Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 4083
Technical Paper
2014-09-16
Peter B. Zieve, Osman Emre Celek, John Fenty
Abstract The E7000 riveting machine installs NAS1097KE5-5.5 rivets into A320 Section 18 fuselage side panels. For the thinnest stacks where the panel skin is under 2mm (2024) and the stringer is under 2mm (7075), the normal process of riveting will cause deformation of the panel or dimpling. The authors found a solution to this problem by forming the rivet with the upper pressure foot extended, and it has been tested and approved for production.
Technical Paper
2014-09-16
Rainer Mueller, Matthias Vette, Andreas Ginschel, Ortwin Mailahn
Abstract The global competition challenges aircraft manufacturers in high wage countries. The assembly of large components happens manually in fixed position assembly. Especially the completion of the inner fuselage structure is done 100% manually. The shells have to be joined with rivets and several hundred clips have to be assembled to connect the shell to the frames. The poise of the worker is not ergonomic so a lot of physical stress is added to the worker and minimizes the working ability. Aircraft manufacturers need a lot of different production resources and qualified persons for the production, which provokes higher costs. Due to these high costs there is a demand for automated reconfigurable assembly systems, which offer a high flexibility and lower manufacturing costs. The research project “IProGro” deals with this challenge and develops innovative production systems for large parts. On one hand the flexibility is reached by a reconfigurable fixture for the components on the other hand it is achieved by assistance systems, which guide staff during assembly processes.
Technical Paper
2014-09-16
Yvan Blanchard
Abstract Today, the design and optimization of complex 3D composites structures is managed by taking into account engineering and manufacturing constraints. If the manufacturing process is automated, especially using a robot, these constraints are particularly complex and a difficult compromise needs to be reached. Most of the technology available on the market, dedicated to automated processes offline programming, neglects some of these constraints, or can only highlight the manufacturing defects without any automatic or manual tools to solve the tape course programming issues. A new innovative approach has been developed to include engineering, material and process specifications, to help designers and NC programmers to optimize the final layup program in terms of structural properties and productivity rate. An aerospace case study using the automated fiber placement (AFP) process will be presented to highlights these offline programming capabilities.
Technical Paper
2014-09-16
Darcy Allison, Edward Alyanak
The design challenges associated with advanced supersonic aircraft are best handled with a multidisciplinary approach. These aircraft are highly coupled in that small changes to one subsystem can have far-reaching effects on others. For the class of aircraft called the efficient supersonic air vehicle (ESAV), particular attention must be paid to the propulsion system design as a whole including installation effects in the airframe design. The propulsion system assumed for the ESAV is a three-stream variable cycle engine. A computational model has been built with the Numerical Propulsion System Simulation (NPSS) software to analyze this engine. Along with the variable cycle NPSS model, a three-ramp external compression inlet model meant for conceptual design has been developed. This inlet model will be used to capture installation effects so that they are accounted for during the aircraft conceptual design. The NPSS and inlet models are parameterized so that they can be used in a multidisciplinary design optimization (MDO) process.
Technical Paper
2014-09-16
Rudolf Neydorf, Youriy Sigida
Identification of propeller traction power specifications in aircraft mathematical description problems Under the mathematical simulation of the aircraft dynamic motion, an identification problem for a number of constants and functions which cannot be analytically calculated appears. Dependences of aerodynamic gap coefficients of the aircraft body and the airflow, as well as the traction power specifications of the active propulsors used in flight by the aircraft, are related to such functions. Nowadays, propellers only are used in the airships and other aerial vessels with the aerostatic keeping in-flight principle. In the automatic flight control systems, they act as actuation devices. When constructing a mathematical aircraft model, the thrust developed by the propulsor is often taken for an input control. However, there are a great many phases of transforming forces, moments, and kinds of energy, between the real input control (customarily, it is introducing fuel or power supply to the servomotor input) and the rotor thrust load.
