Criteria

Text:
Display:

Results

Viewing 241 to 270 of 4707
2016-04-05
Technical Paper
2016-01-0372
Thomas Thesing, Neil Bishop
Abstract Conventional approaches for the fatigue life evaluation of automotive parts like headlamps involves the evaluation of random stress conditions in either the time or frequency domain. If one is working in the frequency domain the fatigue life can be evaluated using one of the available methods like the Rayleigh (Narrow Band) approach or the more recent Dirlik method. Historically, the random stresses needed as input to these methods have been evaluated by the FEA solver (eg Abaqus, or Nastran) and these “in built” stress evaluations have limitations which relate to the fact that the stress conditions are complex and so the common “equivalents” for stress like von-Mises or Principal have not been available. There have also been limitations in the location and method of averaging for such stresses. In addition, the fatigue calculation approach for doing the evaluation has been constrained to the linear stress based (S-N) method.
2016-04-05
Technical Paper
2016-01-0350
Andre Camboa, Bernardo Ribeiro, Miguel Vaz, Luis Pinheiro, Ricardo Malta
The development of an automotive hood for an electric vehicle based on a polymer-metal hybrid configuration is described in this paper. Here, special focus is given only to the engineering design and prototyping phases which are the initial stages of a much bigger project. A project that aims to evaluate the cost efficiency, weight penalty and structural integrity of adopting polydicyclopentadiene as an exterior body material in low production volume vehicles, among them the electric ones. For the engineering design and prototyping phases, three different reinforcement geometries were developed and six mechanical simulations were done through finite element analysis to aid best frame geometry selection and optimization. The entire hood was then prototyped containing the optimized geometry. The fabrication of the frame was made through metal stamping and the exterior panel through reaction injection moulding. Adhesive bonding was used for its assembly.
2016-04-05
Technical Paper
2016-01-0351
Yuki Kudo, Akinori Sato, Kazutaka Kimura, Shoichi Iwamoto, Hiroyuki Ohba, Motoya Sakabe, Yasuhiro Shirai
Abstract Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
2016-04-05
Journal Article
2016-01-0300
Lei Shi, Ji Yang, Zhaomin Zhang, Zhan Zhang
Abstract Multidisciplinary Design Optimization (MDO) has been widely used in the automotive industry to balance overall weight and stringent vehicle attributes, such as safety, NVH, durability, etc. To improve product quality and shorten product development cycle, a comprehensive MDO-based platform for vehicle attribute integration is developed in this paper. Some key issues in the platform development are addressed: Parameter model synchronization, Metamodel predictive capabilities, and Pre/post processing, etc. In addition, a strategy for body design is proposed to achieve weight targets while meeting other vehicle attributes. Lastly, the proposed methodology is demonstrated by a real world example for vehicle body design.
2016-04-05
Technical Paper
2016-01-0276
Mahalingesh Burkul, Hemant Bhatkar, Mahesh Badireddy, Narayanan Vijayakumar
Abstract In an automotive product development environment, identifying the premature structural failures is one of the important tasks for Body-In-White (BIW), sub-assemblies and components. The integrated car body structure i.e. monocoque structure, is widely used in passenger cars and SUVs. This structure is subjected to bending and torsional vibrations, due to dynamic loads. Normally the stresses due to bending are relatively small compared to stresses due to torsion in Body-In-White under actual road conditions [1]. This paper focuses on evaluating the life of Body-In-White structures subjected to torsional loading. An accelerated test method was evolved for identifying failure modes of monocoque BIW by applying torsion fatigue. The observation of the crack generation and propagation was made with respect to a number of torsion fatigue cycles.
2016-04-05
Technical Paper
2016-01-1327
Zhenfeng Wang, Mingming Dong, Junfeng Xiang, Pu Gao, Liang Gu, Yushuai Wang
Abstract The study of mechanical properties special in the characteristics of elastic element is a challenging task for vehicle industry. Since torsion bar spring acts as an important part of elastic element, and improves performance of torsion bar spring is of great concern. The effects of the torsion bar spring pre-setting precision on the presetting performance are presented. Based on elastic-plastic theories, the algebraic model of torsion bar spring is established to analyze the stress, torque and residual stress under the yield and plastic conditions in pre-setting process. Then, the stress and strain states of various torsion bar springs in different conditions are simulated using the validated finite element model in ABAQUS software. The simulation results show the effects of torsion error on the pre-setting performance are less than 5% in the pre-setting process.
