Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 44
2017-09-04
Technical Paper
2017-24-0015
Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
2017-09-04
Technical Paper
2017-24-0053
Silvio A. Pinamonti, Domenico Brancale, Gerhard Meister, Pablo Mendoza
Abstract The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
2017-09-04
Technical Paper
2017-24-0054
Francesco de Nola, Giovanni Giardiello, Alfredo Gimelli, Andrea Molteni, Massimiliano Muccillo, Roberto Picariello
Abstract In the last few years, the automotive industry had to face three main challenges: compliance with more severe pollutant emission limits, better engine performance in terms of torque and drivability and simultaneous demand for a significant reduction in fuel consumption. These conflicting goals have driven the evolution of automotive engines. In particular, the achievement of these mandatory aims, together with the increasingly stringent requirements for carbon dioxide reduction, led to the development of highly complex engine architectures needed to perform advanced operating strategies. Therefore, Variable Valve Actuation (VVA), Exhaust Gas Recirculation (EGR), Gasoline Direct Injection (GDI), turbocharging, powertrain hybridization and other solutions have gradually and widely been introduced into modern internal combustion engines, enhancing the possibilities of achieving the required goals.
2017-03-28
Technical Paper
2017-01-1616
Scott A. Rush
Abstract Modern automotive manufacturing and after-sale service environments require tailoring of configuration values or “calibrations” within the vehicle’s various electronic control units (ECUs) to that vehicle’s specific option content. Historically, ECU hardware and software limitations have led designers to implement calibratable values using opaque binary blocks tied directly to ECU internal software data structures. Such coupling between calibration data files and ECU software limits traceability and reuse across different software versions and ECU variants. However, more and more automotive ECUs are featuring fast microprocessors, large memories, and preemptive, multi-tasking operating systems that open opportunities to object-oriented approaches. This paper presents the CalDef system for automotive ECU calibration software architecture.
2017-03-28
Technical Paper
2017-01-0536
William Goodwin, Claudio Mancuso, Nicolas Brown
This paper describes how distributive computing along with statistical subsystem simulation can be applied to produce near production ready embedded vehicle software and calibrations. Coupling distributive computing and statistical simulation was first employed over a decade ago at General Motors to design and analyze propulsion subsystem hardware. Recently this method of simulation has been enhanced extending its capabilities to both test embedded vehicle code as well as develop calibrations. A primary advantage of this simulation technique is its ability to generate data from a statistically significant population of subsystems. The result is the acquisition of an optimal data set enabling the development of a robust design now including both embedded code and calibrations. Additionally it has been shown that there are significant economic advantages in terms of time and cost associated with this type of development when compared to traditional method.
2017-03-28
Technical Paper
2017-01-0214
Simon O. Omekanda, Rezwanur Rahman, Eric M. Lott, Sadek S. Rahman, Daniel E. Hornback
Abstract Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of input parameters. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine models are developed. The models have been correlated heuristically using Simulink. This correlation and calibration process is challenging and time consuming, especially in the case of the 8-mass model. Hence, in this work a Particle Swarm Optimizer (PSO) method has been introduced and implemented on a simple 3-mass and more complex 8-mass engine thermal model in order to optimize the input parameters.
2017-01-10
Technical Paper
2017-26-0043
Peter Heuser, Stefano Ghetti, Devising Rathod, Sebastian Petri, Sascha Schoenfeld
Abstract The Bharat Stage VI (BS-VI) emission legislation will come into force in 2020, posing a major engineering challenge in terms of system complexity, reliability, cost and development time. Solutions for the EURO VI on-road legislation in Europe, from which the BS-VI limits are derived, have been developed and have already been implemented. To a certain level these European solutions can be transferred to the Indian market. However, several market-specific challenges are yet to be defined and addressed. In addition, a very strict timeline has to be considered for application of advanced technologies and processes during the product development. In this paper, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the exhaust aftertreatment side. This includes boosting and fuel injection technologies as well as different exhaust gas recirculation methods.
