determines the approved fields lengths in which a landing can take place. The critical scenario is the accumulation of ice during the holding phase followed by descent, approach and landing. The effect of icing in the landing configuration, with the high-lift devices deployed, is relevant and should be anticipated during the early design phases by simulation. Due to the complex behaviour of the flowfield, 3D CFD methods has been used but that leads to a high computational cost which might be too intensive for the preliminary design phases . The purpose of this paper is to describe a lower cost procedure combining CFD and Quasi-3D modified Weissinger´s Method [3] which provides an accurate assessment of these effects to 5% margin in ∆CL , confirmed by wind tunnel testing.
2015-06-15
Technical Paper
2015-01-2082
Andreas Tramposch, Wolfgang Hassler, Reinhard F.A. Puffing
Certain operating modes of the Environmental Control System (ECS) of passenger aircraft are accompanied with significant ice particle accretion in a number of pivotal parts of the system. Icing conditions particularly prevail downstream of the air conditioning packs and, as a consequence, ice particle accretion takes place in the Pack Discharge Duct (PDD) and in the mixing manifold. For a better understanding of these icing processes, numerical simulations using a multiphase model based on a coupled Eulerian-Lagrangian transport model in a generic PDD were performed. The obstruction of the PDD due to ice growth and the resulting change of the flow geometry were treated by deforming the computational mesh during the CFD simulations. In addition to the numerical investigations, a generic and transparent PDD was studied experimentally under several operating conditions in FH JOANNEUM’s icing wind tunnel.
2015-04-14
Technical Paper
2015-01-0392
Mohammad Izadi Najafabadi, Bart Somers, Abdul Aziz Nuraini
Homogeneous Charge Compression Ignition (HCCI) combustion technology has demonstrated a profound potential to decrease both emissions and fuel consumption. In this way, the significance of the 2-stroke HCCI engine has been underestimated as it can provide more power stroke in comparison to a 4-stroke engine. Moreover, the mass of trapped residual gases is much larger in a 2-stroke engine, causing higher initial charge temperatures, which leads to easier auto-ignition. For controlling 2-stroke HCCI engines, it is vital to find optimized simulation approaches of HCCI combustion with a focus on ignition timing. In this study, a Computational Fluid Dynamic (CFD) model for a 2-stroke gasoline engine was developed coupled to a semi-detailed chemical mechanism of iso-octane to investigate the simulation capability of the considered chemical mechanism and the effects of different simulation parameters such as the turbulence model, grid density and time step size.
2015-04-14
Technical Paper
2015-01-0327
Elizabeth M. Patterson, Iman Goldasteh, Salamah Maaita
Abstract Recent progress in computer-aided engineering (CAE) has made it possible to model complex interdisciplinary multiphysics analyses. This paper investigated the sequential coupled thermal-structural analysis by examining the associated thermal stresses under simulated operational conditions close to the real situation. An evaluation of exhaust muffler strain due to thermal stresses was made by coupling Star-CCM+ CFD software and ABAQUS FEM structural analysis software. The study was made to evaluate discovered muffler durability test failure and to develop a countermeasure design. Failure of the muffler internal pipe was discovered after heat cycle durability testing. The internal pipe had broken into two pieces. In the first step, CFD analysis was done by thermo-flow simulation to determine the resulting heat distribution on the muffler assembly when subjected to the prescribed peak duty cycle temperature.
2015-04-14
Technical Paper
2015-01-0737
Sadegh Poozesh, Nelson Akafuah, Kozo Saito
Abstract Lack of a precise control over paint droplets released from current coating sprayers has motivated this study to develop an atomizer capable of generating a uniform flow of mono-dispersed droplets. In the current study, a numerical investigation based on CFD incorporating volume of fluid (VOF) multiphase model has been developed to capture the interface between air and paint phases for a typical atomizer equipped with piezoelectric actuator. Effects of inlet flow rate and actuator frequency on ejected droplets' characteristics, droplet diameter and their successive spacing are studied in detail. It will be shown that for a determined flow rate of paint, there is an optimum actuator frequency in which droplet size is minimum. Besides, there exists a direct relationship between the inlet paint velocity and obtained optimal actuator frequency.