2016-02-01
Technical Paper
2016-28-0174
Pankaj Kumar Singh, Naman Taneja, Alok Nath Sharma, Adarsh Gaurav
Abstract In today’s fast moving vehicle scenario, road safety is of utmost importance. Many people have lost their lives while travelling, due to a road accident. So we should mitigate such accidents if we wish to travel safely. To cater this cause, we propose an adaptive steering controlled headlight setup. The system can be adopted in any type of four wheel vehicles/trucks or trailers etc. without being an economic burden on the end user. The notion of steering controlled headlight is not new, but its adaptability according to the steering turning angle is its novel part. A lot of companies have developed technologies that incorporate turn able headlight to better illuminate the path, but these technologies are quite expensive and continue to be distant from the majority of car owners. So we felt the need of developing a mechanism that incorporates few simple components like gears, linkages etc. and can be readily fitted onto any steering column without much of a design variations.
2016-02-01
Technical Paper
2016-28-0197
Nithin Alex John, Mona Sherki, Sanjay A Patil
Abstract New generation automobiles are equipped with power windows which eases the passenger’s effort in moving the vehicle windows up and down. Many of them are stuffed with advanced features like automatic up/down option for ensuring functionality with a single press of the switch. Even though it adds comfort to driver & passenger, inadvertent use of power window can be fatal if a person’s body part gets trapped inside. An effective solution for this problem is anti-pinch mechanism, which releases the object safely just when it gets trapped. It detects the object trapped and immediately moves the window down so that trapped object will get released easily. The anti-pinch algorithm used in this project is based on the “Method of Monitoring Movable Element”, method monitor traveling distance of a power window pane. In order to achieve this different from conventional techniques we are using Ultrasonic sensor.
2016-02-01
Technical Paper
2016-28-0198
Joydeep Chatterjee, Harveen Talwar, Srishti Garg
Abstract In a typical passenger vehicle, there can be different types of noises generated which are broadly categorized as Interior Noise and Exterior Noise. The interior noise sources can be further classified into noises which can be Structure Borne or Air Borne. One of the major sources of both structure borne and airborne noise generation is the powertrain of the vehicle. The structure-borne noise and vibrations generated from the powertrain is usually transferred to the vehicle body through its attachment points to the body and the powertrain driveline. These induced body vibrations can sometimes cause the acoustic cavity of the passenger cabin to go into resonance which results in an annoying and disturbing noise for the passengers, called Booming Noise. Very often, one or more than one vehicle body panels show a dominant contribution in inducing this acoustic cavity resonance.
2016-02-01
Technical Paper
2016-28-0210
Abhishek Sinha, Kamlesh Yadav, Rajdeep Singh Khurana
Abstract The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. While working on global platform, it is challenging to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and at the same time meeting the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper, a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space.
2016-02-01
Technical Paper
2016-28-0050
Deepak Agrawal, Sharad Rawat, A. K. Upadhyay
Abstract Corrugated tubes are one among the different types of energy absorbers being used for the protection of passengers during impact /crash events of vehicles. Present work is primarily focused to analyze the effect of the variations of wavelength and amplitude of corrugation along the length of the tube on the crashworthiness of the tube. The circumferential corrugations in the tubes are graded by varying two parameters - wavelength and amplitude individually as well as simultaneously using different sinusoidal corrugation functions. The dynamic impact analysis has been carried out using LS-DYNA FEM code using shell elements for meshing and Magnesium alloy AZ31 as material. Energy absorbed, initial peak force, mean force and stroke length are the parameters used in this comparative study. It is observed that the initial reaction forces as well as the ratio of the mean reaction force to peak load changes with the grading of corrugation.
2016-02-01
Technical Paper
2016-28-0080
Jesu Rajendran Gnanaswamy, Kumaraswami Dhas
Abstract A safe vehicle is able to save lives even during worst collision scenario. Today’s vehicles have many safety systems both active and passive to save occupants. Improving the safety of pedestrian is now concentrated upon by the design engineers. Front bumper is the first member coming in contact during a frontal collision with a pedestrian. A safe bumper design helps in reducing pedestrian fatality. The requirements for pedestrian safety are not compatible with no component damage at 5 KMPH rule by the insurance agencies. This paper aims to reduce the gap in incompatibility of front bumper to meet the various requirements by changing the role of crash bars. From the point of view of pedestrians a bull bar/ crash bar is not a safety device, but it can be made into an independent component designed specifically to protect the pedestrians.
