Criteria

Text:
Display:

Results

Viewing 211 to 240 of 4689
2016-04-05
Technical Paper
2016-01-1365
Siddharth Bhupendra Unadkat, Suhas Kangde, Mahalingesh Burkul, Mahesh Badireddy
Abstract The overall automotive industry is moving toward first time right test which in turn needs first time right analysis. This is due to the enormous pressure of cost, mass, time to market and availability of prototype vehicles for testing. Use of finite element methods enables to upfront predict the system behavior in operating conditions and evaluation of structural strength. In vehicle product development process, hood slam durability evaluation is one of the important tests for body closure structure. Current work showcases an effort made for developing virtual hood slam test. The virtual model consists of BIW, hood, hinge joint, interface like CRFM (cooling-radiator-fan module) and latch mechanism with spring preload. Analysis performed with LSDyna solver. An impact loading is applied by converting potential energy to kinetic energy, mimicking the hood dropping from a specified height on the hood latch.
2016-04-05
Technical Paper
2016-01-1380
S. Khodaygan, Amir Ghasemali, Hamed Afrasiab
Abstract One of the most important characteristics of industrial products, especially mechanical set-ups, is considering the tolerances of production and assembly of these set-ups, which directly influences the products’ operations. In sheet metal structures, due to the high flexibility of the sheets, the errors appeared while assembly will be as highly influential as the errors due to the production tolerance of the sheets. As a result, having a comprehensive model which could analyze the assembly process of these structures and also clarifies the relation between the tolerance of the parts and the ultimate changes of the set-up will be of considerable importance. During the assembly process, the contact effect between the components is inevitable. If such effect is not considered, the contact surfaces will permeate. The purpose of this paper is to present a method to analyze the tolerance of flexible sheet structures, considering the contact effect between surfaces.
2016-04-05
Technical Paper
2016-01-1384
Mengshi Deng, Jian Lan
Abstract Glass lifter is a key part of automobile door system. Guide rail is the carrier of glass lifter, and it bears various load cases when glass lifer works. Mass, stiffness and natural frequencies are the factors that influence the performance of glass lifter. In order to design a lighter and reasonable glass lifter, topology optimization methods are studied in this paper. In a rope-wheel glass lifter, design domain is determined by the mechanical structure and working conditions. Firstly, the single target continuum structure topology optimization mathematic models of guide rail are built in this paper, and analysis of multi-stiffness topology optimization are carried out accordingly in which volume fraction is set as 0.4, 0.5 and 0.6. These models are based on SIMP (Solid Isotropic Material with Penalization) theory.
2016-04-05
Journal Article
2016-01-1401
Thomas M. Cleary, Timothy Huten, Daniel Strong, Chester S. Walawender
Abstract The use of lightweight materials to produce automotive glazing is being pursued by vehicle manufacturers in an effort to improve fuel economy. As glazing’s become thinner, reduced rigidity means that the critical flaw size needed to create fracture becomes much smaller due to increased strain under load or impact. This paper documents experiments focused on the impact performance of several alternative thin laminate constructions under consideration for windshield applications (including conventional annealed soda-lime glass as well as laminates utilizing chemically strengthened glass), for the purpose of identifying new and unique failure modes that result from thickness reduction. Regulatory impact tests and experiments that focused on functional performance of laminates were conducted. Given the increased sensitivity to flaw size for thin laminates, controlled surface damage was introduced to parts prior to conducting the functional performance tests.
2016-04-05
Technical Paper
2016-01-1398
Ahmet Turan
Abstract Optimization of a structure which is subjected to simultaneous multiple load cases starts with the investigation of worst possible load case combination. This is called conventional optimization approach, which can be considered impractical due to the excessive CPU times in the application of multiple load cases. This computational difficulty can be overcome by deploying singular value decomposition (SVD) to find the worst possible load case against which the structure should be optimized. To this end, the SVD based optimization approach to optimization of a structure subject to simultaneous multiple load cases is presented. Conventional Multiobjective optimization and SVD based Multi-objective optimization approaches are applied to a sample Commercial Truck Chassis Frame structure for durability vs. weight objectives. This will enable designer to select the optimum design parameters out of the calculated Pareto sets.