Technical Paper
2014-09-16
Jay Wilhelm, Joseph Close
Uneven wing deployment of a Hybrid Projectile (HP), an Unmanned Aerial Vehicle (UAV) that is ballistically launched and then transforms, was investigated to determine the amount of roll and pitch produced during wing deployment. During testing of an HP prototype, it was noticed that sometimes the projectile began to slightly roll after the wings were deployed shortly after apogee. In this study, an analytical investigation was done to determine how the projectile body dynamics would be affected by the wings being deployed improperly. Improper and uneven wing deployment situations were investigated throughout the course of this study. The first analyzed was a single wing delaying to open. The second was if only one wing was to lock into a positive angle of incidence. The roll characteristics when both wings were deployed but only one was locked into an angle of incidence resulted in a steady state roll rate of 4.5 degrees per second. It is imperative to ensure that an HP wing deployment mechanism must be designed to deploy as evenly as possible.
Technical Paper
2014-09-16
Lucas Irving, Svetan Ratchev, Atanas Popov, Marcus Rafla
Abstract The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation. Ultimately, self-indexing components mean that the there is more flexibility as to what point in production the bracket can be attached to the rib.
Technical Paper
2014-09-16
Thomas G. Jefferson, Svetan Ratchev, Richard Crossley
Abstract Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems. The framework is a holistic, hierarchical approach to system design incorporating reconfigurability principles, Axiomatic Design and Design Structure Matrices.
Technical Paper
2014-09-16
Helen Lockett, Sarah Fletcher, Nicolas Luquet
Abstract The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time. This paper describes a recent study that applied design for assembly and maintainability principles and CATIA v5 computer aided design software to identify small design changes for wing systems installation tasks.
Technical Paper
2014-09-16
Lutz Neugebauer
The demand of fulfilling increasing Prime Customer requirements forces Tier 1 suppliers to continually improve their system solutions. Typically, this will involve integration of “state of the art” tools to afford the Tier 1 supplier a throughput and cost advantage. The subject “Production Optimization Approach” addresses the machine and process optimization of automated fastening machines in operation at customer factories. The paper will describe and focus on the main aspects of production optimization of existing machines to meet and exceed the required customer production and reporting criteria. Furthermore, the paper will present existing examples based on use of the established diagnostic tools
Technical Paper
2014-06-30
Barbara Neuhierl, David Schroeck, Sivapalan Senthooran, Philippe Moron
Abstract This paper presents an approach to numerically simulate greenhouse windnoise. The term “greenhouse windnoise” here describes the sound transferred to the interior through the glass panels of a series vehicle. Different panels, e.g. the windshield or sideglass, are contributing to the overall noise level. Attached parts as mirrors or wipers are affecting the flow around the vehicle and thus the pressure fluctuations which are acting as loads onto the panels. Especially the wiper influence and the effect of different wiper positions onto the windshield contribution is examined and set in context with the overall noise levels and other contributors. In addition, the effect of different flow yaw angles on the windnoise level in general and the wiper contributions in particular are demonstrated. As computational aeroacoustics requires accurate, highly resolved simulation of transient and compressible flow, a Lattice-Boltzmann approach is used. The noise transmission through the interior is then modeled by statistical energy analysis (SEA), representing the vehicle cabin and the panels excited by the flow.
Technical Paper
2014-06-30
Arnaud Caillet, Antoine Guellec, Denis Blanchet, Thomas Roy
Abstract Since the last decade, the automotive industry has expressed the need to better understand how the different trim parts interact together in a complete car up to 400 Hz for structureborne excitations. Classical FE methods in which the acoustic trim is represented as non-structural masses (NSM) and high damping or surface absorbers on the acoustic cavity can only be used at lower frequencies and do not provide insights into the interactions of the acoustic trims with the structure and the acoustic volume. It was demonstrated in several papers that modelling the acoustic components using the poroelastic finite element method (PEM) can yield accurate vibro-acoustic response such as transmission loss of a car component [1,2,3]. The increase of performance of today's computers and the further optimization of commercial simulation codes allow computations on full vehicle level [4,5,6] with adequate accuracy and computation times, which is essential for a car OEM. This paper presents a study of a fully trimmed vehicle excited by structureborne excitations with almost all acoustic trims such as seats, dash insulator, instrument panel, headliner… which are modelled as poroelastic finite element (PEM) parts.
Technical Paper
2014-06-30
Denis Blanchet, Anton Golota, Nicolas Zerbib, Lassen Mebarek
Abstract Recent developments in the prediction of the contribution of wind noise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This paper discusses in detail these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available.
Technical Paper
2014-06-30
Gregor Tanner, David J. Chappell, Dominik Löchel, Niels Søndergaard
Abstract Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment.