2016-02-01
Technical Paper
2016-28-0250
Kamlesh Yadav, Ruhi Thakur
Abstract Hood is the closure provided in the frontal portion of the vehicle for covering the engine room. Any component disposed in the frontal portion of the vehicle becomes important because of aesthetic as well as regulatory requirements. Introduction of new regulations like pedestrian protection brings new challenges for the original equipment manufacturers and the governing authorities. Introduction of Pedestrian Protection regulation, a recent development in the automotive industry, has thrown several questions in front of original equipment manufacturers. This work explains the procedure to address such question and the learning associated with it.
2016-02-01
Technical Paper
2016-28-0242
Ashwin Vaidyanathan, Aono Noriaki
Abstract This paper reinforces the importance of correlation between CAE Analysis of CAB Bridge and Vehicle test data. CAB Bridge is a structural assembly, bolted to the Frame of a Truck. The initial objective of the study was to evaluate the influence of particular design modification on CAB Bridge. To perform CAE calculations, two different iterations of Boundary & loading conditions, were established and executed using CATIA V5. During Post processing of CAE results, detailed data analysis and interpretation were performed. The results of CAE Analysis and Vehicle test data were compared, to identify the iteration that correlated better with Vehicle test data. The data analysis and interpretation guided in finding key observations and concluding that the Torsion case as the most important loading condition.
2016-01-01
Journal Article
2015-01-9085
Vinod Upadhyay, Xiaoning Qi, Nick Wilson, Dante Battocchi, Gordon Bierwagen, Joy Forsmark, Robert McCune
Abstract This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
2015-11-17
Journal Article
2015-32-0813
Yutaka Aikyo, Yuki Kobayashi, Takashi Sato, Tomohiko Akashi, Makoto Ishiwatari
An airbag system for motorcycle applications was developed and commercially released in 2006 based on many research results on that system. In the airbag system, the bag should be supported during the period in a collision. The previously developed system employed a configuration in which the airbag was supported by the structures of the motorcycle, such as the instrument panel and the surrounding structures. These structures receive the reaction force to hold the airbag during a crash to properly absorb the rider's kinetic energy. Meanwhile, the previous system requires a larger area for these reaction structures and is applicable only to the motorcycles that can provide the area. To overcome this limitation, we propose an airbag system employing another concept. In this concept, the airbag does not use its vehicle structures as reaction structures but uses the structures of an opposing vehicle, such as doors and/or pillars.
2015-11-17
Technical Paper
2015-32-0811
Daichi Kano, Nagasaka Kazuya, Go Matsubara, Takumi Kawasaki, Akiyuki Yamasaki, Hiroyuki Kasugai, Hideaki Saito
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
2015-11-17
Technical Paper
2015-32-0750
Yosuke Tsuchiya, Teppei Matsuzaki, Tetsuo Takeshige, Tsuyoshi Oguchi
So far, the application of LED headlights to the motorcycle has been limited for only high-priced models, because LED light units and the drivers are expensive. In our development, the cost reduction of light source units was examined by implementing multiple medium intensity LEDs. Distributed mounting scheme was created for LEDs placed on the circuit board to meet the heat dissipation requirement without a heat sink, which is usually installed. By new mounting scheme, the requirement of heat dissipation has been successfully fulfilled by only using the copper foil layer. Moreover, by connecting LEDs in series, the driver circuit configuration was made simple while separate circuits are generally required both for a high-beam and a low-beam. By this configuration, the driver cost was reduced. With this circuitry change, some associated issues arose and measures were devised to cope with them.
2015-11-17
Technical Paper
2015-32-0717
Govardan Daggupati, Dora Karedla, Gagandeep Risam, N Kuppan
The welded structures have a broad applicability in automotive industry. The welding being an assembled process, presents both advantages and disadvantages for the two wheeler motor structure. A simple existing defect after welding can generate a catastrophic fracture. Recently all major fabricated structures in two wheelers are optimized by Computer Aided Engineering - Finite Element Analysis techniques to meet the constricted weight to strength and stiffness targets. Local reinforcements in the main structure with unequal member thickness are playing major role to meet these requirements. Various critical parameters which affect the weld structure life are not being modeled in FE analysis to minimize the modeling complexity and computation times.
