Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4218
2015-06-15
Technical Paper
2015-01-2079
Colin Hatch, Jason Moller, Eleftherios Kalochristianakis, Ian Roberts
Abstract The introduction of ice-phobic coatings promises to allow passive ice protection systems to be developed particularly for rotating systems such as propellers. The centrifugal force field combined with reduced adhesive strength can produce a self-shed capability limiting the amount of ice build-up. The size and shed time of ice shed from a propeller is predicted using a process that determines ice shape, ice growth rate and both internal and ice-structure interface stresses. A simple failure model is used to predict the onset of local failure and to propagate damage in the ice until local ice shedding is obtained. Recommendations are made on developing the model further.
2015-06-15
Technical Paper
2015-01-2262
Tom Knechten, Marius-Cristian Morariu, PJG van der Linden
Structural and vibro-acoustic transfer functions still form an essential part of NVH data in vehicle development programs. Excitation in the three DOFs at all body interface connection locations to target responses gives information on local dynamics stiffness and the body sensitivity for that specific path in an efficient manner. However, vehicles become more compact for fuel efficiency and production costs and to meet the market demand for urban vehicles. Alternative driveline concepts increase the electronic content and new mount locations. To achieve the optimum on road noise NVH, handling performance while conserving interior space and trunk volume requires a complex suspension layout. On top of that, customers put weight on safety and comfort systems which result to a higher packaging density. These trends imply ever limiting accessibility of the interface connections on the body structure.
2015-06-15
Technical Paper
2015-01-2242
Ling Zheng, Zhanpeng Fang
The design optimization of interior noise in vehicle is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is established and the response of sound pressure in frequency domain is predicted by using finite element method. The minimization of sound pressure inside cabins depends on body structure and the thickness for each panel. The panel participation analysis is carried out to find out the key panels as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is proposed and utilized to optimize the vibro-acoustic properties of body structure instead of complex structural-acoustic coupling finite element model. The accuracy of the proposed RSM is evaluated and discussed. Structural-acoustic problem is approximated by a series of quadratic polynomial using RSM. Geometric optimization problem of panels is described and solved to minimize the interior noise in vehicle.
2015-06-15
Technical Paper
2015-01-2322
Bastien Ganty, Jonathan Jacqmot, Ze Zhou, ChanHee Jeong
At high cruising speed, the car A-pillars generate turbulent air flow. The resulting aerodynamic pressure applied on the windows significantly contributes to the total cabin noise. In order to predict this particular noise contribution, the physic of both the flow and the cabin needs to be accurately modeled. This paper presents an efficient methodology to predict the turbulent noise transmission through the car windows. The method relies on a two-step approach: the first step is the computation of the exterior turbulent field using an unsteady CFD solver (EXA PowerFlow); the second step consists in the computation of the acoustic propagation inside the cabin using a finite element vibro-acoustic solver (Actran). The simplified car cabin of Hyundai Motor Company, studied in this paper, involves aluminum skin, windows, sealant, inner air cavity and acoustic treatment (porous material, damping layer). A pure vibro-acoustic model with hammer shock excitation on a window is first built.
2015-06-15
Technical Paper
2015-01-2324
Hangsheng Hou, Guiping Yue
When a sunroof opens to let the fresh air in during driving, there might be several noise issues associated with it. The most common and important one is the wind throb issue, which is normally resolved by installing a wind deflector with sufficient height. However with the wind throb issue gone, other sound quality problems may surface. The most obvious one is the hissing noise, which occurs often in higher speed range. This work investigates a sunroof deflector deployment strategy considering wind throb, hissing noise and other psychoacoustic attributes that could be felt subjectively by a customer. The goal is to optimize sound quality associated with an open sunroof, potentially targeting the most NVH demanding customers in the premium vehicle segment.
2015-06-15
Technical Paper
2015-01-2121
Yong Chen, Liang Fu
Abstract In helicopter, the icing rotor blades will decrease the effectiveness of the helicopter and endanger the lives of the pilots. The asymmetrical ice break-up and shedding could also lead to severe vibrations of the rotor blade. Ice break-up from the main rotor may strike the fuselage and tail rotor, even worse, find its way into the engine, which may cause serious aircraft accidents. An understanding of the mechanisms responsible for ice shedding process is necessary in order to optimize the helicopter rotor blade design and de-icing system to avoid hazardous ice shedding. In this paper, the ice shedding model is improved by introducing a bilinear cohesive zone model (CZM) to simulate the initiation and propagation of ice/blade interface crack. A maximum stress criterion is used to describe the failure occurred in the ice.