Technical Paper
2014-06-30
Ze Zhou, Jonathan Jacqmot, Gai Vo Thi, ChanHee Jeong, Kang-Duck Ih
Abstract The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment. The scenario study of installing different trim components into the vehicle provides information on the acoustic absorption and dynamic damping with regard to added vehicle weight by the trim.
Technical Paper
2014-06-30
Rainer Stelzer, Theophane Courtois, Ki-Sang Chae, Daewon SEO, Seok-Gil Hong
Abstract The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment. After providing a brief review of the established approaches for TL simulation at LF, the article will present a new FE methodology for TL simulation and introduce the advantages of “in-situ” TL simulations by means of fluid-structure FE calculation.
Technical Paper
2014-05-07
Torbjörn Narström
Abstract The use of modern quenched and tempered steels in dumper bodies to reduce weight to increase the payload and reduce the fuel consumption is briefly discussed. Modern quenched and tempered steels in combination with adopted design concept will further increase weight savings of the dumper body. Use of these materials may lead to 4 times longer wear life than ordinary steels. One of the main load cases for a dumper body is impact of an object, i.e. boulders and rocks, into the body. A well-proven test setup is used to develop a model to predict failure and depth of the dent after the impact. A material model with damage mechanic was utilized to predict fracture. The developed model was used to study the effect of the geometry of the impacting object, thickness of the plate and unconstrained plate field. The model was also implemented in larger model and compared with a full scale test of dumper body. It was found that the most sensitive parameter is the geometry of the falling object.
Technical Paper
2014-05-07
Timo Björk, Ilkka Valkonen, Jukka Kömi, Hannu Indren
Abstract The development of weldable high-strength and wear-resistant steels have made modern structures such as booms and mobile equipment possible. These sorts of novel and effective designs could not be constructed with traditional mild steel. Unfortunately, the use of these novel steels requires proper design, and there is no practical design code for these novel steels. This paper addresses stability issues, which are important considerations for designs with high-strength steels, and the properties of the heat-affected zone, which may require special attention. Fatigue design is also discussed in this paper, and the importance of the weld quality is highlighted, along with discussions on which details in the weld are the most important. By comparing the test results with the classical load limit solution, it is determined that full plastic capacity is reached and that the samples display good strain properties. Additionally, the reliability of the classical formulas is shown by comparing them to a recently proposed, novel formula.
Technical Paper
2014-04-28
Kuldeepak Mahto, K.V. Balaji, A. Zainulabedin
Abstract The present paper discusses about a glossy polypropylene composition which can replace ABS and PC-ABS in the aesthetic interior and exterior bezels of a car with good stiffness and high flow. High Melt flow index of this composition minimizes the number of gate locations thereby drastically improving the aesthetics. Usage of Special Additives, and High Aspect ratio talc reduced the density of this composition as compared to a conventional PP compound. The combined benefits of lower weight, adequate stiffness, good gloss, scratch resistance and weathering resistance in the unpainted form makes this composition attractive for Interior and exterior aesthetic bezels. Again, this composition is cost-effective thereby reducing the part costs of interior and exterior bezels significantly.
Technical Paper
2014-04-28
Swapnil Pawar, Sandip Patil, Suhas Joshi, Rajkumar Singh
Abstract Tapping is an important process in assembly of aircraft structures because on an average one millions of tapped holes are made on an aircraft structure. However, sudden breakage of the tap is the most undesirable event frequently encountered during the tapping process. In particular, this can mostly occur when small diameter internal threads are made in a ‘difficult-to-cut’ material like titanium. For this reason, it has been a topic of industrial interest in the manufacturing sector for many years. The ultrasonic vibrations assisted tapping (UVAT) is a novel manufacturing technology, where ultrasonic vibrations are provided to the work piece in the axial direction. The present work is a comprehensive study involving experimental characterization. The experimentation shows that UVAT reduces the torque during tapping as compared to that of in conventional process. There is a 19.1% reduction in torque and about 20.3% reduction in cutting temperature in UVAT over that of in CT. The experimental analysis of UVAT process also shows that the superior surface and better machinability in UVAT over that of in CT.