2015-04-14
Technical Paper
2015-01-0347
Logesh Shankar Somasundaram, S Sriraman, Rakesh Verma
The paper aims at numerically modeling the flow and thermal processes occurring in an agricultural tractor using Computational Fluid Dynamics (CFD) and determines the comfort level of the tractor operator during working condition. The motive of the investigation is to develop and demonstrate capabilities of CFD as an automotive analysis tool. The work describes a methodology that significantly stream lines the process of thermal flow taking place in a tractor by utilizing state-of-the art computer simulation of air flow and heat transfer. The numerical investigation carried out with a three-dimensional geometry of the vehicle assembly and the measurements were taken from the vehicle. The geometry created with Pro/Engineer formed the domain for the automatically generating discretized grid contained the majority of the main components within the underhood environment.
2015-04-14
Technical Paper
2015-01-0794
Zongyu Yue, Randy Hessel, Rolf D. Reitz
Abstract The application of close-coupled post injections in diesel engines has been proven to be an effective in-cylinder strategy for soot reduction, without much fuel efficiency penalty. But due to the complexity of in-cylinder combustion, the soot reduction mechanism of post-injections is difficult to explain. Accordingly, a simulation study using a three dimensional computational fluid dynamics (CFD) model, coupled with the SpeedChem chemistry solver and a semi-detailed soot model, was carried out to investigate post-injection in a constant volume combustion chamber, which is more simple and controllable with respect to the boundary conditions than an engine. A 2-D axisymmetric mesh of radius 2 cm and height 5 cm was used to model the spray. Post-injection durations and initial oxygen concentrations were swept to study the efficacy of post-injection under different combustion conditions.
2015-04-14
Technical Paper
2015-01-0360
Maryline Leriche, Wolfgang Roessner, Heinrich Reister, Bernhard Weigand
Abstract An accurate model to predict the formation of fogging and defogging which occurs for low windshield temperatures is helpful for designing the air-conditioning system in a car. Using a multiphase flow approach and additional user-defined functions within the commercial CFD-software STAR-CCM+, a model which is able to calculate the amount of water droplets on the windshield from condensation and which causes the fogging is set up. Different parameters like relative humidity, air temperature, mass flow rate and droplet distributions are considered. Because of the condition of the windshield's surface, the condensation occurs as tiny droplets with different sizes. The distribution of these very small droplets must be obtained to estimate numerically the heat transfer coefficient during the condensation process to predict the defogging time.
2015-04-14
Technical Paper
2015-01-0399
Alexander Jaust, Bastian Morcinkowski, Stefan Pischinger, Jens Ewald
Abstract In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
2015-04-14
Technical Paper
2015-01-0398
Lorenzo Bartolucci, Stefano Cordiner, Vincenzo Mulone, Vittorio Rocco, Edward Chan
Abstract The aim of this work is to assess the accuracy of results obtained from Large Eddy Simulations (LES) of a partially-premixed natural gas spark-ignition combustion process in a Constant Volume Combustion Chamber (CVCC). To this aim, the results are compared with the experimental data gathered at the University of British Columbia. The computed results show good agreement with both flame front visualization and pressure rise curves, allowing for drawing important statements about the peculiarities of the Partially Stratified Combustion ignition concept and its benefits in ultra-lean combustion processes.
2015-04-14
Technical Paper
2015-01-0396
Bryce Charles Thelen, Gerald Gentz, Elisa Toulson
Abstract Fully three-dimensional computational fluid dynamic simulations with detailed chemistry of a single-orifice turbulent jet ignition device installed in a rapid compression machine are presented. The simulations were performed using the computational fluid dynamics software CONVERGE and its RANS turbulence models. Simulations of propane fueled combustion are compared to data collected in the optically accessible rapid compression machine that the model's geometry is based on to establish the validity and limitations of the simulations and to compare the behavior of the different air-fuel ratios that are used in the simulations.