2017-01-10
Technical Paper
2017-26-0032
Anuroopa Varsha, Andreas Rainer, Prabhu Santiago, Ramdas Umale
Abstract Modern day diesel engines use systems like Exhaust Gas Recirculation (EGR), Variable Geometric Turbo Charger (VGT), inlet throttle for air regulation, multiple injection strategies, high pressure rail systems for fuel regulation to optimize the combustion for meeting the strict emission and fuel consumption demands. Torque based ECU structures which are commonly used for diesel engines require a large amount of calibration work. Conventional manual methods for emission and fuel consumption optimization (Full factorial or Line search method) results in increased test bed usage and it is almost impossible to use these methods as the number of parameters to optimize are very high. The conventional DoE tests have been limited by the necessity of calibration engineer’s expertise and manual prescreening of test points to be within thermal & mechanical limits of engine systems. This subsequently leads to excessive screening of variables; which is time consuming.
2017-01-10
Technical Paper
2017-26-0135
Bandu Shamrao Zagade, Vijay Sharma, Thomas Körfer
Abstract In a move to curb vehicular pollution, Indian Government decided to bring forward the date for BSVI standards into effect from April 2020 while skipping the intermediate BSV stage. The plan to implement BSVI norms, which initially was scheduled for 2024 according to the National Auto Fuel Policy dated April 27, 2015, has now been slotted for April 2020. For particulate mass (PM) emissions to be brought down to the BS VI level (4.5mg/km), diesel passenger cars need to be fitted with a diesel particulate filter (DPF). The diesel particulate filter (DPF) is a device designed to remove soot from the exhaust gas of the diesel engine. DPF must be cleaned/regenerated from time to time else, it will block up. Optimized DPF calibration is the key for various challenges linked with its use as one of the effective PM reduction technology.
2016-10-25
Technical Paper
2016-36-0351
Ricardo Gonçalves, Reinaldo dos Santos
Abstract Increasingly, the auto industry has been challenged to meet its financial needs to remain competitive. Customer comfort needs in regard to the Vehicle Interior Noise levels are also remarkable. The application of fixed displacement air conditioning compressors and low cost exhaust system in vehicles to meet the programs cost targets generated a series of notorious and undesirable effects to the customer. The noise perception of the compressor coupling during its operation cycle is one of them. This happens in some specific situations and varies with weather and engine operating conditions. The vehicle used in this study presented a boom noise coming from the exhaust tailpipe during the AC compressor coupling phase. This noise was attenuated to satisfactory levels in regard to consumer perception with only a change in engine calibration strategy.
2016-10-17
Technical Paper
2016-01-2153
Hubertus Ulmer, Ansgar Heilig, Matthias Rühl, Boris Löw
Abstract This paper presents an innovative method for the calibration of internal combustion engines. While common calibration strategies and optimizations are usually based on stationary operation points, this new method uses quasi-stationary engine experiments. On the one hand, the time necessary for establishing a steady state of the engine can thus be omitted. Consequently, the duration of calibration runs can be reduced. On the other hand, an enhanced approach generates validated data from the transient or quasi-stationary test runs in order to complete the various engine maps. First validations of the method using a numeric engine model were carried out. Compared to a conventional steady state calibration and depending on the optimization parameter, the duration could be decreased by up to 74% from 350 hours to approximately 91 hours with constant quality of the measurement data.
2016-04-05
Technical Paper
2016-01-0090
Patrick Barasa, Ye Tian, Stefan Hardes, Shahaboddin Owlia, Purvi Limaye, Derek Bailey, Tarun Sehgal
Abstract Increasingly advanced engines are having high degrees of flux in design, hardware, and requirement changes throughout the development process from initial design intent to production, all occurring at various points in the Software Development Life Cycle (SDLC). Boosting, downsizing, various exhaust gas recirculation (EGR) schemes, variable valve timing/lift (VVT/VVL), and direct injection are part of new engine designs. These are being coupled with 6-10 speed transmission or electric motors for increasing overall efficiency while maintaining performance. Development and calibration of the control systems required to extract the best possible performance of these applied technologies is becoming a complex and resource consuming task when time, budget, and test beds become limited. Therefore, an equally rapid means to thoroughly test new engine designs, new algorithms and optimize calibrations is required.