2016-04-05
Journal Article
2016-01-1395
Syed F. Haider, Zissimos Mourelatos
Abstract To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
2016-04-05
Technical Paper
2016-01-1411
Sangmin Lee, Donghwa Shin, Jongseok Park, Ng Eng Chong, Fabrizio Cortigiani, Youngjae Choi
Abstract LED in automotive rear combination lighting (RCL) is becoming widely used in high end to mid class segment car. This is mainly fuelled by the strong influence of styling and requirement of a compact design. With OEMs competing to provide higher value to the customers such as longer warranty and advanced diagnostic features, the topic of semiconductor integration is becoming significant. Integration is a key to enable small form factor, high robustness and implementation of advanced technical functionality in the LED driver. However, the cost of implementing an integrated driver, if not partitioned effectively, will be much higher than the discrete solution. Therefore, it is important to implement the cost optimization strategy right from the conceptualization of the LED driver integrated device. In the beginning of this paper, the LED driving concept that is commonly used in the RCL lighting such as linear current sources and switching supply is discussed.
2016-04-05
Technical Paper
2016-01-1410
Stefan G. Grötsch, Morten Brink, Roland Fiederling, Thomas Liebetrau, Ingo Möllers, Jörg Moisel, Hermann Oppermann, Alexander Pfeuffer
Abstract A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
2016-04-05
Journal Article
2016-01-1409
J. Christopher Watson, Gennady Dumnov, Alexander Muslaev, Andrey Ivanov, Svetlana Shtilkind
Abstract Condensation occurrence in automotive headlights can be detrimental to consumer acceptance of a product. This paper describes a technique for transient numerical simulation of liquid film formation on surfaces during lighting thermal analysis performed using Computational Fluid Dynamics (CFD), including how the film’s properties influence the thermal solution. The numerical technique presented accounts for the change in the film thermal state and thickness due to heat exchange with external fluid flow and solid bodies, surface evaporation/condensation, melting/crystallization within the film volume, and its motion due to gravity and friction forces from the surrounding airflow. Additionally, accurate modeling of radiation effects is critical for lighting applications, including the attendant influence on the thermal distribution of the solids that may have surfaces subject to condensation.
2016-04-05
Technical Paper
2016-01-1408
John D. Bullough, Nicholas P. Skinner, Timothy T. Plummer
Abstract Although adaptive driving beam headlight systems are not presently defined in North American headlighting standards, evidence for the potential safety benefits of these systems is increasing. Field measurements of the photometric performance of an adaptive driving bean system were made in response to simulated headlight and tail light conditions. Roadway geometries were varied and multiple measurements for many conditions were made to assess repeatability of measurements. The results of the testing are summarized in the context of validating the likely safety impacts of these systems and of providing recommendations for standardized measurement conditions to ensure reliability.
2016-04-05
Journal Article
2016-01-1407
Sama Hussein, Benjamin Hamilton, O. Remus Tutunea-Fatan, Evgueni Bordatchev
Abstract Retroreflective (RR) optical elements play a critical role in signaling, safety, and aesthetic/styling functionality of automotive lighting. The commonly-used inverted corner cube (ICC) RR structures with hexagonal aperture have several critical limitations that are primarily rooted in their manufacturing technique that involves complex assemblies/shapes of hexagonal pins and electroforms, particularly in case of freeform surfaces. This study introduces a novel RR micro-optical structure, namely: right triangular prism (RTP). The geometric model underlying this new geometry is defined as the intersection between a cube and a plane placed in a particular relative orientation with respect to each other. Following this, non-sequential optical simulation studies were performed analyzing the effect of incident light orientation.
