Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4346
2016-06-15
Technical Paper
2016-01-1803
Hannes Frank, Claus-Dieter Munz
Avoiding narrowband components in the acoustic spectrum is one of the most critical objectives in the automotive aeroacoustic optimization process. The underlying physical mechanisms are not completely understood. In a preceding numerical and experimental investigation, we performed large eddy simulations of an early-development stage realistic side-view mirror, where tonal noise was captured and the principle mechanisms were identified. In this contribution, we present simulations on a simplified two-dimensional geometry that is based on these findings. It is shown that the basic flow topology relevant for tonal noise generation on the original side-view mirror as well as the tonal noise source is reproduced in the 2D case. Furthermore, we present comparisons with measurements and the necessity and influence of a splitter plate downstream of the 2D body to avoid large scale vortex shedding.
2016-06-15
Journal Article
2016-01-1809
Alexander Schell, Vincent Cotoni
Abstract Prediction of flow induced noise in the interior of a passenger car requires accurate representations of both fluctuating surface pressures across the exterior of the vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the driver’s ear. In this paper, aeroacoustic and vibro-acoustic methods are combined in order to perform an aero-vibro-acoustic analysis of a Mercedes-Benz A-class. The exterior aero-acoustic method consists of a time domain incompressible Detached Eddy Simulation (DES) and an acoustic wave equation. The method is extended in this paper to account for convection effects when modelling the exterior sound propagation. The interior vibro-acoustic model consists of a frequency domain Finite Element (FE) model of the side glass combined with a generalized Statistical Energy Analysis (SEA) model of the interior cabin.
2016-06-15
Technical Paper
2016-01-1830
Denis Blanchet, Luca Alimonti, Anton Golota
Abstract This paper presents new advances in predicting wind noise contribution to interior SPL in the framework of the Wind Noise German Working Group composed of Audi, Daimler, Porsche and VW. In particular, a new approach was developed that allows to fully describe the wind noise source using CFD generated surface pressure distribution and its cross-correlation function and apply this source on an SEA side glass. This new method removes the need to use a diffuse acoustic field or several plane waves with various incidence angle to approximate the correct acoustics source character to apply on the SEA side glass. This new approach results are compared with results previously published which use more deterministic methods to represent the side glass and the interior of a vehicle.
2016-06-15
Journal Article
2016-01-1825
Jung-Han Woo, Da-Young Kim, Jeong-Guon Ih
Abstract To hear the powerful and spectrally rich sound in a car is costly, because the usual car audio system adopts small loudspeakers. Also, the available positions of the loudspeakers are limited, that may cause the reactive effect from the backing cavity and the sound distortion. In this work, a part of the roof panel of a passenger car is controlled by array actuators to convert the specified large area to be a woofer. An analogous concept of the acoustic holography is employed to be projected as the basic concept of an inverse rendering for achieving a desired vibration field. The vibration of the radiating zone is controlled to be in a uniform phase, and the other parts outside it are to be made a no-change zone in vibration. The latter becomes a baffle for the woofer, and the backing cavity is virtually infinite if the sound radiation into the passenger cabin is only of concern.
2016-06-15
Technical Paper
2016-01-1849
Arnaud Caillet, Luca Alimonti, Anton Golota
Abstract The need for the industry to simulate and optimize the acoustic trim parts has increased during the last decade. There are many approaches to integrate the effect of an acoustic trim in a finite element model. These approaches can be very simple and empirical like the classical non-structural mass (NSM) combined to a high acoustic damping value in the receiver cavity to much more detailed and complex approach like the Poro-Elastic Materials (PEM) method using the Biot parameters. The objective of this paper is to identify which approach is the most appropriate in given situations. This article will first make a review of the theory behind the different methods (NSM, Impedances, Transfer Matrix Method, PEM). Each of them will be investigated for the different typical trim families used in the automotive industry: absorber, spring/mass, spring/mass/absorber.
