Criteria

Text:
Display:

Results

Viewing 181 to 210 of 4665
2016-04-05
Technical Paper
2016-01-0475
Lingzhi Li, Jun Li, Bingwu Lu, Yingjie Liu, Zhi Zhang, Hailong Cheng, Yan Zhang, Hangsheng Hou
Abstract Excessive wind noise is one of the most complained problems by owners of new vehicles as evidenced by JD Power Initial Quality Study (IQS) in recent years. After the vehicle speed surpasses 100 km/h, wind noise is gradually becoming the dominant noise source. In an effort to reduce aeroacoustic noise level, Beamforming (BF) is a very effective noise source identification technique used during vehicle wind noise development phases. In this work, based on the planar BF methodology, a large semi-circle microphone array is designed in accordance with the desired resolution and dynamic range pertaining to actual noise source distribution on a typical passenger vehicle. Acoustic array calibration and mapping deformation correction are accomplished by multi-point source method, and the Doppler Effect due to wind is corrected by the location calibration method.
2016-04-05
Technical Paper
2016-01-1473
Orion P. Keifer, Bradley Reckamp, Charles Moody, Anthony Timpanaro
Abstract Evaluation of the severity of low speed motor vehicle crashes has been the subject of significant research for more than 25 years. These crashes typically result in little if any damage to the vehicles involved and therefore the ability to determine the threshold of damage would be very useful in analysis of such cases. One such threshold, which has been used by accident reconstructionists, is the manufacturer’s published bumper rating in compliance with Federal Motor Vehicle Safety Standards (FMVSS) for vehicle bumpers. The rationale is that if there is any damage to the bumper system of the vehicle in question, the impact must have had a severity greater than the rated bumper speed. This paper examines the FMVSS bumper standards upon which the published bumper ratings are reportedly in compliance, historical low speed testing damage results, and engineering considerations of bumper damage in low speed impacts.
2016-04-05
Technical Paper
2016-01-0652
Ravi Ranjan, Lakshmaiah Brahmasani, Parvej Khan
Abstract This paper reports a study on Charge air cooler effectiveness, Air intake pressure drop, Acceleration Performance and Rise over ambient temperature of a utility vehicle for different layouts of Inter cooler, radiator, condenser and fan module in order to finalize an efficient Power train cooling system layout. The main objective is effective utilization of front end opening area, eliminating inter cooler heat load on the radiator, so that radiator size, fan size and fan motor wattage can be optimized to achieve desired cooling performance requirements with the cooling system (CRFM) module. Effect of the intercooler effectiveness, Intake pressure drop, Vehicle acceleration performance and Rise over ambient temperature are studied and both the advantages and disadvantages of the proposals are discussed to finalize the better position of inter-cooler along with other engine cooling components.
2016-04-05
Journal Article
2016-01-0300
Lei Shi, Ji Yang, Zhaomin Zhang, Zhan Zhang
Abstract Multidisciplinary Design Optimization (MDO) has been widely used in the automotive industry to balance overall weight and stringent vehicle attributes, such as safety, NVH, durability, etc. To improve product quality and shorten product development cycle, a comprehensive MDO-based platform for vehicle attribute integration is developed in this paper. Some key issues in the platform development are addressed: Parameter model synchronization, Metamodel predictive capabilities, and Pre/post processing, etc. In addition, a strategy for body design is proposed to achieve weight targets while meeting other vehicle attributes. Lastly, the proposed methodology is demonstrated by a real world example for vehicle body design.
2016-04-05
Journal Article
2016-01-0387
Yunkai Gao, Jingpeng Han, Jianguang Fang, Shihui Wang
Abstract A compiled method of the programmed load spectrum, which can simplify and accelerate the fatigue bench test of a car body, is proposed and its effectiveness is checked by the fatigue simulation. By using the multi-body dynamics model with a satisfactory accuracy, the virtual iteration is applied to cascade body loads from the wheel hubs. Based on the rain-flow counting method and statistics theory, the distributions of the body loads are analyzed, and then the programmed load spectrum is compiled and simplified. Through comparative study, the simulation results of random and programmed load spectrum are found to agree well with each other in terms of the damage distribution and fatigue life, which demonstrates the effectiveness of the presented method.
2016-04-05
Journal Article
2016-01-0404
Qianqian Du
Abstract Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
2016-04-05
Journal Article
2016-01-0407
Da-Zhi Wang, Guang-Jun Cao, Chang Qi, Yong Sun, Shu Yang, Yu Du
Abstract The increasing demand for lightweight design of the whole vehicle has raised critical weight reduction targets for crash components such as front rails without deteriorating their crash performances. To this end the last few years have witnessed a huge growth in vehicle body structures featuring hybrid materials including steel and aluminum alloys. In this work, a type of tapered tailor-welded tube (TTWT) made of steel and aluminum alloy hybrid materials was proposed to maximize the specific energy absorption (SEA) and to minimize the peak crushing force (PCF) in an oblique crash scenario. The hybrid tube was found to be more robust than the single material tubes under oblique impacts using validated finite element (FE) models. Compared with the aluminum alloy tube and the steel tube, the hybrid tube can increase the SEA by 46.3% and 86.7%, respectively, under an impact angle of 30°.