2016-04-05
Technical Paper
2016-01-1406
Rainer Neumann
Abstract Adaptive driving beam (ADB), which was first homologated in the ECE world (ECE 123) in 2012 has changed the automotive Front Lighting philosophy completely. Whereas we currently live with separate low beam and high beam features, also used in a combined way, we will have in the future a camera driven light distribution, which is a kind of modified high beam light pattern. ADB is a camera based lighting system, which enables the driver to achieve at night nearly high beam visibility without glaring oncoming or proceeding vehicles and road users. Once the presence of other vehicles is detected the headlamps change the light pattern and block the light where the oncoming or proceeding vehicles are located. The typical low beam light distribution with given and specified cutoff line will only be used in small speed areas.
2016-04-05
Journal Article
2016-01-1414
Shigeyoshi Hiratsuka, Shinichi Kojima, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract We investigated a lighting method that supports pedestrian perception by vehicle drivers. This lighting method makes active use of visual characteristics such as the spatio-temporal frequency of contrast sensitivity. Using reasonable parameter values derived from preliminary experiments using a Campbell-Robson chart, we determined a suitable lighting pattern that improves the driver's pedestrian perception. In order to assess the influence of visual characteristics on a reaction-time-dependent task, such as pedestrian perception in nighttime, tests were performed in the target environment, the results of which validated the proposed method.
2016-04-05
Technical Paper
2016-01-0022
Kenta Morishima, Shigeru Thomas Oho, Satoshi Shimada
Abstract A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
2016-04-05
Technical Paper
2016-01-1471
Anthony Timpanaro, Charles Moody, Wesley Richardson, Bradley Reckamp, Orion Keifer
Abstract It is well known that older vehicles’ headlight assemblies degrade with exposure to the elements and can become cloudy or crazed. It is also known that the degradation decreases the amount of useful light projected forward, which can drastically reduce night time or down-road visibility. Testing has been performed to measure the available light projected by old degraded headlamp assemblies and new replacement assemblies, to quantify the decrease in emitted light caused by the degradation. The work has been extended to quantify the improvement in available light when the degraded lenses are treated with commercially available restoration products. Five different vehicle headlamp assemblies representing four different manufacturers were tested measuring the illumination at a given distance with a modified Extech® illuminance meter.
2016-04-05
Technical Paper
2016-01-1339
Piyush Bubna, Marc Wiseman
Abstract OEMs are investigating opportunities to reduce vehicle mass, driven by a need to meet upcoming CAFE targets, increase the range and reduce battery size of EVs. A number of lightweight materials including high strength steels, aluminum alloys, plastics and composites are now in production. To facilitate development of corporate R&D and commercialization plans for new materials, it is beneficial to understand the current manufacturing costs for production components, and their impact on piece price at different volumes. This paper investigates design and cost impact of light-weighting with respect to front door and floor assembly of Toyota Corolla and BMW i3. Toyota Corolla has a traditional steel body and is sold in high volumes while BMW i3 has relatively low annual sales and is primarily made of composite, aluminum and plastic parts.
2016-04-05
Technical Paper
2016-01-0351
Yuki Kudo, Akinori Sato, Kazutaka Kimura, Shoichi Iwamoto, Hiroyuki Ohba, Motoya Sakabe, Yasuhiro Shirai
Abstract Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
2016-04-05
Technical Paper
2016-01-1473
Orion P. Keifer, Bradley Reckamp, Charles Moody, Anthony Timpanaro
Abstract Evaluation of the severity of low speed motor vehicle crashes has been the subject of significant research for more than 25 years. These crashes typically result in little if any damage to the vehicles involved and therefore the ability to determine the threshold of damage would be very useful in analysis of such cases. One such threshold, which has been used by accident reconstructionists, is the manufacturer’s published bumper rating in compliance with Federal Motor Vehicle Safety Standards (FMVSS) for vehicle bumpers. The rationale is that if there is any damage to the bumper system of the vehicle in question, the impact must have had a severity greater than the rated bumper speed. This paper examines the FMVSS bumper standards upon which the published bumper ratings are reportedly in compliance, historical low speed testing damage results, and engineering considerations of bumper damage in low speed impacts.