2016-06-15
Journal Article
2016-01-1795
Charly Faure, Charles Pezerat, Frédéric Ablitzer, Jérôme Antoni
In this paper, a local method of structure-borne noise source characterization is presented. It is based on measurements of transverse displacement and local structural operator knowledge and allows to localize and quantify sources without any need of boundary condition information. To fix the instability caused by measurement noise, the regularization step inherent to inverse problem is realized with a probabilistic approach, within the Bayesian framework. When a priori distributions about noise and sources are considered as Gaussian, the Bayesian regularization is equivalent to the well-known Tikhonov regularization. The optimization of the regularization is then performed by the Gibbs Sampling (GS) algorithm, which is part of Markov Chain Monte Carlo (MCMC) techniques. The whole probability of the regularized solution is inferred, providing access to confidence intervals.
2016-06-15
Technical Paper
2016-01-1806
Sumon Sinha, Farokh Kavarana, Dan Williams, Kazuya Asao
Abstract A high performance rigid airfoil profile sunroof wind deflector has been developed for high speed freeway driving with the sunroof open. This deflector is clearly superior to the conventional bar type deflector and less expensive compared to tall flexible fabric mesh deflectors applied on high end vehicles today. It provides superior speech intelligibility under high speed driving with sunroof open. The criterion for designing this deflector was to get the highest airspeed possible to span the sunroof opening under all conditions. The customized shape also utilizes flow unsteadiness, including those at the onset of buffeting, in order to condition the shear layer. The airfoil profiled deflector yielded superior mid and high frequency acoustic performance with acceptable low frequency performance. A shorter airfoil deflector was sufficient to keep the external airflow from entering the forward tilted sunroof opening on a mid-size SUV under test.
2016-06-15
Journal Article
2016-01-1801
Jonathan Vaudelle, Florian Godard, Florian Odelot, Anne Sanon
Abstract Acoustic comfort inside the vehicle is required whenever a wiper system is in function: front wiper motor noise is of great influence on the global comfort and its perception inside the car is 100% due to transmission of vibrations through wiper system fixation points on the vehicle. As any active source, both car manufacturer and system supplier need to be involved, at early stages of project development, in order to master the vibroacoustic integration of the system into the vehicle. This paper presents an experimental methodology dedicated to the front wiper system that offers the possibility to estimate the acoustic comfort inside the vehicle during project deployment phase, when modifications can still be proposed. Based on the XP-R-19701 standard, the procedure allows to measure, on a bench, the dynamic forces transmitted via the fixation points and details how to transpose them to the vehicle, taking into account the different specificities of the wiper system.
2016-04-05
Technical Paper
2016-01-1520
Gunti R. Srinivas, Anindya Deb, Clifford C. Chou
Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
2016-04-05
Technical Paper
2016-01-1523
Libo Cao, Changhai Yao, Hequan Wu
Abstract The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
2016-04-05
Technical Paper
2016-01-1532
Kyoungtaek Kwak, Seungwoo Seo, Randi Potekin, Antoine Blanchard, Alexander Vakakis, Donald McFarland, Lawrence Bergman
Abstract The purpose of this study is to develop a dynamic model that can accurately predict the motion of the door handle and counterweight during side impact crash tests. The door locking system, mainly composed of the door outside handle and door latch, is theoretically modeled, and it is assumed that the door outer panel can rotate and translate in all three directions during a side impact crash. Additionally, the numerical results are compared with real crash video footage, and satisfactory qualitative agreement is found. Finally, the simplified test rig that efficiently reflects the real crash test is introduced, and its operation is analyzed.
2016-04-05
Technical Paper
2016-01-1510
Chinmoy Pal, Tomosaburo Okabe, Kulothungan Vimalathithan, Jeyabharath Manoharan, Pratapnaidu Vallabhaneni, Munenori Shinada, Kazuto Sato
Abstract Many active safety systems are being developed with the intent of protecting pedestrians namely; pedestrian airbags, active hood, active emergency braking (AEB), etc. Effectiveness of such protection system relies on the efficiency of the sensing systems. The pop-uphood system was developed to help reduce pedestrian head injuries. A pop-up system is expected to make full deployment of the hood before the pedestrian’s head could hit the hood. The system should have the capability to detect most road users ranging from a six year old (6YO) child to a large male. To test the sensing system, an impactor model (PDI-2) was developed. Sensor response varies for vehicles with different front end profile dimensions.