2016-04-05
Journal Article
2016-01-0539
Yuko Kajiyama, Toshikazu Obata, Tsuyoshi Sugimoto, Masahiro Nakamura, Motohide Mori
Abstract The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
2016-04-05
Journal Article
2016-01-0527
Anthony Berejka, Dan Montoney, Dan Dispenza, Len Poveromo, Rick Galloway, Marshall Cleland, Mark Driscoll
Abstract The power demands in terms of kilowatt-hour electrical use were compared for autoclave curing commercial thermosetting carbon fiber pre-pregs with an innovative alternative of high energy X-ray curing. An automotive component, now made with carbon fiber composites, was selected as an illustrative example, an Aston-Martin hood. Temperature resistant polyester molds for these hoods were used and manufacturer recommended autoclave curing conditions were followed. X-rays, which can penetrate about 15 cm (6 inches) in unit density materials (or less into higher density materials as molds), were used to cure pre-pregs made with a specialty matrix material using the same molds, but doing so without adding any heat for curing. High energy X-ray equipment, generated from a 7 MeV, 700 kW electron beam, is in commercial use for medical device sterilization. This same equipment can also be used for composite curing.
2016-04-05
Journal Article
2016-01-0519
Xiaoqing Xu, Bohan Liu, Yan Wang, Yibing Li
Abstract The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate.
2016-04-05
Journal Article
2016-01-1395
Syed F. Haider, Zissimos Mourelatos
Abstract To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
2016-04-05
Journal Article
2016-01-1334
Christopher Flegel, Parth Bhivate, Liang Li, Yash Mathur, Sanket Phalgaonkar, Mark Benton, Prasanth Muralidharan, Johnell Brooks, Srikanth Pilla, Paul Venhovens, David Lewis, Garrett DeBry, Craig Payne
Abstract The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
2016-04-05
Journal Article
2016-01-1338
Syed F. Haider, Zissimos Mourelatos
Abstract Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
2016-04-05
Journal Article
2016-01-1407
Sama Hussein, Benjamin Hamilton, O. Remus Tutunea-Fatan, Evgueni Bordatchev
Abstract Retroreflective (RR) optical elements play a critical role in signaling, safety, and aesthetic/styling functionality of automotive lighting. The commonly-used inverted corner cube (ICC) RR structures with hexagonal aperture have several critical limitations that are primarily rooted in their manufacturing technique that involves complex assemblies/shapes of hexagonal pins and electroforms, particularly in case of freeform surfaces. This study introduces a novel RR micro-optical structure, namely: right triangular prism (RTP). The geometric model underlying this new geometry is defined as the intersection between a cube and a plane placed in a particular relative orientation with respect to each other. Following this, non-sequential optical simulation studies were performed analyzing the effect of incident light orientation.
2016-04-05
Journal Article
2016-01-1409
J. Christopher Watson, Gennady Dumnov, Alexander Muslaev, Andrey Ivanov, Svetlana Shtilkind
Abstract Condensation occurrence in automotive headlights can be detrimental to consumer acceptance of a product. This paper describes a technique for transient numerical simulation of liquid film formation on surfaces during lighting thermal analysis performed using Computational Fluid Dynamics (CFD), including how the film’s properties influence the thermal solution. The numerical technique presented accounts for the change in the film thermal state and thickness due to heat exchange with external fluid flow and solid bodies, surface evaporation/condensation, melting/crystallization within the film volume, and its motion due to gravity and friction forces from the surrounding airflow. Additionally, accurate modeling of radiation effects is critical for lighting applications, including the attendant influence on the thermal distribution of the solids that may have surfaces subject to condensation.
2016-04-05
Journal Article
2016-01-1401
Thomas M. Cleary, Timothy Huten, Daniel Strong, Chester S. Walawender
Abstract The use of lightweight materials to produce automotive glazing is being pursued by vehicle manufacturers in an effort to improve fuel economy. As glazing’s become thinner, reduced rigidity means that the critical flaw size needed to create fracture becomes much smaller due to increased strain under load or impact. This paper documents experiments focused on the impact performance of several alternative thin laminate constructions under consideration for windshield applications (including conventional annealed soda-lime glass as well as laminates utilizing chemically strengthened glass), for the purpose of identifying new and unique failure modes that result from thickness reduction. Regulatory impact tests and experiments that focused on functional performance of laminates were conducted. Given the increased sensitivity to flaw size for thin laminates, controlled surface damage was introduced to parts prior to conducting the functional performance tests.