2016-02-01
Technical Paper
2016-28-0174
Pankaj Kumar Singh, Naman Taneja, Alok Nath Sharma, Adarsh Gaurav
Abstract In today’s fast moving vehicle scenario, road safety is of utmost importance. Many people have lost their lives while travelling, due to a road accident. So we should mitigate such accidents if we wish to travel safely. To cater this cause, we propose an adaptive steering controlled headlight setup. The system can be adopted in any type of four wheel vehicles/trucks or trailers etc. without being an economic burden on the end user. The notion of steering controlled headlight is not new, but its adaptability according to the steering turning angle is its novel part. A lot of companies have developed technologies that incorporate turn able headlight to better illuminate the path, but these technologies are quite expensive and continue to be distant from the majority of car owners. So we felt the need of developing a mechanism that incorporates few simple components like gears, linkages etc. and can be readily fitted onto any steering column without much of a design variations.
2016-02-01
Technical Paper
2016-28-0198
Joydeep Chatterjee, Harveen Talwar, Srishti Garg
Abstract In a typical passenger vehicle, there can be different types of noises generated which are broadly categorized as Interior Noise and Exterior Noise. The interior noise sources can be further classified into noises which can be Structure Borne or Air Borne. One of the major sources of both structure borne and airborne noise generation is the powertrain of the vehicle. The structure-borne noise and vibrations generated from the powertrain is usually transferred to the vehicle body through its attachment points to the body and the powertrain driveline. These induced body vibrations can sometimes cause the acoustic cavity of the passenger cabin to go into resonance which results in an annoying and disturbing noise for the passengers, called Booming Noise. Very often, one or more than one vehicle body panels show a dominant contribution in inducing this acoustic cavity resonance.
2016-02-01
Technical Paper
2016-28-0197
Nithin Alex John, Mona Sherki, Sanjay A Patil
Abstract New generation automobiles are equipped with power windows which eases the passenger’s effort in moving the vehicle windows up and down. Many of them are stuffed with advanced features like automatic up/down option for ensuring functionality with a single press of the switch. Even though it adds comfort to driver & passenger, inadvertent use of power window can be fatal if a person’s body part gets trapped inside. An effective solution for this problem is anti-pinch mechanism, which releases the object safely just when it gets trapped. It detects the object trapped and immediately moves the window down so that trapped object will get released easily. The anti-pinch algorithm used in this project is based on the “Method of Monitoring Movable Element”, method monitor traveling distance of a power window pane. In order to achieve this different from conventional techniques we are using Ultrasonic sensor.
2016-02-01
Technical Paper
2016-28-0210
Abhishek Sinha, Kamlesh Yadav, Rajdeep Singh Khurana
Abstract The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. While working on global platform, it is challenging to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and at the same time meeting the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper, a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space.
2016-02-01
Technical Paper
2016-28-0242
Ashwin Vaidyanathan, Aono Noriaki
Abstract This paper reinforces the importance of correlation between CAE Analysis of CAB Bridge and Vehicle test data. CAB Bridge is a structural assembly, bolted to the Frame of a Truck. The initial objective of the study was to evaluate the influence of particular design modification on CAB Bridge. To perform CAE calculations, two different iterations of Boundary & loading conditions, were established and executed using CATIA V5. During Post processing of CAE results, detailed data analysis and interpretation were performed. The results of CAE Analysis and Vehicle test data were compared, to identify the iteration that correlated better with Vehicle test data. The data analysis and interpretation guided in finding key observations and concluding that the Torsion case as the most important loading condition.
2016-02-01
Technical Paper
2016-28-0250
Kamlesh Yadav, Ruhi Thakur
Abstract Hood is the closure provided in the frontal portion of the vehicle for covering the engine room. Any component disposed in the frontal portion of the vehicle becomes important because of aesthetic as well as regulatory requirements. Introduction of new regulations like pedestrian protection brings new challenges for the original equipment manufacturers and the governing authorities. Introduction of Pedestrian Protection regulation, a recent development in the automotive industry, has thrown several questions in front of original equipment manufacturers. This work explains the procedure to address such question and the learning associated with it.