2016-04-05
Technical Paper
2016-01-1508
Gernot Pauer, Michal Kriska, Andreas Hirzer
Abstract Active bonnet safety systems are implemented into vehicles, to fulfill pedestrian head impact requirements despite little available deformation space. For such systems it is necessary to consider a variety of aspects already from the very beginning of the vehicle design process and the functionality of the whole system needs to be continually cross-checked throughout the whole design process. Many of these aspects are already supported by finite element (FE) methods from vehicle manufacturers and in this paper it is shown, how the last missing links within the development process, the optimization of pedestrian detection sensor signals can also be efficiently supported by FE simulation. The modeling and validation of a pressure tube based sensor system and so called “misuse objects” are demonstrated.
2016-04-05
Technical Paper
2016-01-1541
Zuolong Wei, Hamid Reza Karimi, Kjell Gunnar Robbersmyr
Abstract The analysis of the vehicle crash performance is of great meaning in the vehicle design process. Due to the complexity of vehicle structures and uncertainty of crashes, the analysis of vehicle crashworthiness is generally depending on the researchers' experiences. In this paper, different deformation modes of energy absorption components are studied. More specifically, the bumper, crash box, the front longitudinal beam and the engine/firewall have different frequency characteristics in the deformation process. According to these characteristics, it is possible to identify the performance of each component in the crash process of assembled structures. To achieve this goal, the crash response of the passenger cabin is decomposed by the time-frequency transformation. Different frequency components exist mainly in a specified period of the crash process.
2016-04-05
Technical Paper
2016-01-1331
Shingo Hanano, Kanehiro Nagata, Yusuke Murase
Abstract The need to add more color variations to the traditional black gloss has increased globally in recent years. The intention is for automobile manufacturers to differentiate their products in terms of appearance design. The most noticeable trend is to add embellishment around the front grill. The same trend can be seen in the areas around vehicle doors. It is most common to use a coating material to emphasize the black gloss. However, in overseas countries it is a challenge to meet the required appearance quality, and under the current circumstances CKD is imported from Japan to meet such requirements. Recently, a new film-transfer technique has been established that can express black gloss as well as any coating material by transferring the roughness of the film surface. It is achieved by crimping the PET film onto the vinyl-chloride surface after the extrusion molding is performed. Moreover, we have successfully localized this technique and reduced the manufacturing cost.
2016-04-05
Technical Paper
2016-01-1330
Lei Shi, Peng Yi, Zhan Zhang
Abstract The body joint stiffness plays an important role in achieving vehicle attribute targets. One of the major drawbacks of joint stiffness evaluation is the lack of a rigorous criterion to assess whether the stiffness is proper for a body structure. This paper presents a general joint stiffness metric based on Hooke's law to better evaluate the stiffness of a body joint. A strategy for target setting of body joint stiffness was developed for vehicle body design. Finally, a vehicle body example was presented to demonstrate the proposed methodology.
2016-04-05
Technical Paper
2016-01-1329
Fulin Wei, Yanhua Shen, Tao Xu
Abstract Off-road dump truck body is exposed to abrasive wear during handling of granular materials. The wear rate of body of dump truck has direct influence on maintenance and replacement during its service process. In this paper the discrete element method (DEM) is used to simulate the granular materials of dump truck. The wear of body floor during one dumping process can be achieved by cosimulation of FEM-DEM. The wear depth variation of body has the stochastic characteristic which can be modeled by Geometric Brownian Motion (GBM). The two parameters in the stochastic differential equation, drift coefficient and diffusion coefficient, can be estimated by the wear depth measuring data. It is possible to quantitatively predict the wear evolution of every grid point of the body floor by solving this stochastic differential equation. The simulation result of the wear model is helpful to optimize design of off-road dump truck body.
2016-04-05
Technical Paper
2016-01-1328
Praneeth Kurisetty, Naveen Sukumar, Umashanker Gupta
Abstract To compete with the current market trends, there is always a need to develop cost effective frame designs to meet the needs of the customer. During the development of new vehicles, the major focus is on weight reduction, so as to improve the load carrying capacity and fuel efficiency. Due to the introduction of new high strength materials, the static strength conditions can be met by the use of thinner frames, but the dynamic behavior of the frame deteriorates. The dynamic behaviors like ride and handling, comfort are affected by the stiffness of the vehicle frame. The stiffness of the frame is majorly defined by its vertical stiffness, lateral stiffness and torsional stiffness. The vertical stiffness of the frame plays major role in isolating road vibrations to frame mounted aggregates. The lateral stiffness plays a very important role in the handling of the vehicle and cornering ability of the vehicle.