2016-04-05
Journal Article
2016-01-1595
Haibo Wu, Jiangbin Zhou, Qian Chen, Gongwen Liu, Chaoqun Qian
Abstract In this paper we present the work which was done at Shanghai-VW for using computational aero-acoustic (CAA) simulation in the vehicle development process to assess and improve the buffeting behavior of a vehicle when the rear side window is open. In the first step, a methodology was established and validated against wind tunnel tests using a Sedan. The methodology consists of a calibration of the CAA model to represent the properties of the cabin interior of the real car in terms of damping, wall compliance and leakage followed by CAA simulations of the full vehicle at different wind speeds to obtain the transient flow field around the exterior shape and inside the passenger compartment. The interior noise spectra are directly calculated from the transient pressure inside the cabin.
2016-04-05
Journal Article
2016-01-1414
Shigeyoshi Hiratsuka, Shinichi Kojima, Nobuyuki Shiraki, Kazunori Higuchi, Toshihiko Tsukada, Keiichi Shimaoka, Kazuya Asaoka, Sho Masuda, Kazuhiko Nakashima
Abstract We investigated a lighting method that supports pedestrian perception by vehicle drivers. This lighting method makes active use of visual characteristics such as the spatio-temporal frequency of contrast sensitivity. Using reasonable parameter values derived from preliminary experiments using a Campbell-Robson chart, we determined a suitable lighting pattern that improves the driver's pedestrian perception. In order to assess the influence of visual characteristics on a reaction-time-dependent task, such as pedestrian perception in nighttime, tests were performed in the target environment, the results of which validated the proposed method.
2016-04-05
Technical Paper
2016-01-1332
Fredrik Henriksson, Kerstin Johansen
Abstract In the automotive industry, mass reduction and lightweight design is a continuing trend that does not show signs of declining. When looking at where to reduce weight in a vehicle, the body is a preferential subsystem due to its large contribution to overall mass and the stability of body composition over a specific model range. The automotive industry of today moves toward a greater differentiation in materials that compose a car, which can be seen in the several different multi material vehicle bodies that have been introduced by manufacturers in recent years. But while mixing materials may contribute to a good compromise between weight reduction and vehicle cost, it also proposes a number of challenges that need to be addressed. Among other material factors, the different coefficients of thermal expansions might introduce new stresses during painting and curing.
2016-04-05
Technical Paper
2016-01-1410
Stefan G. Grötsch, Morten Brink, Roland Fiederling, Thomas Liebetrau, Ingo Möllers, Jörg Moisel, Hermann Oppermann, Alexander Pfeuffer
Abstract A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
2016-02-01
Technical Paper
2016-28-0080
Jesu Rajendran Gnanaswamy, Kumaraswami Dhas
Abstract A safe vehicle is able to save lives even during worst collision scenario. Today’s vehicles have many safety systems both active and passive to save occupants. Improving the safety of pedestrian is now concentrated upon by the design engineers. Front bumper is the first member coming in contact during a frontal collision with a pedestrian. A safe bumper design helps in reducing pedestrian fatality. The requirements for pedestrian safety are not compatible with no component damage at 5 KMPH rule by the insurance agencies. This paper aims to reduce the gap in incompatibility of front bumper to meet the various requirements by changing the role of crash bars. From the point of view of pedestrians a bull bar/ crash bar is not a safety device, but it can be made into an independent component designed specifically to protect the pedestrians.
2016-02-01
Technical Paper
2016-28-0242
Ashwin Vaidyanathan, Aono Noriaki
Abstract This paper reinforces the importance of correlation between CAE Analysis of CAB Bridge and Vehicle test data. CAB Bridge is a structural assembly, bolted to the Frame of a Truck. The initial objective of the study was to evaluate the influence of particular design modification on CAB Bridge. To perform CAE calculations, two different iterations of Boundary & loading conditions, were established and executed using CATIA V5. During Post processing of CAE results, detailed data analysis and interpretation were performed. The results of CAE Analysis and Vehicle test data were compared, to identify the iteration that correlated better with Vehicle test data. The data analysis and interpretation guided in finding key observations and concluding that the Torsion case as the most important loading condition.
2016-02-01
Technical Paper
2016-28-0250
Kamlesh Yadav, Ruhi Thakur
Abstract Hood is the closure provided in the frontal portion of the vehicle for covering the engine room. Any component disposed in the frontal portion of the vehicle becomes important because of aesthetic as well as regulatory requirements. Introduction of new regulations like pedestrian protection brings new challenges for the original equipment manufacturers and the governing authorities. Introduction of Pedestrian Protection regulation, a recent development in the automotive industry, has thrown several questions in front of original equipment manufacturers. This work explains the procedure to address such question and the learning associated with it.