2015-04-14
Technical Paper
2015-01-1075
Muhammad Ahmar Zuber, Wan Mohd Faizal Wan Mahmood, Zambri Harun, Zulkhairi Zainol Abidin, Antonino La Rocca, Paul Shayler, Fabrizio Bonatesta
Abstract The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
2015-04-14
Technical Paper
2015-01-0558
Xiaobei Cheng, Xin Wang, Yang Ming, Zhang Hongfei, Ran Gao
Abstract With a focus on a heavy diesel engine, complete set of multi-field coupling methodology aimed at analyzing and optimizing for fatigue-strength of cylinder head is proposed. A detailed model of the engine consisting of both the coolant galleries and the surrounding metal components is employed in both fluid-dynamic and structural analyses to accurately mimic the influence of the thermo-mechanical load on the cylinder head and block structural reliability. This model carries out several simulating experiments like 3-dimensional CFD of in-cylinder combustion and engine cooling jacket, simulation of cylinder head temperature field which use fluid-structure interaction, stress and strain analysis under thermal-mechanical coupling conditions and high cycle fatigue analysis. In order to assess a proper CFD setup useful for the optimization, the experimentally measured temperature distribution within the engine head is compared to the CFD forecasts.
2015-04-14
Journal Article
2015-01-1656
Lisa Henriksson, Peter Gullberg, Erik Dahl, Lennart Lofdahl
For some vehicle segments the cooling demand is increasing as a result of increased engine power or introduction of different systems, for example EGR, CAC, WHR. To be able to fulfil the increased cooling demand an increased efficiency of the cooling device or an increased cooling package are required. Due to limitations of space at the front of the vehicle, behind the grill, alternative positions of extra heat exchangers have to be evaluated. Common for most of these positions is that the oncoming airflow is not necessarily perpendicular to the heat exchanger core. Evaluation of inclined airflows relative to the heat exchanger must therefore be performed. This article presents CFD simulations on one period of a louvered fin of compact louvered fin heat exchangers, where the incoming airflow was inclined relative to the heat exchanger core.
2015-04-14
Technical Paper
2015-01-1693
Mark Allen, Graham Hargrave, Petros Efthymiou, Viv Page, Jean-Yves Tillier, Chris Holt
It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
2015-04-14
Technical Paper
2015-01-1057
Scott Drennan, Gaurav Kumar, Shaoping Quan, Mingjie Wang
Abstract Controlling NOx emissions from vehicles is a key aspect of meeting new regulations for cars and trucks across the world. Selective Catalytic Reduction (SCR) with urea-water injection is a NOx reduction option that many engine manufacturers are adopting. The performance of urea-water spray evaporation and mixing upstream of an SCR catalyst is critical in obtaining reliable NOx reduction. Achieving this goal requires good ammonia and NOx distribution upstream of the SCR catalyst brick. Computational Fluid Dynamic (CFD) simulations of urea-water injection systems have become an important development and diagnostic tool for designers. An effective modeling approach for urea/SCR must include spray distribution, evaporation, urea kinetics, wall interactions and heat transfer. Designers are also interested in reducing mesh generation time to expedite geometry design changes and optimizing mesh size for accuracy and solution time.
2015-04-14
Journal Article
2015-01-0779
Gerald Gentz, Bryce Thelen, Paul Litke, John Hoke, Elisa Toulson
Abstract Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion.
2015-04-14
Journal Article
2015-01-1727
Francesco Balduzzi, Giovanni Vichi, Luca Romani, Giovanni Ferrara, Paolo Trassi, Jacopo Fiaschi, Federico Tozzi
Abstract High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
2015-04-14
Technical Paper
2015-01-1373
Yulong Lei, Hui Tang, Xingjun Hu, Ge Lin, Bin Song
Abstract With the continuous improvement of the road condition, commercial vehicles get to be faster and more overloaded than before, which puts higher pressure on the vehicle braking system. Conventional friction braking has been difficult to meet the needs of high-power commercial vehicle. The auxiliary braking equipment will become the future trend for commercial vehicle. Hydraulic retarder is superior to secondary braking equipment. Previously hydraulic retarder research mainly focus on flow field analysis, the braking torque calculation, cascade system optimization and control methods for hydraulic retarder. The gas-liquid two-phase flow in working chamber is less researched. Based on this, this article discusses on the hydraulic retarder from two aspects. Firstly, this paper presents a block modeling method for hydraulic retarder system.