2015-06-15
Technical Paper
2015-01-2163
Caio Fuzaro Rafael, Diogo Mendes Pio, Guilherme A. Lima da Silva
Abstract The present paper presents a validation of momentum boundary-layer integral solution and finite-volume Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) results for skin friction around airfoils NACA 8H12 and MMB-V2 as well as heat transfer around an isothermal cylinder with rough surface. The objective is to propose a two-equation integral model and compare its predictions to results from a robust CFD tool, to experimental data and to results from a one-equation integral solution. The latter is the mathematical model used by classic 2D icing codes. All proposed model predictions are compared to CFD results for verification and, whenever possible, to experimental data for validation. The code-to-code verification brings reliability to both the proposed code and the CFD tool when there is no test data available.
2015-06-15
Technical Paper
2015-01-2206
Glenn Yin, Alan Parrett, Nitish Wagh, Dennis Kinchen
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity of the material or cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect the part performance. The first stage of this study is based on current available solutions from sound absorber suppliers, the acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims were measured. Next, hood liners with these different constructions were installed in a vehicle, and Sound Power Based Noise Reduction (PBNR) from the engine compartment to the interior was measured to quantify in-vehicle effects.
2015-06-15
Technical Paper
2015-01-2352
Chaitanya Krishna Balla, Sudhakara Naidu, Milind Narayan Ambardekar
Noise Vibration and Harshness (NVH) refinement is one of the important parameter in modern vehicle development. In city traffic conditions, idle is the engine operating condition where the driver focuses his attention more to his vehicle. Idle vibration levels at driver seat play an important role in any vehicle, as they lead to driver fatigue. Idle NVH levels should be made better to ensure the customer satisfaction and to reduce the driver’s fatigue. Vehicle idle NVH influenced mainly by power-train (PT) mount design i.e. mount location and stiffness, modal decoupling of vehicle flexible modes, PT rigid body modes with engine idle excitation. This paper documents/ describes the steps taken to improve the idle vibrations at driver seat of an existing design through multiple options which includes the changes in the mount location, mount stiffness , engine idle speed and the combination.
2015-06-15
Technical Paper
2015-01-2257
Ki-Chang Kim, Sang-Woo Lee, Seok-Gil Hong, Jay Kim, Gil-Jun Lee, Jae Min Choi, Yong-Jin Kim
Recently, in automobile industry, squeak and rattle (S&R) in body structure and trim parts has become a very significant issue in Initial Quality Study (IQS). In this study, a new CAE process developed by the authors to reduce S&R noises in the door system is reported. Friction-induced vibration and noise generation mechanism of a door system are studied numerically. The effect of degradation of plastics used in door trims is studied by using a model obtained from experiments. Effects of changes of material properties such as Young's modulus and loss factor, due to the material degradation as well as statistical variations are predicted using, several cases of door systems. As a new concept, the rattle and squeak index is proposed, which can be used to guide design of the body structure and trim parts. The predicted of S&R in the door system, from the proposed CAE process were compared to those obtained from the experiment.
2015-06-15
Technical Paper
2015-01-2267
Youngha Kim, Choonhyu Kim, Jaewoong Lee, Sunggi Kim
This paper describes structure borne noise reduction process that was using a combination of experimental and analytical methods. First, Major noise paths was identified using experimental Transfer Path Analysis (TPA). Next, FEA-Experimental modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method. Hybrid FEA-Experimental FRF-Based Substructuring (FBS) model was used along with Operational Deflection Shape (ODS) and Modal Analysis. The Hybrid FEA-Experimental model consisted of an experimental FRF representation of the body and a finite element model of sub-frame. The finite element of sub-frame is created by using Altair HyperMesh from CATIA images and dynamic analysis is carried out by using MSC Nastran. The natural frequency and frequency response function of finite element sub-frame model are compared with them of real sub-frame for the validity of applying Hybrid FBS method.