2016-02-01
Technical Paper
2016-28-0197
Nithin Alex John, Mona Sherki, Sanjay A Patil
Abstract New generation automobiles are equipped with power windows which eases the passenger’s effort in moving the vehicle windows up and down. Many of them are stuffed with advanced features like automatic up/down option for ensuring functionality with a single press of the switch. Even though it adds comfort to driver & passenger, inadvertent use of power window can be fatal if a person’s body part gets trapped inside. An effective solution for this problem is anti-pinch mechanism, which releases the object safely just when it gets trapped. It detects the object trapped and immediately moves the window down so that trapped object will get released easily. The anti-pinch algorithm used in this project is based on the “Method of Monitoring Movable Element”, method monitor traveling distance of a power window pane. In order to achieve this different from conventional techniques we are using Ultrasonic sensor.
2016-02-01
Technical Paper
2016-28-0050
Deepak Agrawal, Sharad Rawat, A. K. Upadhyay
Abstract Corrugated tubes are one among the different types of energy absorbers being used for the protection of passengers during impact /crash events of vehicles. Present work is primarily focused to analyze the effect of the variations of wavelength and amplitude of corrugation along the length of the tube on the crashworthiness of the tube. The circumferential corrugations in the tubes are graded by varying two parameters - wavelength and amplitude individually as well as simultaneously using different sinusoidal corrugation functions. The dynamic impact analysis has been carried out using LS-DYNA FEM code using shell elements for meshing and Magnesium alloy AZ31 as material. Energy absorbed, initial peak force, mean force and stroke length are the parameters used in this comparative study. It is observed that the initial reaction forces as well as the ratio of the mean reaction force to peak load changes with the grading of corrugation.
2016-02-01
Technical Paper
2016-28-0210
Abhishek Sinha, Kamlesh Yadav, Rajdeep Singh Khurana
Abstract The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. While working on global platform, it is challenging to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and at the same time meeting the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper, a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space.
2016-02-01
Technical Paper
2016-28-0198
Joydeep Chatterjee, Harveen Talwar, Srishti Garg
Abstract In a typical passenger vehicle, there can be different types of noises generated which are broadly categorized as Interior Noise and Exterior Noise. The interior noise sources can be further classified into noises which can be Structure Borne or Air Borne. One of the major sources of both structure borne and airborne noise generation is the powertrain of the vehicle. The structure-borne noise and vibrations generated from the powertrain is usually transferred to the vehicle body through its attachment points to the body and the powertrain driveline. These induced body vibrations can sometimes cause the acoustic cavity of the passenger cabin to go into resonance which results in an annoying and disturbing noise for the passengers, called Booming Noise. Very often, one or more than one vehicle body panels show a dominant contribution in inducing this acoustic cavity resonance.
2016-02-01
Technical Paper
2016-28-0174
Pankaj Kumar Singh, Naman Taneja, Alok Nath Sharma, Adarsh Gaurav
Abstract In today’s fast moving vehicle scenario, road safety is of utmost importance. Many people have lost their lives while travelling, due to a road accident. So we should mitigate such accidents if we wish to travel safely. To cater this cause, we propose an adaptive steering controlled headlight setup. The system can be adopted in any type of four wheel vehicles/trucks or trailers etc. without being an economic burden on the end user. The notion of steering controlled headlight is not new, but its adaptability according to the steering turning angle is its novel part. A lot of companies have developed technologies that incorporate turn able headlight to better illuminate the path, but these technologies are quite expensive and continue to be distant from the majority of car owners. So we felt the need of developing a mechanism that incorporates few simple components like gears, linkages etc. and can be readily fitted onto any steering column without much of a design variations.
2016-01-01
Journal Article
2015-01-9085
Vinod Upadhyay, Xiaoning Qi, Nick Wilson, Dante Battocchi, Gordon Bierwagen, Joy Forsmark, Robert McCune
Abstract This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
2015-11-17
Technical Paper
2015-32-0717
Govardan Daggupati, Dora Karedla, Gagandeep Risam, N Kuppan
The welded structures have a broad applicability in automotive industry. The welding being an assembled process, presents both advantages and disadvantages for the two wheeler motor structure. A simple existing defect after welding can generate a catastrophic fracture. Recently all major fabricated structures in two wheelers are optimized by Computer Aided Engineering - Finite Element Analysis techniques to meet the constricted weight to strength and stiffness targets. Local reinforcements in the main structure with unequal member thickness are playing major role to meet these requirements. Various critical parameters which affect the weld structure life are not being modeled in FE analysis to minimize the modeling complexity and computation times.
Viewing 181 to 210 of 4665