2015-04-14
Technical Paper
2015-01-1558
Amir Kharazi, Edward Duell, Austin Kimbrell, Ann Boh
Abstract Unsteady flow over automotive side-view mirrors may cause flow-induced vibrations of the mirror assembly which can result in blurred rear-view images, adversely affecting marketability through customer comfort and quality perception. Prior research has identified two mechanisms by which aerodynamically induced vibrations are introduced in the mirror. The first mechanism is unsteady pressure loading on the mirror face due to the unsteady wake, causing direct vibration of the mirror glass. The second mechanism, and the focus of this study, is a fluctuating loading on the mirror housing caused by an unsteady separation zone on the outer portion of the housing. A time-dependent Computational Fluid Dynamics (CFD) methodology was developed to correctly model mirror wake behavior, and thereby predict flow-induced mirror vibration to improve performance estimations.
2015-04-14
Technical Paper
2015-01-1549
Jonathan Jilesen, Adrian Gaylard, Iwo Spruss, Timo Kuthada, Jochen Wiedemann
Abstract Driving when it is raining can be a stressful experience. Having a clear unobstructed view of the vehicles and road around you under these conditions is especially important. Heavy rain conditions can however overwhelm water management devices resulting in water rivulets flowing over the vehicle's side glass. These rivulets can significantly impair the driver's ability to see the door mirror, and laterally onto junctions. Designing water management features for vehicles is a challenging venture as testing is not normally possible until late in the design phase. Additionally traditional water management features such as grooves and channels have both undesirable design and wind noise implications. Having the ability to detect water management issues such as A-pillar overflow earlier in the design cycle is desirable to minimize the negative impact of water management features. Numerical simulation of windscreen water management is desirable for this reason.
2015-04-14
Technical Paper
2015-01-1541
Kuo-Huey Chen, Bahram Khalighi
Abstract Various drag reduction strategies have been applied to a full size production pickup truck to evaluate their effectiveness by using Computational Fluid Dynamics (CFD). The drag reduction devices evaluated in this study were placed at the rear end of the truck bed and the tailgate. Three types of devices were evaluated: (1) boat tail-like extended plates attached to the tailgate; (2) mid-plate attached to the mid-section of the tailgate and; (3) flat plates partially covering the truck bed. The effect of drag reduction by various combinations of these three devices are presented in this paper. Twenty-four configurations were evaluated in the study with the best achievable drag reduction of around 21 counts (ΔCd = 0.021). A detailed breakdown of the pressure differentials at the base of the truck is provided in order to understand the flow mechanism for the drag reductions.
2015-04-14
Technical Paper
2015-01-1536
Brett C. Peters, Mesbah Uddin, Jeremy Bain, Alex Curley, Maxwell Henry
Abstract Currently, most of the Navier-Stokes equation based Computational Fluid Dynamic solvers rely heavily on the robustness of unstructured finite volume discretization to solve complex flows. Widely used finite volume solvers are restricted to second order spatial accuracy while structured finite difference codes can easily resolve up to five orders of spatial discretization and beyond. In order to solve flow around complicated geometries, unstructured finite volume codes are employed to avoid tedious and time consuming handmade structured meshes. By using overset grids and NASA's overset grid solver, Overflow, structured finite difference solutions are achievable for complex geometries such as the DrivAer [1] model. This allows for higher order flow structures to be captured as compared to traditional finite volume schemes. The current paper compares flow field solutions computed with finite volume and finite difference methods to experimental results of the DrivAer model [1].
2015-04-14
Technical Paper
2015-01-1535
Kentaro Machida, Munetsugu Kaneko, Atsushi Ogawa
Abstract This paper discusses the characteristic flow field of the new Honda FIT/Jazz as determined from the aerodynamic development process, and introduces the technique that reduced aerodynamic drag in a full model change. The new FIT was the first model to take full advantage of the Flow Analysis Simulation tool (FAST), our in-house CFD system, in its development. The FAST system performs aerodynamic simulation by automatically linking the exterior surface design with a predefined platform layout. This allows engineers to run calculations efficiently, and the results can be shared among vehicle stylists and aerodynamicists. Optimization of the exterior design gives the new FIT a moderate pressure peak at the front bumper corner as compared to the previous model, resulting in a smaller pressure difference between the side and underbody.