2015-11-17
Technical Paper
2015-32-0839
Koichiro Kawata
In motorcycle race represented by MotoGP, the motorcycle bank angle in turning state reaches approximately 60 degrees. In such a large bank angle, it is important that response of the motorcycle for the road surface displacement input is relaxed by designing the frame with low stiffness in the side direction to secure the speed on cornering. On the other hand, strong frame stiffness of longitudinal direction is required with a proper frame displacement to resist large force by the rapid deceleration. As seen above, regarding stiffness of longitudinal and side direction of the frame of motorcycle, one should be high, and the other should be low. However, in general, the ratio estimated by stiffness of side direction per that of longitudinal direction is approximately constant with existing frame. This means that if the frame stiffness of side direction is lowered, that of the longitudinal would also be lowered accordingly.
2015-09-29
Technical Paper
2015-01-2837
Subramanian Premananth, Hareesh Krishnan, Riyaz Mohammed, Dharmar Ganesh
Abstract Overall in-vehicle visibility is considered as a key safety parameter essentially mandated due to the increasing traffic scenario as seen in developing countries. Driver side bottom corner visibility is one such parameter primarily defined by A-pillar bottom and outside rear-view mirror (OSRVM). While defining the OSRVM package requirements such as size, position and regulatory aspects, it is also vital to consider other influencing parameters such as position of pillars, waist-line height, and Instrument panel which affect the in-vehicle visibility. This study explains the various package considerations, methods to optimize OSRVM position, shape and housing design in order to maximize the in-vehicle visibility considering the road and traffic conditions. A detailed study on in-vehicle visibility impacted by OSRVM packaging explained and had been verified for the results.
2015-09-29
Technical Paper
2015-01-2892
Carlos A. Pereira, Max Morton, Claire Martin, Geert-Jan Schellekens
Abstract The current trend towards energy efficient commercial vehicles requires a substantial improvement in their aerodynamic performance. This paper describes the design methodology for a new roof fairing design with integrated ducts and the predicted effects of the final design on downstream flow. It also provides a baseline comparison with the fairing of a commercial platform and highlights the advantages of using rapid prototyping technologies to test aerodynamic improvements on commercial vehicles. By integrating into the design of a thermoplastic roof fairing ducts that divert and speed-up air flow it is possible to obtain reduction of drag in the trailer gap and alter the trailer wake favorably. The resulting decrease in yaw-averaged overall drag coefficient is of 5.8%. This translates into an improvement in fuel efficiency of 2.9% when compared to the baseline.
2015-09-29
Journal Article
2015-01-2894
Marius-Dorin Surcel, Mithun Shetty
Abstract The performance of several aerodynamic technologies and approaches, such as trailer skirts, trailer boat tails, gap reduction, was evaluated using track testing, model wind tunnel testing, and CFD simulation, in order to assess the influence of the design, position and combination of various aerodynamic devices. The track test procedure followed the SAE J1321 SAE Fuel Consumption Test Procedure - Type II. Scale model wind tunnel tests were conducted to have direct performance comparisons among several possible configurations. The wind tunnel tests were conducted on a 1/8 scale model of a tractor in combination with a 53-foot semi-trailer. Among others, the wind tunnel tests and CFD simulations confirmed the influences of trailer skirts' length observed during the track tests and that the wider skirt closer to the ground offer better results.
2015-09-29
Technical Paper
2015-01-2867
Sanket Pawar
Abstract Work lights with high power rating consume high current. Since the battery voltage is fixed, high currents are needed to generate the necessary power (wattage). This makes it difficult to manage the load on the Electronic Control Unit (ECU) responsible for controlling the work lights and also on the entire electrical system of the vehicle. It is possible to prevent the system from getting over loaded by employing effective means of work light control techniques. These techniques differ based on the type of work lights connected on the vehicle. There are three types of work lights available in the market. Halogen work lights, High Intensity Discharge (HID) work lights and Light Emitting Diode (LED) work lights. HIDs are not preferred by most customers due to their high warm up times & cost/unit. The other two types of lights, i.e. LED & Halogen, are comparatively less expensive. They also need negligible warm up times which are not objectionable to the vehicle operators.
2015-09-29
Technical Paper
2015-01-2903
Miguel Hurtado, Amine Taleb-Bendiab
Abstract Similar to Passenger Vehicles (PV), Commercial Vehicles and Trucks (ComVecT) use standard rearview mirrors to improve the visibility of the surrounding environment and facilitate a safer maneuvering of large vehicles. Standard rearview mirrors used in ComVecT are large and flat to cover outside areas as specified in theFMVSS 111 standard, or other requirements like ECE-R46. In addition, ComVecT are also equipped with optional mirrors with different Field of View (FoV), such as wide angle, look-down cross proximity, and front mirrors. These optional mirrors cover wider or specific areas around the vehicle which might not be possible otherwise with standard mirrors only. While these mirrors tend to enhance the visibility around the truck, they create undesirable blind zones to the driver. These blind zones can be gaps between the direct vision through the windows and indirect vision provided by the mirror.