Technical Paper
2014-04-01
Mehdi Safaei, Shahram Azadi, Arash Keshavarz, Meghdad Zahedi
Abstract The main end of this research is the optimization of engine sub-frame parameters in a passenger car to reduce the transmitted vibration to vehicle cabin through DOE method. First, the full vehicle model of passenger car including all its sub-systems such as engine, suspension and steering system is modeled in ADAMS/CAR and its accuracy is validated by exerting swept sine and step input. After that, the schematic geometry of sub-frame is modeled in CAD software and transferred to ADAMS/CAR. Hence, the efficiency of the sub-frame in terms of reducing the induced vibration to vehicle cabin is examined through the various road inputs e.g. swept sine, step and random road input type (B). The results will illustrate that the sub-frame has significant effect in reduction of transmitted vibration to occupants. In order to optimize the sub-frame parameters, the sensitivity analysis is performed to derive effective parameters of sub-frame using DOE method. In this regard, the parameters which have dominant effect on transmitted vibration (the stiffness of sub-frame bushing in vertical direction) are optimized via RSM (Response Surface Method) method.
Technical Paper
2014-04-01
Li Yan, Weikang Jiang, Jiangqi Zhou
Abstract Sound quality of vehicle interior noise affects passenger comfort. In order to improve the sound quality of a micro commercial vehicle, the vehicle interior noise under different conditions such as idle, constant speeds and accelerating is recorded by using artificial head with dual microphones. The sound quality of recorded noise is evaluated in both objective and subjective ways. Physical parameters of interior noise are calculated objectively, and annoyance score is analyzed subjectively using paired-comparison method. According to the regression analyzing of the annoyance score and the physical parameters, an objective evaluation parameter of the sound quality is employed. To analyze the vehicle body panel contribution to interior noise sound quality, the location and spectrum characteristics of major panel emission noise sources are identified based on partial singular valued decomposition (PSVD) method. By investigating the contribution of each noise sources to the sound quality evaluation formula, the dominant interior noise source is determined.
Technical Paper
2014-04-01
Yunkai Gao, Na Qiu, Jianguang Fang, Shanshan Wang
Abstract For achieving vehicle light weighting, the motion deviation is calculated for substitution of PMMA glazing for inorganic glass. In this paper, a test method is proposed to measure and calculate the motion deviation of the dual-curvature glass. To simulate the dual-curvature glass, the torus surface is fitted with least square method according to the window frame data, which are measured by Coordinate Measuring Machine. By using this method, the motion deviation of PMMA glazing and inorganic glass can be calculated, which can not only validate the effectiveness of motion simulation, but also compare the performances. The results demonstrate that the performance of PMMA glazing is better than that of inorganic glass and the simulation results is validated.
Technical Paper
2014-04-01
Horst Lanzerath, Niels Pasligh
Abstract Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient. Therefore new FEM crash methods for structural adhesives have been investigated and validated with the help of test results.
Technical Paper
2014-04-01
Benoit Bidaine, Laurent Adam, Roger Assaker, Hanson Chang, Marc Duflot, Bender Kutub, Emmanuel Lacoste
Abstract In the steady quest for lightweighting solutions, continuous carbon fiber composites are becoming more approachable for design, now not only used in the aerospace but also the automotive industries. Carbon Fiber Reinforced Plastics (CFRP) are now being integrated into car body structures, used for their high stiffness and strength and low weight. The material properties of continuous carbon fiber composites are much more complex than metal, especially with respect to failure; this is further complicated by the fact that a single part is typically made from stacks of several unidirectional plies, each with a different fiber orientation. Hence failure occurs because of various mechanisms taking place at the ply level (matrix cracking, fiber breakage, fiber-matrix debonding) or between the plies (delamination). These mechanisms remain not fully understood and are investigated through experimental and virtual testing. To predict composite failure, we have developed advanced simulation strategies combining finite element analysis (FEA) and nonlinear micromechanical material modeling.
Technical Paper
2014-04-01
Shweta Rawat, Soumya Kanta Das
Abstract With the ever increasing emphasis on vehicle occupant safety, the safety of pedestrians is getting obscured behind the A-pillars that are expanding in order to meet the federal roof crush standards. The serious issue of pillar blind spots poses threats to the pedestrians who easily disappear from driver's field of view. To recognize this blinding danger and design the car around the driver's eye, this paper proposes the implementation of Aluminum Oxynitride marked under name AlON by Surmet Corporation for fabrication of A-pillars that can allow more than 80% visibility through them. AlON is a polycrystalline ceramic with cubic spinel crystal structure and is composed of aluminum, oxygen and nitrogen. With hardness more than 85% than sapphire, its applications range from aerospace to defense purposes which qualify it in terms of strength and thus imply that it can be conveniently used as A-pillars in vehicles. Furthermore, it possesses characteristics of being bonded to metals as well.