2016-02-01
Technical Paper
2016-28-0050
Deepak Agrawal, Sharad Rawat, A. K. Upadhyay
Abstract Corrugated tubes are one among the different types of energy absorbers being used for the protection of passengers during impact /crash events of vehicles. Present work is primarily focused to analyze the effect of the variations of wavelength and amplitude of corrugation along the length of the tube on the crashworthiness of the tube. The circumferential corrugations in the tubes are graded by varying two parameters - wavelength and amplitude individually as well as simultaneously using different sinusoidal corrugation functions. The dynamic impact analysis has been carried out using LS-DYNA FEM code using shell elements for meshing and Magnesium alloy AZ31 as material. Energy absorbed, initial peak force, mean force and stroke length are the parameters used in this comparative study. It is observed that the initial reaction forces as well as the ratio of the mean reaction force to peak load changes with the grading of corrugation.
2016-02-01
Technical Paper
2016-28-0080
Jesu Rajendran Gnanaswamy, Kumaraswami Dhas
Abstract A safe vehicle is able to save lives even during worst collision scenario. Today’s vehicles have many safety systems both active and passive to save occupants. Improving the safety of pedestrian is now concentrated upon by the design engineers. Front bumper is the first member coming in contact during a frontal collision with a pedestrian. A safe bumper design helps in reducing pedestrian fatality. The requirements for pedestrian safety are not compatible with no component damage at 5 KMPH rule by the insurance agencies. This paper aims to reduce the gap in incompatibility of front bumper to meet the various requirements by changing the role of crash bars. From the point of view of pedestrians a bull bar/ crash bar is not a safety device, but it can be made into an independent component designed specifically to protect the pedestrians.
2016-01-01
Journal Article
2015-01-9085
Vinod Upadhyay, Xiaoning Qi, Nick Wilson, Dante Battocchi, Gordon Bierwagen, Joy Forsmark, Robert McCune
Abstract This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
2015-11-17
Technical Paper
2015-32-0717
Govardan Daggupati, Dora Karedla, Gagandeep Risam, N Kuppan
The welded structures have a broad applicability in automotive industry. The welding being an assembled process, presents both advantages and disadvantages for the two wheeler motor structure. A simple existing defect after welding can generate a catastrophic fracture. Recently all major fabricated structures in two wheelers are optimized by Computer Aided Engineering - Finite Element Analysis techniques to meet the constricted weight to strength and stiffness targets. Local reinforcements in the main structure with unequal member thickness are playing major role to meet these requirements. Various critical parameters which affect the weld structure life are not being modeled in FE analysis to minimize the modeling complexity and computation times.
2015-11-17
Technical Paper
2015-32-0839
Koichiro Kawata
In motorcycle race represented by MotoGP, the motorcycle bank angle in turning state reaches approximately 60 degrees. In such a large bank angle, it is important that response of the motorcycle for the road surface displacement input is relaxed by designing the frame with low stiffness in the side direction to secure the speed on cornering. On the other hand, strong frame stiffness of longitudinal direction is required with a proper frame displacement to resist large force by the rapid deceleration. As seen above, regarding stiffness of longitudinal and side direction of the frame of motorcycle, one should be high, and the other should be low. However, in general, the ratio estimated by stiffness of side direction per that of longitudinal direction is approximately constant with existing frame. This means that if the frame stiffness of side direction is lowered, that of the longitudinal would also be lowered accordingly.
2015-11-17
Journal Article
2015-32-0813
Yutaka Aikyo, Yuki Kobayashi, Takashi Sato, Tomohiko Akashi, Makoto Ishiwatari
An airbag system for motorcycle applications was developed and commercially released in 2006 based on many research results on that system. In the airbag system, the bag should be supported during the period in a collision. The previously developed system employed a configuration in which the airbag was supported by the structures of the motorcycle, such as the instrument panel and the surrounding structures. These structures receive the reaction force to hold the airbag during a crash to properly absorb the rider's kinetic energy. Meanwhile, the previous system requires a larger area for these reaction structures and is applicable only to the motorcycles that can provide the area. To overcome this limitation, we propose an airbag system employing another concept. In this concept, the airbag does not use its vehicle structures as reaction structures but uses the structures of an opposing vehicle, such as doors and/or pillars.
Viewing 211 to 240 of 4689