2015-06-15
Technical Paper
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
2015-06-15
Technical Paper
2015-01-2302
Yuksel Gur, Jian Pan, David Wagner
Light weighting of vehicle panels enclosing vehicle cabin causes NVH degradation since engine, road, and wind noise acoustic sources propagate to the vehicle interior through these panels. In order to reduce this NVH degradation, there is a need to develop new sound package materials and designs for use in lightweight vehicles. In this paper, we will focus on the use of SEA (Statistical Energy Analysis Tool) as a CAE design tool to develop sound packages for use in lightweight vehicle design to recover NVH deficiencies due to sheet metal light weighting actions. Statistical Energy Analysis results for vehicle level as well as dash and floor subsystem levels will be presented and SEA prediction capability for the sound package development for vehicle design will be discussed.
2015-06-15
Technical Paper
2015-01-2290
Sivanandi Rajadurai, Guru Prasad Mani, Kavin Raja, Sundaravadivelu Mohan
Bending moment is one of the strong pursuits in resonator's structural validation. Eigen problems play a key role in the stability and forced vibration analysis of structures. This paper explains the methodlogy to determine the weak points in the resonator assembly considering the additional effects of the installation forces and temperature impacts. Using strain eenergy plots, weakest part of the product is modified in the initial stage. The solution comes in a unique way of utilizing the worse case scenarios possible. As a consequence, the stress generated by these analyses will prove to be critical in concerning the durability issue of the system. These conditions are evaluated by a finite element model through linear and non- linear approaches and results summarized.
2015-06-15
Technical Paper
2015-01-2102
Guilin Lei, Wei Dong, Jianjun Zhu, Mei Zheng
Abstract The numerical simulation of ice melting process on an iced helicopter rotor blade is presented. The ice melting model uses an enthalpy-porosity formulation, and treats the liquid-solid mushy zone as a porous zone with porosity equal to the liquid fraction. The ice shape on the blade section is obtained by the icing code with a dynamic mesh module. Both of the temperature change and the ice-melting process on the rotor blade section surface are analyzed. The phenomenon of ice melting is analyzed through the change of temperature and liquid fraction on the abrasion/ice interface. The liquid fraction change as with time on the abrasion/ice surface is observed, which describes the ice-melting process well. The numerical results show that the ice melting process can be simulated effectively by the melting model. The de-icing process can be monitored by observing the change of the liquid fraction of the area around the abrasion/ice interface.
2015-06-15
Technical Paper
2015-01-2103
Christian Bartels, Julien Cliquet, Carlos Bautista
Abstract In order to comply with applicable certification regulations, airframers have to demonstrate safe operation of their aircraft in icing conditions. Part of this demonstration is often a numerical prediction of the potential ice accretion on unprotected surfaces. The software ONICE2D, originally developed at the Office National d'Études et de Recherche Aérospatial (ONERA), is used at Airbus for predicting ice accretions on wing-like geometries. The original version of the software uses a flow solution of the 2D full-potential equation on a structured C-grid as basis for an ice accretion prediction. Because of known limitations of this approach, an interface was added between ONICE2D and TAU [6], a hybrid flow solver for the Navier-Stokes equations. The paper first details the approach selected to implement the interface to the hybrid flow solver TAU.
2015-06-15
Technical Paper
2015-01-2208
David Stotera, Scott Bombard
Both vehicle roof systems and vehicle door systems typically have viscoelastic material between the beams and the outer panel. These materials have the propensity to affect the vibration decay time and the vibration level of the panel with their damping and stiffening properties. Decay time relates to how pleasant a vehicle door sounds upon closing, and vibration level relates to how loud a roof boom noise may be perceived to be by vehicle occupants. If a surrogate panel could be used to evaluate decay time and vibration level, then a design of experiments could be used to compare the effects of different factors on the system. The factors were varied in laboratory tests, and the results were calculated using design of experiments software. In this paper the results of a study of the varying factors tested with respect to their effects on decay time and vibration level are presented, as well as the effect the results had on potential optimization of the systems.
2015-06-15
Journal Article
2015-01-2265
Murali Balasubramanian, Ahmed Shaik
Automotive manufacturers are being challenged to come up with radical solutions to achieve substantial (30-35%) vehicle weight reductions without compromising Safety, Durability, Handling, Aero-thermal or Noise, Vibration and Harshness (NVH) performance. Developing light weight vehicle enablers have assumed foremost priority amongst vehicle engineering teams in order to address the stringent Fuel Economy Performance (FEP) targets while facilitating lower CO2 emissions, downsizing of engines, lower battery capacities etc. Body sheet metal panels have become prime targets for weight reductions via gage reduction, high strength steel replacement, lighter material applications, lightening holes etc. Many of these panel weight reduction solutions are in sharp conflict with NVH performance requirements.