2015-09-01
Technical Paper
2015-01-1989
Farraen Mohd Azmin, Richard K. Stobart
Model-based calibration (MBC) is a systematic method to calibrate an engine control unit (ECU) system. Due to the working principle of MBC, it is only being used for steady-state systems (time independent models). This limits the use of MBC; because an ECU contains statistical and dynamical systems. Due to the limitations of MBC, dynamical systems require manual tuning which may be time-consuming. With the increasing popularity in hybrid and electrical vehicle systems, most of them rely on dynamical systems. Therefore, MBC is about to be superseded by manual parameterization methods. Remarkably, MBC is not limited to the steady state systems. It can be achieved by separating the time factor of a system and extracting the statistical data from a time series measurement. Typically, MBC model is conceived as the representation of a system plant (i.e.: air path, fuel path, mean value engine model). As a matter of fact, MBC model is not limited to identification of system plant.
2015-04-14
Journal Article
2015-01-0481
Joshua Bergerson, Ralph Muehleisen
Abstract When utilizing large models containing numerous uncertain parameters, model calibration becomes a critical step in the analysis. Traditional methods of calibration involve adjusting uncertain parameters based on expert opinion or best estimates. While this traditional calibration may lead to better model predictions, it usually only yields better estimates for certain specific conditions. This drastically reduces the functionality of the model in question. Bayesian calibration is an alternative to traditional calibration methods which utilizes available information (simulation results and/or real world measured values) to iteratively refine uncertain parameters (either assumed or measured uncertainty) while considering not only parametric uncertainty, but also model, observational, and residual uncertainties at every step of the calibration process.
2015-04-14
Technical Paper
2015-01-1625
Frederic Boissinot, Jerome Bellavoine, Andrew Shabashevich, Siegfried Puster
Abstract Today, OEMs are challenged with an increasing number of powertrain variants and complexity of controls software. They are facing internal pressure to provide mature and refined calibrations earlier in the development process. Until now, it was difficult to respond to these requests as the drivability's calibration tasks are mostly done in vehicles. This paper describes a new methodology designed to answer these challenges by performing automated shift quality calibration prior to the availability of vehicles. This procedure is using a powertrain dynamometer coupled with a real-time vehicle dynamics model. By using a Power Train Test Bed (PTTB), a physical vehicle is not required. As soon as the vehicle dynamics model and its parameters have been defined, it can be simulated on the PTTB and drivability calibrations can be developed. A complete powertrain is coupled with low inertia and highly dynamic dynamometers.
2014-10-13
Technical Paper
2014-01-2889
Gerhard Kokalj, Patrick Schatz, Christoph Zach
Abstract The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a large amount of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
2014-10-13
Technical Paper
2014-01-2583
Mohammed Reza Kianifar, Felician Campean, Tim Beattie, David Richardson
This paper presents the development and implementation of an Analytical Target Cascading (ATC) Multi-disciplinary Design Optimisation (MDO) framework for the steady state engine calibration optimisation problem. The case is made that the ATC offers a convenient framework for the engine calibration optimisation problem based on steady state engine test data collected at specified engine speed / load points, which is naturally structured on 2 hierarchical levels: the ‘Global’ level, associated with performance over a drive cycle, and ‘Local’ level, relating to engine operation at each speed / load point. The case study of a diesel engine was considered to study the application of the ATC framework to a calibration optimisation problem. The paper describes the analysis and mathematical formulation of the diesel engine calibration optimisation as an ATC framework, and its Matlab implementation with gradient based and evolutionary optimisation algorithms.