2016-04-05
Technical Paper
2016-01-1327
Zhenfeng Wang, Mingming Dong, Junfeng Xiang, Pu Gao, Liang Gu, Yushuai Wang
Abstract The study of mechanical properties special in the characteristics of elastic element is a challenging task for vehicle industry. Since torsion bar spring acts as an important part of elastic element, and improves performance of torsion bar spring is of great concern. The effects of the torsion bar spring pre-setting precision on the presetting performance are presented. Based on elastic-plastic theories, the algebraic model of torsion bar spring is established to analyze the stress, torque and residual stress under the yield and plastic conditions in pre-setting process. Then, the stress and strain states of various torsion bar springs in different conditions are simulated using the validated finite element model in ABAQUS software. The simulation results show the effects of torsion error on the pre-setting performance are less than 5% in the pre-setting process.
2016-04-05
Technical Paper
2016-01-1339
Piyush Bubna, Marc Wiseman
Abstract OEMs are investigating opportunities to reduce vehicle mass, driven by a need to meet upcoming CAFE targets, increase the range and reduce battery size of EVs. A number of lightweight materials including high strength steels, aluminum alloys, plastics and composites are now in production. To facilitate development of corporate R&D and commercialization plans for new materials, it is beneficial to understand the current manufacturing costs for production components, and their impact on piece price at different volumes. This paper investigates design and cost impact of light-weighting with respect to front door and floor assembly of Toyota Corolla and BMW i3. Toyota Corolla has a traditional steel body and is sold in high volumes while BMW i3 has relatively low annual sales and is primarily made of composite, aluminum and plastic parts.
2016-04-05
Journal Article
2016-01-1338
Syed F. Haider, Zissimos Mourelatos
Abstract Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
2016-04-05
Technical Paper
2016-01-1335
Abhishek Sinha, Kamlesh Yadav, Rajdeep Singh Khurana
Abstract The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. Working on global platform is challenging in order to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and, at the same time, to meet the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper: a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space.
2016-04-05
Technical Paper
2016-01-1332
Fredrik Henriksson, Kerstin Johansen
Abstract In the automotive industry, mass reduction and lightweight design is a continuing trend that does not show signs of declining. When looking at where to reduce weight in a vehicle, the body is a preferential subsystem due to its large contribution to overall mass and the stability of body composition over a specific model range. The automotive industry of today moves toward a greater differentiation in materials that compose a car, which can be seen in the several different multi material vehicle bodies that have been introduced by manufacturers in recent years. But while mixing materials may contribute to a good compromise between weight reduction and vehicle cost, it also proposes a number of challenges that need to be addressed. Among other material factors, the different coefficients of thermal expansions might introduce new stresses during painting and curing.
2016-04-05
Technical Paper
2016-01-1349
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract In the current scenario, the major thrust is to simulate the customer usage pattern and lab test using virtual simulation methods. Going ahead, prime importance will be to reduce the number of soft tool prototype for all tests which can be predicted in CAE. Automotive door slam test is significantly complex in terms of prediction through simulation. Current work focuses on simulating the slam event and deriving load histories at different mounting locations through dynamic analysis using LSDyna. These extracted load histories are applied to trimmed door Nastran model and modal transient analysis is performed to find the transient stress history. This approach has a significant advantage of less computation time and stress-convergence with Nastran for performing multiple design iterations compared to LSDyna. Good failure correlation is achieved with the test using this approach.
2016-04-05
Technical Paper
2016-01-1351
Simhachalam Bade
Abstract Aluminum alloys are widely used in the transportation because of their high strength-to-weight ratio and outstanding capability in absorbing energy. In this paper, performance of bumper with crash tubes using aluminum alloy AA7003 materials is compared with that of AA6061 and high strength steel (DP800) using numerical methods. Quasi-static test is simulated using the LS-DYNA implicit finite element program. Bumper and crash tubes are included in the finite element model. Symmetric Holes are provided in the crash tubes to initiate crushing. The energy absorbed by bumper and crash tubes are compared. Dynamic simulation is done using LS-Dyna explicit program. True stress-true plastic strain curves at different strain rates from the literature is used in the dynamic simulation of AA7003 material to study the strain rate effects on impact behavior of tubes. The impact mass is represented by RigidWall Planar Moving Force option in LSDYNA.