2015-06-15
Technical Paper
2015-01-2264
Rama Subbu, Baskar Anthonysamy, Piyush Mani Sharma
In India, demand for motorcycle with good comfort is increasing among the customers thereby the vibration reduction of two wheelers is key parameter for motorcycle manufacturers. In order to overcome the demand in the market, manufacturers are giving more importance to ride comfort by reducing vibration experienced by the customer while using it. This results in the reduction of the life cycle of the vehicle models and drives the manufacturers to different product design philosophies and design tools, as one would expect. One of the performance factors that continue to challenge designers is that of vehicle longitudinal and vertical acceleration experienced by the motorcycle components. An essential tool in the motorcycle development process is the ability to quantify the durability of the component. This paper main objective is to increase the life of the motorcycle front fender through virtual simulation, on road testing and laboratory testing using NVH tool.
2015-06-15
Journal Article
2015-01-2263
Saeed J. Siavoshani, Prasad Vesikar
The intent of this paper is to summarize a comprehensive test-based approach developed at Siemens to analyze the door closing sound using structural and acoustic loads developed during the event. This study looks into the door closing phenomena from the structural interaction point of view between the door and the body of the vehicle. This method provides the design modification direction to improve the door closing sound and its quality. The study also quantifies the structural and acoustic loads developed at the interface mechanisms at the door-to-body frame interface during the impact event. Considering the transient nature of the door-closing event, a time domain transfer path analysis methodology is used to indirectly quantify the loads being developed between the latch and striker and different faces of door frames and body interfaces. The paper also predicts the equivalent acoustic loads developed at the interfaces between the door frame and the body.
2015-06-15
Journal Article
2015-01-2222
Nikos Zafeiropoulos, Marco Ballatore, Andy Moorhouse, Andy Mackay
Road noise forces can excite different structural resonances of the vehicle hence a high number of sensors required for observing and separating all the vibrations that are coherent with the cabin noise. Current reference sensor selection methods for feedforward road noise control result to high number of sensors. Therefore there is a necessity for reducing the number of sensors without degrading the performance of an ANC system. In the past coherence function analysis has been found to be useful for optimising the sensor location. Thus, in this case coherence function mapping was performed between an array of vibration sensors and a microphone in order to identify the locations on the structure with highly correlated with road bands in the compartment. A vehicle with an advanced suspension system was used for applying the method and defining some locations as reference signals for feedforward active road noise control.
2015-06-15
Journal Article
2015-01-2321
Nicholas Oettle, Andrew Bissell, Sivapalan Senthooran, Mohammed Meskine
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting targets as well as broadband noise targets for the sunroof in vent position and any noise generated by deflectors. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
2015-06-15
Technical Paper
2015-01-2127
Andrea Munzing, Franck Hervy, Stephane Catris
Abstract A helicopter blade profile was tested in the DGA Aero-engine Testing's icing altitude test facility S1 in Saclay, France during the winter of 2013/2014. The airfoil was a helicopter main rotor OA312 blade profile made out of composite material and with a metallic erosion shield. Dry air and ice accretion tests have been performed in order to assess the iced airfoil's aerodynamic behaviour. Several icing conditions were tested up through Mach numbers around 0.6. This paper presents the test setup, the test model and some of the test results. The test results presented in this paper include the ice shapes generated as well as dry air and iced airfoil lift and drag curves (polars) which were obtained with the real ice shapes on the airfoil.
2015-06-15
Journal Article
2015-01-2227
Scott Allen Noll, Benjamin Joodi, Jason Dreyer, Rajendra Singh
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband excitation and are often characterized through a cross-point dynamic stiffness measurement; yet, at frequencies above 100 Hz in many elastomeric components, the cross- and driving-point dynamic stiffness results tend to significantly deviate. An illustrative example is developed where two different sized bushings, constructed of the same material and were shaped to achieve the same static stiffness behavior, exhibit drastically different dynamic behavior. Physical insight is provided through the development of a reduced order single-degree-of-freedom model. A method to extract the parameters for the reduced order from a detailed finite element bushing model is provided. Finally, a new controlled benchmark experiment is used to validate the simulated behavior.