2015-09-22
Technical Paper
2015-36-0374
João Henrique Neme, Max Mauro Dias Santos, Evandro Leonardo Silva Teixeira
Abstract Model-Based Design (MBD) has been widely used for automotive embedded software design. Automobile manufacturers and suppliers have often underlined the importance of an unified approach for electrical and electronic (E/E) system design. In this scenario, MBD can provide a mutual benefit for stakeholders due to the share of information, workflow, and tool-chain. In this paper, we highlight MBD application for automotive Exterior Lighting System (ELS) design. In fact, ELS is an event-driven control system typically needed for car lighting and signalization, in particular at night. Furthermore, this system is mandatory for every road vehicle according to current Brazilian laws and legislation. Also, it provides safety drive preventing car accidents and pedestrian injury. In this context, we present how to boost ELS design using MBD concepts. ELS was developed in three MBD workflow (Model-In-the-Loop, Software-In-the-Loop, and Processor-In-the-Loop), from supplier’s viewpoint.
2015-09-22
Technical Paper
2015-36-0516
Esdras Guimarães Fernandes, Bruno Cesar Pockszevnicki, Geisiel Moreira de Assis, Fabio Fernandes Ribeiro
Abstract This paper aims at analytical and numerical evaluation of the structure of a Baja. It will be described some load conditions to analyze the overall structure of Baja well as localized elements, in order to prevent premature failure of the vehicle during the competition and improvements in the design phase. The numerical analysis will be conducted via finite elements to establish the optimization of weight and gain performance of the vehicle. Analytical evaluation it will conducted via propositions of physics. Results obtained for the initial concept of the project and compared with the structural changes after the trial proposition will be presented. Analysis of study resulted in improvements in manufacturing reducing weight. Also it was expected to increase the structural performance associated to a better understanding of the vehicle as a whole.
2015-09-22
Technical Paper
2015-36-0561
Antonio C. C. Nascimento Filho
Abstract In the design of automotive structural components is common scaling of the data for the "worst case", i.e. a condition of the component of least resistance (stress) and maximum load conditions applied (strength). However, in a real situation, it is not possible to determine with absolute certainty these amounts due to the random nature of the parameters involved. Thus, this design should be treated in a probabilistic manner, where the parameters involved could be considered as random variables, and the project could be qualified for a desired condition of reliability. This paper presents a proposed process (flowchart) for performing computational experiments for reliability analysis in automotive structural components regarding stochastic conditions of involved parameters. The process showed itself as able to identify the most adequate method of predicting reliability to solve problems of stress -strength interference in a design of structural automotive component.
2015-09-22
Technical Paper
2015-36-0242
Tiago Sartor, Bruno Daga Cacace, Sergio Ricardo Espada
Abstract Structural integrity is a characteristic that must be evaluated during development of plastic parts as door trim panels. One of the critical areas in door trims is the interface between different parts that often use heat stakes due to process capacity and low costs. To predict issue on those interfaces, a methodology combining finite element analysis (FEA) and physical test results was applied to drive design in two door trim designs, with different material combinations. Aiming to support FEA conclusions, physical tests were performed to determine the maximum retention force that a heat stake withstands, indicating values about 168N for heat stakes of medium impact polypropylene blend >PP+EP(D)M-T<. and 216N for stakes of unfilled polypropylene copolymer >PP<. These values were used as upper limits for reaction forces provided by FEA in each heat stake under a load of 600 N at Pull Handle.
2015-09-22
Technical Paper
2015-36-0144
Alisson Sarmento, André Luiz J. Pereira, Bruno Segobi, Fausto Saito, Pedro Maciel
Abstract This paper aims present information regarding Automotive Body in White (BIW) development fundamentals, providing a link between physics fundamentals and real automotive development. An introduction about product development process will be shown in order to allow the reader comprehension about timeline decision process. A properly revision regarding applied loads, body in white materials, safety and virtual/physical validation will be covered. Structural fundamental knowledge has a key role of Design Engineer background mindset to achieve challenges vehicle targets about cost, mass and performance. The paper information provides a clear technical reader understanding how product engineers use structural fundamental theories to design BIW in real design development application. A study of case regarding Front-end tie-bar was used. A real vehicle load application was simulated by CAE analysis.
Viewing 241 to 270 of 4707