2016-04-05
Technical Paper
2016-01-1266
Shinichi Urabe, Kazutaka Kimura, Yuki Kudo, Akinori Sato
Abstract Solar and other green energy technologies are attracting attention as a means of helping to address global warming caused by CO2 and other emission gases. Countries, factories, and individual homes around the world have already introduced photovoltaic energy power sources, a trend that is likely to increase in the future. Electric vehicles powered from photovoltaic energy systems can help decrease the CO2 emmissions caused by vehicles. Unlike vehicles used for solar car racing, it is not easy to equip conventional vehicles with solar modules because the available area for module installation is very small to maintain cabin space, and the body lines of conventional vehicles are also usually slightly rounded. These factors decrease the performance of photovoltaic energy systems and prevent sufficient electric power generation. This research aimed to estimate the effectiveness of a solar module power generating system equipped on a conventional car, the Toyota Prius PHV.
2016-04-05
Technical Paper
2016-01-1612
Francesco Mariani, Francesco Risi, Nicola Bartolini, Francesco Castellani, Lorenzo Scappaticci
Abstract Aerodynamics is one of the most important factors in the development of racing cars. At the speeds of formula cars reach the formula cars, the driver's neck can be subjected to stresses resulting from the aerodynamic forces acting on the helmet; developing an aerodynamic project that takes into account the comfort of the driver without affecting performance is certainly considered a challenging activity. The aim of the present work is to develop a low-pitching-momenthelmet for formula racing cars optimizing the shape and location, applying some aerodynamic appendices. This goal is pursued by adopting an approach based on both experimental and numerical activities. First, the aerodynamic configuration of an existing helmet was examined; through a testing campaign in the wind tunnel facilities of Perugia University, pressures acting on the helmet were scanned at various speeds and data about aerodynamic drag were collected.
2016-04-05
Technical Paper
2016-01-0208
Xuzhi Du, Zhigang Yang, Hua Zhou, Qiliang Li, Zheyan Jin
Abstract The effect of jet geometry on flow, heat transfer and defrosting characteristics was numerically investigated for elliptic and rectangular impinging jets on an automobile windshield. Initially, various turbulence models within the commercial computational fluid dynamics (CFD) package FLUENT were employed and validated for a single jet, and the results indicated that the impinging jet heat transfer was more accurately predicted by the SST k -ω turbulence model, which was then utilized for this study. The aspect ratios (AR) of elliptic and rectangular jets were respectively 0.5, 1.0, and 2.0, with jet-to-target spacing h/d=2, 4 and jet-to-jet spacing c/d=4, and all those situations were numerically analyzed with the same air mass flow and jet open area. It was observed that the heat transfer coefficient and defrosting performance of the inclined windshield were significantly affected by the shape of the jet, and the best results were obtained with the elliptic jet arrangements.
2016-04-05
Technical Paper
2016-01-0217
Somnath Sen, Mayur Selokar, Diwakar Nisad, Kamal Kishore
Abstract Adequate visibility through the vehicle windshield over the entire driving period is of paramount practical significance. Thin water film (fog) that forms on the windshield mainly during the winter season would reduce and disturb the driver’s visibility. This water film originates from condensing water vapor on inside surface of the windshield due to low outside temperatures. Primary source of this vapor is the passenger’s breath, which condenses on the windshield. Hot and dry air which impinges at certain velocity and angle relative to the windshield helps to remove the thin water film (defogging) and hence improves driver’s visibility. Hence a well-designed demisting device will help to eliminate this fog layer within very short span of time and brings an accepted level of visibility. An attempt is made here to design and develop a demisting device for a commercial vehicle with the help of numerical and analytical approach and later on validated with experimental results.
2016-04-05
Technical Paper
2016-01-0240
Ruobing Zhan, Gangfeng Tan, Bo Yang, Zhiwei Zhang, Tie Wang, Cenyi Liu, Xintong Wu, Yanjun Ren, Haobo Xu
Abstract The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
Viewing 1 to 30 of 4346