2014-09-30
Technical Paper
2014-01-2359
Christopher Atkinson
Abstract Pending GHG emissions reduction legislation for medium- and heavy-duty vehicles will require the development of engines and powertrains with significantly increased mechanical and electronic complexity. Increasing powertrain efficiency will require the simulation, control and calibration of an expanding number of highly interdependent air, fuel, exhaust, combustion and energy transfer subsystems. As a result of these increases in complexity, engine and powertrain control is becoming significantly more sophisticated and costly to develop and difficult to optimize. The high cost of developing engines and powertrain systems that demonstrate greater fuel efficiency and emissions benefits than the engines of today, is undeniable. The increased calibration burden and the complexity of optimization require the development and adoption of entirely new methods for transient engine calibration and optimization to achieve maximum vehicle fuel efficiency and lowest regulated emissions.
2013-09-17
Technical Paper
2013-01-2118
Mohamed Helal, Fengfeng Xi, Yu Lin
Industrial robot calibration packages, such as ABB CalibWare, are merely developed only for robot calibration. As a result, the robotic tooling systems designed and fabricated by the user are often calibrated in an ad hoc fashion. In this paper, a systematic approach for robotic tooling calibration is presented in order to overcome this problem. The idea is to include the tooling system as an extended body in the robot kinematic model, from which two error models are established. The first model is associated with the robot, while the second model is associated with the tooling. Once the robot is fully calibrated, the first error will be eliminated. Thus, our method is focused on the second error model. For this calibration, a self-calibration method is developed by using a calibration plate with multiple holes. Then, the tooling calibration model is formulated against the distance between the two holes. For measurements of the distances, a camera is mounted on the tooling system.
2013-04-08
Journal Article
2013-01-0972
Mohammed Reza Kianifar, Loan Felician Campean, Dave Richardson
The complexity of powertrain calibration has increased significantly with the development and introduction of new technologies to improve fuel economy and performance while meeting increasingly stringent emissions legislation with given time and cost constraints. This paper presents research to improve the model-based engine calibration optimization using an integrated sequential Design of Experiments (DoE) strategy for engine mapping experiments. This DoE strategy is based on a coherent framework for a model building - model validation sequence underpinned by Optimal Latin Hypercube (OLH) space filling DoEs. The paper describes the algorithm development and implementation for generating the OLH space filling DoEs based on a Permutation Genetic Algorithm (PermGA), subsequently modified to support optimal infill strategies for the model building - model validation sequence and to deal with constrained non-orthogonal variables space.
2013-03-25
Technical Paper
2013-01-0128
Gerhard Kokalj, Ruangrit Ekachaiworasin
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term "hybrid vehicle" can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call them "hybrid." This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required.
2012-09-10
Technical Paper
2012-01-1679
Rita Di Gioia, Domenico Papaleo, Fabio Massimo Vicchi, Nicolo Cavina
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
2012-04-16
Technical Paper
2012-01-0722
Shugang Jiang, Donald Nutter, Anthony Gullitti
To meet the ever increasing requirements in the areas of performance, fuel economy and emission, more and more subsystems and control functions are being added to modern engines. This leads to a quick increase in the number of control parameters and consequently dramatic time and cost increase for engine calibration. To deal with this problem, the automotive industry has turned to model-based calibration for a solution. Model-based calibration is a method that uses modern Design of Experiments (DoE), statistical modeling and optimization techniques to efficiently produce high quality calibrations for engines. There are two major enablers for carrying out this method - fully automated engine control and measurement system, and advanced mathematical tools for DoE, modeling and optimization.