Technical Paper
2014-04-01
Suhas Kangde, Vishal Shitole, Ashish Kumar Sahu
Abstract Automotive Suspension is one of the critical system in load transfer from road to Chassis or BIW. Using flex bodies in Multi body simulations helps to extract dynamic strain variation. This paper highlights how the MBD and FE integration helped for accurate strain prediction on suspension components. Overall method was validated through testing. Good strain correlation was observed in dynamic strains of constant amplitude in different loading conditions. Combination of different direction loading was also tested and correlated. Method developed can be used in the initial phase of the vehicle development program for suspension strength evaluation. Suspension is one of the important system in vehicle which is subjected to very high loading in all the directions. To predict the dynamic stresses coming on the suspension system due to transient loads, faster and accurate method is required. To accelerate the suspension design process it become necessary to get good accuracy in the results.
Technical Paper
2014-04-01
Qiang Yi, Stanley Chien, David Good, Yaobin Chen, Rini Sherony
Abstract According to pedestrian crash data from 2010-2011 the U.S. General Estimates System (GES) and the Fatality Analysis Report System (FARS), more than 39% of pedestrian crash cases occurred at night and poor lighting conditions. The percentage of pedestrian fatalities in night conditions is over 77%. Therefore, evaluating the performance of pedestrian pre-collision systems (PCS) at night is an essential part of the pedestrian PCS performance evaluation. The Transportation Active Safety Institute (TASI) of Indiana University-Purdue University Indianapolis (IUPUI) is conducting research for the establishment of PCS test scenarios and procedures in collaboration with Toyota's Collaborative Safety Research Center. The objective of this paper is to describe the design and implementation of a reconfigurable road lighting system to support the pedestrian PCS performance evaluation for night road lighting conditions. First, the test conditions of the road lighting (light intensity and uniformity) are generated by combining recommendations from road lighting design standards and the average measured lighting levels at various crash locations.
Technical Paper
2014-04-01
Gaurav Gupta, Rituraj Gautam, Chetan Prakash Jain
Abstract Interior sound quality is one of the significant factors contributing to the comfort level of the occupants of a passenger car. One of the major reasons for the deterioration of interior sound quality is the booming noise. Booming noise is a low frequency (20Hz∼300Hz) structure borne noise which occurs mainly due to the powertrain excitations or road excitations. Several methods have been developed over time to identify and troubleshoot the causes of booming noise [1]. In this paper an attempt has been made to understand the booming noise by analyzing structural (panels) and acoustic (cavity) modes. Both the structural modes and the acoustic modes of the vehicle cabin were measured experimentally on a B-segment hatchback vehicle using a novel approach and the coupled modes were identified. Panels contributing to booming noise were identified and countermeasures were taken to modify these panels to achieve decoupling of structural and cavity modes which results in the reduction of cabin noise levels.
Technical Paper
2014-04-01
Keisuke Kojima, Takeshi Ogawa
Abstract The CO2 emission from automobile plants is large. A majority of this quantity comes from the body painting process. A breakdown of CO2 emissions from the painting process shows the significant impact of painting process equipment such as the oven used to cure paint and the air conditioning facilities used to maintain controlled temperature and humidity on CO2 emissions. It was concluded, therefore, that shortening these processes will effectively promote the reduction of CO2 emissions. Removing the primer process means that the basecoat (BC) and clearcoat (CC), which provide color and marketability, would be applied on the E-coat directly. By the removing the primer several issues are raised such as stone chipping resistance, weather durability, color variation and appearance. By contrast, this 3Wet painting system applies two coats of waterborne basecoat, dividing it up into 1-Base and 2-Base and then CC, in order to achieve both targets, quality and color variation. For severe corrosion areas, chipping primer (CP) is applied to keep chipping resistance before the application of 1-Base.
Viewing 1 to 30 of 4083

Filter