2015-04-14
Technical Paper
2015-01-1538
Neil Ashton, Alistair Revell
Abstract Computational Fluid Dynamics (CFD) is now one of the most important design tools for the automotive industry. Reliable CFD simulations of the complex separated turbulent flow around vehicles is becoming an ever more crucial goal to increase fuel efficiency and reduce noise emissions. In this study Reynolds Averaged Navier-Stokes (RANS) models (both at eddy-viscosity and second-moment closure levels) are compared to hybrid RANS-LES methods (Detached-Eddy Simulation). The application is the DrivAer model; a new open-source realistic car model which aims to bridge the gap between simple Ahmed body and MIRA/SAE Reference car models and actual car geometries in use by the major car manufacturers. To date, many hybrid RANS-LES studies on complex geometries have been under-resolved compared to more academic cases, due to a limit on computational resources available.
2015-04-14
Technical Paper
2015-01-1534
Daisuke Nakamura, Yasuyuki Onishi, Yoshiyasu Takehara
Abstract There is a need to reduce vehicle's running resistance through aerodynamic performance in terms of having less negative impact on the global environment. In the Accord full model change, the package design is changed, so it is an opportunity to propose methods for improving aerodynamic performance. During the preliminary study, phenomenon analyses were conducted to identify areas that have a significant effect on aerodynamics by using a 25% scale model of the previous model. Based on more than 500 variation measurements as parameter study, the analysis was conducted using computational fluid dynamics (CFD). A proposal was made to the package design. For development that began with the fundamental frame proposed in preliminary studies, wind tunnel testing using 25% scale model was conducted jointly with the Styling Design Office to achieve enhancement styling while also increasing aerodynamic performance.
2015-04-14
Technical Paper
2015-01-1533
Massimiliana Carello, Serra Andrea, Andrea Giancarlo Airale, Alessandro Ferraris
XAM is a two-seat city vehicle prototype developed at the Politecnico di Torino, equipped with a hybrid propulsion system to obtain low consumptions and reduced environmental impact. The design of this vehicle was guided by the requirements of weight reduction and aerodynamic optimization of the body, aimed at obtaining a reduction of resistance while guarantying roominess. The basic shape of the vehicle corresponding to the requirements of style, ergonomics and structure were deeply studied through CFD simulation in order to assess its aerodynamic performance (considering the vehicle as a whole or the influence of the various details and of their changes separately). The most critical areas of the body (underfloor, tail, spoiler, mirrors, A-pillar) were analyzed creating dedicated refinement volumes.
2015-04-14
Journal Article
2015-01-0890
Barbara Graziano, Florian Kremer, Stefan Pischinger, Karl Alexander Heufer, Hans Rohs
Abstract The current and future restrictions on pollutant emissions from internal combustion engines require a holistic investigation of the abilities of alternative fuels to optimize the combustion process and ensure cleaner combustion. In this regard, the Tailor-made Fuels from Biomass (TMFB) Cluster at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University aims at designing production processes for biofuels as well as fuels optimal for use in internal combustion engines. The TMFB Cluster's scientific approach considers the molecular structure of the fuels as an additional degree of freedom for the optimization of both the production pathways and the combustion process of such novel biofuels. Thus, the model-based specification of target parameters is of the utmost importance to improve engine combustion performance and to send feedback information to the biofuel production process.
2015-04-14
Technical Paper
2015-01-0948
Le (Emma) Zhao, Ahmed Abdul Moiz, Jeffrey Naber, Seong-Young Lee, Sam Barros, William Atkinson
Abstract High-speed spray-to-spray liquid impingement could be an effective phenomenon for the spray propagation and droplet vaporization. To achieve higher vaporization efficiency, impingement from two-hole nozzles is analyzed in this paper. This paper focuses on investigating vaporization mechanism as a function of the impingement location and the collision breakup process provided by two-hole impinging jet nozzles. CFD (Computational Fluid Dynamics) is adopted to do simulation. Lagrangian model is used to predict jet-to-jet impingement and droplet breakup conditions while KH-RT breakup and O'Rourke collision models are implemented for the simulation. The paper includes three parts: First, a single spray injected into an initially quiescent constant volume chamber using the Lagrangian approach is simulated to identify the breakup region, which will be considered as a reference to study two-hole impinging jet nozzles.
Viewing 1 to 30 of 1948

Filter