2012-04-16
Technical Paper
2012-01-0030
Jay Abraham
Calibration parameters are extensively used in complex automotive Engine Control Units (ECUs), including ECUs for the engine, transmission, Anti-lock Braking System (ABS), and Electronic Stability Control (ESC). Calibration engineers can set the exact values of calibration parameters for a given software application after the ECU software is built. Such parameters also enable a single set of software to control multiple hardware variants, for example 4-cylinder and 6-cylinder engine variants, or turbo and non-turbo variants. In an ECU, there are often hundreds and sometimes tens of thousands of calibration parameters, some of which are multidimensional tables. With this level of complexity, ensuring that the ECU software using the values from these tables will not encounter an overflow operation, divide by zero condition, or illegal memory access run-time error can be a significant challenge.
2011-04-12
Technical Paper
2011-01-0703
Harsha Nanjundaswamy, Marek Tatur, Dean Tomazic, Mufaddel Dahodwala, Thomas Eping, Lukas Virnich, Qianfan (Harry) Xin, Walter Gorczowski, Michael Read
Beginning in 2010, implementation of on-board diagnostics (OBD) is mandatory for all the heavy-duty engine applications in the United States. The task of developing OBD strategies and calibrating them is a challenging one. The process involves a strong interdependency on base engine emissions, controls and regulations. On top of that the strategies developed as a result of the regulatory requirements need to go through a stringent and time-intensive process of software implementation and integration. The recent increasing demands to minimize the development process have been pushing the envelope on the methodologies used in developing the strategies and the calibration for robust monitoring. The goal of this paper is to provide a concise overview of a process utilized to help the development, testing and calibration of the OBD strategies on a 2010 model year heavy-duty diesel engine.
2011-04-12
Technical Paper
2011-01-0741
Shozo Yoshida, Masato Ehara, Yukio Kuroda
In recent years, engine control systems have become more and more complex because of the growing pressure to develop technical innovations due to social pressures such as global warming and the depletion of fossil fuels. On the other hand, products must be launched on the market in a timely manner and at low cost. For these reasons, calibration processes have become more sophisticated. It is possible to improve the efficiency of calibration by making good use of models, and a calibration process that incorporates models is called model based calibration (MBC). MBC is a valid means of reducing the number of measurement points to some extent by statistical engine modeling and design of experiment (DoE) methodology which places measurement points in order to maximize modeling accuracy. However, it is still necessary to spend much time carrying out boundary detection testing before DoE.
2010-10-19
Technical Paper
2010-01-2323
Keith Lang, Michael Kropinski, Tim Foster
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
2010-10-06
Technical Paper
2010-36-0346
Cleber Willian Gomes, Armando A. M. Lagana, Gustavo Oioli de Campos, Carlos Alberto Moraes
Internal combustion engine calibration teaching by Stand Alone System. This paper illustrates a teaching methodology for technical students of internal combustion engine calibration, by stand alone engine control unit with variable ignition and fuel injection time. Using a system named HIS (Stand alone Electronic Control Unit), to change the engine parameters, as fuel injection time and ignition time, the students can optimize fuel consumption, performance and exhaust emission. The tests are developed using the DOE (design of experiments) technique of artificial intelligence.
2010-04-12
Journal Article
2010-01-0737
Michael Kind, Andreas Kolbeck, Matthias Lamping, Dorothea Liebig, Richard Clark, Andrew Harrison, Rene Van Doorn
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
2010-04-12
Technical Paper
2010-01-0329
Manuel Nebel, Marie-Sophie Vogels, Timo Combe, Thomas Winsel, Horst Pfluegl, Christoph Hametner
The modern power train calibration process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust aftertreatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive simulation tools that represent the complete power train can likely contribute to improving the efficiency of the calibration process using an integral model based workflow. Engine models, which are purely based on complex physical principles, are usually not capable of real-time applications, especially if the simulation is focused on transient emission optimization. Methods, structures and the realization of a global dynamic real-time model are presented in this paper, combining physical knowledge and experimental models and also static and dynamic sub-structures. Such a model, with physical a priori information embedded in the model structure, provides excellent generalization capability.
Viewing 1 to 30 of 44

Filter