2015-06-15
Journal Article
2015-01-2229
Benjamin Joodi, Scott Allen Noll, Jason Dreyer, Rajendra Singh
Elastomeric bushings exhibit frequency dependent properties that can significantly alter the performance of a system. Current methods to identify joint properties typically require direct uniaxial excitation at stepped single frequencies. This process is often time consuming and restricted to low frequencies due to test frame and fixture dynamic interference. This paper focuses on creating a benchmark experiment to identify frequency dependent stiffness matrices including rotational and coupling terms using an inverse methods for a frequency range up to 1000 Hz. For comparison, direct measurements are completed using a commercial elastomer test system. The inverse experiment consists of an elastic beam attached to ground through the elastomeric joint of interest. The translational dynamic stiffness terms show good agreement between the two approaches; whereas, the rotational and coupling terms exhibit greater sensitivity to modeling errors and are thus more challenging to identify.
2015-04-14
Technical Paper
2015-01-1128
Amrut A. Patki
Abstract Several critical factors influence the conventional practice of defining driveline propeller shafts. One of these is the location of the center bearing bracket mounting. This in-turn depends on the frame ladder's crossmember. It has been observed that this dependence results in more number of joints and propeller shafts. “Driveline optimization by mini crossmember” is one of the solutions that offers flexibility in regards to the location of the center bearing bracket. Also this helps in achieving optimization.
2015-04-14
Technical Paper
2015-01-1318
Mohammad Muneer, Yogesh Sharma
The door performance of an automobile is gauged not only by its function but also the “feel” of operating a door which majorly depends upon opening/closing force and closing speed. This feel is in direct relation to the soundness of design and the build quality which the customer experiences even before driving the vehicle. Several studies have been conducted for door open/close performance for a conventional swing door, however little has been done in direction of sliding door. In this paper an analysis of closing speed of manually operated sliding door in purview of various parameters affecting them and their individual and combined contribution at vehicle level is presented. As the closing locus of sliding door is different from a swing door, a special experimental setup is used to measure the closing speed of sliding door.
2015-04-14
Technical Paper
2015-01-1312
MyoungKwon Je
Abstract The power sliding door system(PSD) is being equipped in the MPV(Multi-Purpose Vehicle/minivans) vehicle for convenience in the door operation. This study will focus on package space optimization for interior design and overall vehicle packaging for the vehicles equipped with PSD. To optimize the package, investigation for PSD's structure need to be done and the examples of other vehicle maker will be investigated and compared. The study that considers performance and package requirements resulted in a unique PSD design. And finally, this study will show the result vehicle in which the optimized mechanism is applied.
2015-04-14
Technical Paper
2015-01-1313
Donald Jasurda
Abstract The effects of thermal expansion and gravity on assembly processes in automotive manufacturing can and often do cause unexpected variation. Not only do these effects cause assembly issues, they can also create non-conformance and warranty problems later in the product lifecycle. Using 3D CAD models, advances in simulation allow engineers to design out these influences through a combination of tooling, process and tolerance changes to reduce costs. This whitepaper examines the process of simulating the effect of both thermal expansion and gravity on automotive structures. Using real life examples, a number of solutions were determined and tested in a simulated environment to reduce product variation and account for unavoidable environmental variation.
2015-04-14
Technical Paper
2015-01-1304
G Karthik, K V Balaji, Rao Venkateshwara, Bagul Rahul
Abstract This paper describes the suitability of recycled polyethylene terephthalate (RPET) material for canopy strip in a commercial vehicle. The material described in this paper is a PET compound recycled from used PET bottles and reinforced with glass fibers so as to meet the product's functional requirements. The application described in this paper is a Canopy strip which is a structural exterior plastic part. Canopy strip acts as a structural frame to hold the Vinyl canopy in both sides of the vehicle. Functionally, the part demands a material with adequate mechanical and thermal properties. Generally, PET bottles are thrown after use thereby creating land pollution. PET being inert takes an extremely long time to degrade thereby occupying huge amount of space in landfills and directly affecting rain water percolation. This work focused on recycling the PET bottles and compounding them suitably so as convert them into useful automotive parts.
Viewing 1 to 30 of 4218